Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (8,915)

Search Parameters:
Keywords = improved thermal performance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 4576 KB  
Article
Study on Engineering Geopolymer Composites (EGCs) Under Sustained Thermal Environment: Linking Strain-Hardening Characteristics, Static/Impact Load Mechanical Properties, and Evolution Mechanism
by Shuo Wang, Wei Wang, Haoxing Liu, Ao Huang and Hongqiang Ma
Buildings 2025, 15(20), 3792; https://doi.org/10.3390/buildings15203792 (registering DOI) - 21 Oct 2025
Abstract
This study focuses on the performance evolution of Engineering Geopolymer Composites (EGCs) in long-term thermal environments, investigating the mechanical properties and microstructural evolution of alkali-activated fly ash–slag composites under sustained 60 °C thermal conditions. The research results indicate that sustained exposure to 60 [...] Read more.
This study focuses on the performance evolution of Engineering Geopolymer Composites (EGCs) in long-term thermal environments, investigating the mechanical properties and microstructural evolution of alkali-activated fly ash–slag composites under sustained 60 °C thermal conditions. The research results indicate that sustained exposure to 60 °C significantly enhances the static and impact loading compressive strength of EGCs; however, single-slag or high-alkalinity systems exhibit strength retrogression due to insufficient long-term thermal stability. After exposure to elevated temperatures, the tensile strain-hardening curve of EGCs becomes smoother, with a reduced number of cracks but increased crack width, leading to a transition from a distributed multicrack propagation pattern to rapid widening of primary cracks. Due to the bridging effect of PVA fibers, sustained elevated temperature significantly enhances the peak impact load stress of the S50-6 sample. Microscopic analysis attributes this improvement to the matrix-strengthening effect caused by accelerated C-(A)-S-H gel polymerization and refined pore structure under continuous heat, as well as the energy dissipation role of the fiber system. The study recommends an optimal EGC system formulation with a fly ash–slag mass ratio of 1:1 and a Na2O concentration of 4–6%. This research provides a theoretical foundation for understanding the performance evolution and strength stability of EGC materials under sustained elevated temperature. Full article
Show Figures

Figure 1

24 pages, 4921 KB  
Article
YOLOv11-DCFNet: A Robust Dual-Modal Fusion Method for Infrared and Visible Road Crack Detection in Weak- or No-Light Illumination Environments
by Xinbao Chen, Yaohui Zhang, Junqi Lei, Lelin Li, Lifang Liu and Dongshui Zhang
Remote Sens. 2025, 17(20), 3488; https://doi.org/10.3390/rs17203488 (registering DOI) - 20 Oct 2025
Abstract
Road cracks represent a significant challenge that impacts the long-term performance and safety of transportation infrastructure. Early identification of these cracks is crucial for effective road maintenance management. However, traditional crack recognition methods that rely on visible light images often experience substantial performance [...] Read more.
Road cracks represent a significant challenge that impacts the long-term performance and safety of transportation infrastructure. Early identification of these cracks is crucial for effective road maintenance management. However, traditional crack recognition methods that rely on visible light images often experience substantial performance degradation in weak-light environments, such as at night or within tunnels. This degradation is characterized by blurred or deficient image textures, indistinct target edges, and reduced detection accuracy, which hinders the ability to achieve reliable all-weather target detection. To address these challenges, this study introduces a dual-modal crack detection method named YOLOv11-DCFNet. This method is based on an enhanced YOLOv11 architecture and incorporates a Cross-Modality Fusion Transformer (CFT) module. It establishes a dual-branch feature extraction structure that utilizes both infrared and visible light within the original YOLOv11 framework, effectively leveraging the high contrast capabilities of thermal infrared images to detect cracks under weak- or no-light conditions. The experimental results demonstrate that the proposed YOLOv11-DCFNet method significantly outperforms the single-modal model (YOLOv11-RGB) in both weak-light and no-light scenarios. Under weak-light conditions, the fusion model effectively utilizes the weak texture features of RGB images alongside the thermal radiation information from infrared (IR) images. This leads to an improvement in Precision from 83.8% to 95.3%, Recall from 81.5% to 90.5%, mAP@0.5 from 84.9% to 92.9%, and mAP@0.5:0.95 from 41.7% to 56.3%, thereby enhancing both detection accuracy and quality. In no-light conditions, the RGB single modality performs poorly due to the absence of visible light information, with an mAP@0.5 of only 67.5%. However, by incorporating IR thermal radiation features, the fusion model enhances Precision, Recall, and mAP@0.5 to 95.3%, 90.5%, and 92.9%, respectively, maintaining high detection accuracy and stability even in extreme no-light environments. The results of this study indicate that YOLOv11-DCFNet exhibits strong robustness and generalization ability across various low illumination conditions, providing effective technical support for night-time road maintenance and crack monitoring systems. Full article
Show Figures

Figure 1

28 pages, 1278 KB  
Review
Polymeric Frontiers in Next-Generation Energy Storage: Bridging Molecular Design, Multifunctionality, and Device Applications Across Batteries, Supercapacitors, Solid-State Systems, and Beyond
by Akhil Sharma, Sonu Sharma, Monu Sharma, Vikas Sharma, Shivika Sharma and Iyyakkannu Sivanesan
Polymers 2025, 17(20), 2800; https://doi.org/10.3390/polym17202800 - 20 Oct 2025
Abstract
Polymer materials have become promising candidates for next-generation energy storage, with structural tunability, multifunctionality, and compatibility with a variety of device platforms. They have a molecular design capable of customizing ion and electron transport routes, integrating redox-active species, and enhancing interfacial stability, surpassing [...] Read more.
Polymer materials have become promising candidates for next-generation energy storage, with structural tunability, multifunctionality, and compatibility with a variety of device platforms. They have a molecular design capable of customizing ion and electron transport routes, integrating redox-active species, and enhancing interfacial stability, surpassing the drawbacks of traditional inorganic systems. New developments have been made in multifunctional polymers that have the ability to combine conductivity, mechanical properties, thermal stability, and self-healing into a single scaffold system, which is useful in battery, supercapacitor, and solid-state applications. By incorporating polymers with carbon nanostructures, ceramics, or two-dimensional materials, hybrid polymer nanocomposites improve electrochemical performance, durability, and mechanical compliance, and the solid polymer electrolytes, as well as artificial solid electrolyte interphases, resolve dendrite growth and safety issues. The multifunctionality also extends to flexibility, stretchability, and miniaturization, which implies that polymers are suitable for use in wearable devices and biomedical devices. At the same time, sustainable polymer innovation focuses on bio-based feedstocks, which can be recycled, and green synthesis pathways. Polymer discovery using artificial intelligence and machine learning is faster than standard methods, predicts structure–property–performance relationships, and can be rationally engineered. Although there are difficulties in stability during long periods, scalability, and trade-offs between indeedness and mechanical endurance, polymers are a promising avenue with regard to dependable, safe, and sustainable power storage. This review presents the molecular strategies, multifunctional uses, and prospects, where polymers are at the center of the next-generation energy technologies. Full article
(This article belongs to the Special Issue Polymeric Materials for Next-Generation Energy Storage)
Show Figures

Figure 1

20 pages, 2282 KB  
Article
Enhancing CO2 Desorption Efficiency in Activated MDEA Using Titanium Oxyhydrate Particles
by Siti Aishah Mohd Rozaiddin, Kok Keong Lau and Fatemeh Shokrollahi
Catalysts 2025, 15(10), 999; https://doi.org/10.3390/catal15100999 - 20 Oct 2025
Abstract
The urgent global issue of climate change caused by rising carbon dioxide (CO2) levels has led to the widespread use of gas separation processes. Among the available processes, chemical absorption has received more attention due to its maturity and higher efficiency [...] Read more.
The urgent global issue of climate change caused by rising carbon dioxide (CO2) levels has led to the widespread use of gas separation processes. Among the available processes, chemical absorption has received more attention due to its maturity and higher efficiency compared to others. However, the high energy consumption during the desorption step poses several technical challenges, limiting its industrial applications. To overcome those challenges, several research studies have been conducted to improve the performance of the desorption process. In particular, various types of catalysts have been tested to improve the performance of the CO2 desorption process. Among the available catalysts, Titanium Oxyhydrate (TiO(OH)2) has shown remarkable characteristics for replacing conventional catalysts, mainly due to its stability and the potential for increasing the CO2 desorption rate. However, limited studies have been conducted to evaluate the performance of the CO2 desorption process, especially by utilizing commercial solvents such as piperazine (PZ) promoted methyldiethanolamine (MDEA). Hence, this study aims to evaluate the stability of TiO(OH)2 as a catalyst during the CO2 desorption process using various characterization techniques. The CO2 desorption performance is also assessed under different operating conditions. Moreover, the regeneration energy is determined and reported as the sensible heat duty per released CO2. The results show no significant difference between fresh and cycled TiO(OH)2, indicating its substantial thermal stability. Furthermore, a notable rise of 19.58% is observed in desorption rate while utilizing TiO(OH)2 with a mass concentration of 5 wt%, reflecting less energy consumption. These findings suggest that TiO(OH)2 could serve as a transformative catalyst in industrial-scale CO2 desorption processes, potentially paving the way for more sustainable CO2 capture technologies. Full article
(This article belongs to the Special Issue Catalysis and Technology for CO2 Capture, Conversion and Utilization)
30 pages, 3738 KB  
Review
Hydrogen Propulsion Technologies for Aviation: A Review of Fuel Cell and Direct Combustion Systems Towards Decarbonising Medium-Haul Aircraft
by Daisan Gopalasingam, Bassam Rakhshani and Cristina Rodriguez
Hydrogen 2025, 6(4), 92; https://doi.org/10.3390/hydrogen6040092 - 20 Oct 2025
Abstract
Hydrogen propulsion technologies are emerging as a key enabler for decarbonizing the aviation sector, especially for regional commercial aircraft. The evolution of aircraft propulsion technologies in recent years raises the question of the feasibility of a hydrogen propulsion system for beyond regional aircraft. [...] Read more.
Hydrogen propulsion technologies are emerging as a key enabler for decarbonizing the aviation sector, especially for regional commercial aircraft. The evolution of aircraft propulsion technologies in recent years raises the question of the feasibility of a hydrogen propulsion system for beyond regional aircraft. This paper presents a comprehensive review of hydrogen propulsion technologies, highlighting key advancements in component-level performance metrics. It further explores the technological transitions necessary to enable hydrogen-powered aircraft beyond the regional category. The feasibility assessment is based on key performance parameters, including power density, efficiency, emissions, and integration challenges, aligned with the targets set for 2035 and 2050. The adoption of hydrogen-electric powertrains for the efficient transition from KW to MW powertrains depends on transitions in fuel cell type, thermal management systems (TMS), lightweight electric machines and power electronics, and integrated cryogenic cooling architectures. While hydrogen combustion can leverage existing gas turbine architectures with relatively fewer integration challenges, it presents its technical hurdles, especially related to combustion dynamics, NOx emissions, and contrail formation. Advanced combustor designs, such as micromix, staged, and lean premixed systems, are being explored to mitigate these challenges. Finally, the integration of waste heat recovery technologies in the hydrogen propulsion system is discussed, demonstrating the potential to improve specific fuel consumption by up to 13%. Full article
Show Figures

Figure 1

23 pages, 7505 KB  
Article
A Study on Compensation for Operating Region Variations in an In-Wheel PMSM Under Temperature Changes Using Neural Network Algorithms
by Doo-Il Son, Geun-Ho Lee, Young-Joo Kim and Kwang-Ouck Youm
Actuators 2025, 14(10), 508; https://doi.org/10.3390/act14100508 - 20 Oct 2025
Abstract
This study proposes a compensation method for operating region variations in in-wheel PMSMs, which are widely used in small mobility applications such as e-scooters and e-bikes. As motor temperature increases during operation, electrical parameters such as inductance vary, leading to unstable control. To [...] Read more.
This study proposes a compensation method for operating region variations in in-wheel PMSMs, which are widely used in small mobility applications such as e-scooters and e-bikes. As motor temperature increases during operation, electrical parameters such as inductance vary, leading to unstable control. To address this, a Single-Layer Backpropagation Neural Network (SLBPNN) is used to estimate inductance variations in real-time. The proposed algorithm adjusts the motor’s operating point to maintain stable performance under thermal stress. Simulation results using MATLAB 2024b confirm the model’s effectiveness by estimating inductance from voltage, current, speed, and position inputs. Experimental validation further demonstrates that the proposed method compensates for the shift in the operating region due to temperature changes, improving the overall motor efficiency. Full article
(This article belongs to the Special Issue Power Electronics and Actuators—Second Edition)
Show Figures

Figure 1

23 pages, 23803 KB  
Article
An Improved Stiffness Model for Spur Gear with Surface Roughness Under Thermal Elastohydrodynamic Lubrication
by Shihua Zhou, Xuan Li, Chao An, Tengyuan Xu, Dongsheng Zhang, Ye Zhang and Zhaohui Ren
Mathematics 2025, 13(20), 3335; https://doi.org/10.3390/math13203335 - 20 Oct 2025
Abstract
To investigate the contact performances and meshing characteristics of gears systematically, an improved comprehensive meshing stiffness model of spur gears with consideration of the tooth surface morphology, lubrication, friction, and thermal effects is presented based on the thermal elastohydrodynamic lubrication (TEHL) theory. The [...] Read more.
To investigate the contact performances and meshing characteristics of gears systematically, an improved comprehensive meshing stiffness model of spur gears with consideration of the tooth surface morphology, lubrication, friction, and thermal effects is presented based on the thermal elastohydrodynamic lubrication (TEHL) theory. The fractal feature of the tooth surface morphology is verified experimentally and characterized by the Weierstrass–Mandelbrot fractal function. Based on this, the rough contact stiffness, oil film stiffness, and thermal stiffness are introduced into the stiffness model. Comparisons between smooth and rough models are carried out, and the maximum temperature rise is increased by 24.7%. Subsequently, the influences of the torque, rotational speed, and fractal parameters on the oil film pressure and thickness, friction and temperature rise, and contact stiffness and comprehensive meshing stiffness are investigated. The results show that the oil film pressure and the maximum temperature rise increase by 125.18% and 69.08%, respectively, with an increasing torque from 20 N·m to 300 N·m. As the rotational speed is increased, the oil film thickness sharply increases, the rough peak contact area and friction reduce, and the stiffness fluctuation weakens. For fractal parameters, the oil film pressure and film thickness, friction, and temperature rise are nonlinear with changes in the fractal dimension D and fractal scale characteristic G. The results reveal that this work provides a more reasonable analysis for understanding the meshing characteristics and the design and processing of gears. Full article
Show Figures

Figure 1

18 pages, 5998 KB  
Article
Temperature Field Analysis and Heat Dissipation Optimization for In-Wheel Motor Based on Magnetic-Thermal Coupling
by Kuiyang Wang, Yuyong Wang, Chuanyun Zhu, Shihao Li and Jinhua Tang
Energies 2025, 18(20), 5517; https://doi.org/10.3390/en18205517 - 20 Oct 2025
Abstract
To address the challenge of heat dissipation in electric vehicle in-wheel motors within limited space, this study conducted temperature field analysis and cooling structure optimization based on magnetic–thermal coupling. The three-dimensional finite element model and the magnetic–thermal-coupled mathematical models of synchronous permanent magnet [...] Read more.
To address the challenge of heat dissipation in electric vehicle in-wheel motors within limited space, this study conducted temperature field analysis and cooling structure optimization based on magnetic–thermal coupling. The three-dimensional finite element model and the magnetic–thermal-coupled mathematical models of synchronous permanent magnet in-wheel motors were established. Using a coupled electromagnetic–thermal finite element analysis method, numerical simulations were performed to investigate the transient temperature fields of the in-wheel motor under different driving conditions. The effects of three different cooling channel structures on the temperature rise and the pressure drop of the in-wheel motor were compared, and a parallel channel structure suitable for the in-wheel motor was selected. The influences of channel quantity, channel width, and coolant flow rate on the temperature field were analyzed. Furthermore, a multi-objective optimization of the cooling structure was carried out using the NSGA-II genetic algorithm. The simulation results demonstrated a significant improvement in the overall thermal performance of the optimized cooling structure. The maximum temperature of the hub motor decreased by 2.25% and 3.32% under the rated and peak speeds, respectively, while the pressure drop in the water channel was reduced by 58.52%. This study provides a theoretical reference for temperature field calculation and cooling structure design of hub motors. Full article
Show Figures

Figure 1

28 pages, 1690 KB  
Article
Hardware-Aware Neural Architecture Search for Real-Time Video Processing in FPGA-Accelerated Endoscopic Imaging
by Cunguang Zhang, Rui Cui, Gang Wang, Tong Gao, Jielu Yan, Weizhi Xian, Xuekai Wei and Yi Qin
Appl. Sci. 2025, 15(20), 11200; https://doi.org/10.3390/app152011200 - 19 Oct 2025
Abstract
Medical endoscopic video processing requires real-time execution of color component acquisition, color filter array (CFA) demosaicing, and high dynamic range (HDR) compression under low-light conditions, while adhering to strict thermal constraints within the surgical handpiece. Traditional hardware-aware neural architecture search (NAS) relies on [...] Read more.
Medical endoscopic video processing requires real-time execution of color component acquisition, color filter array (CFA) demosaicing, and high dynamic range (HDR) compression under low-light conditions, while adhering to strict thermal constraints within the surgical handpiece. Traditional hardware-aware neural architecture search (NAS) relies on fixed hardware design spaces, making it difficult to balance accuracy, power consumption, and real-time performance. A collaborative “power-accuracy” optimization method is proposed for hardware-aware NAS. Firstly, we proposed a novel hardware modeling framework by abstracting FPGA heterogeneous resources into unified cell units and establishing a power–temperature closed-loop model to ensure that the handpiece surface temperature does not exceed clinical thresholds. In this framework, we constrained the interstage latency balance in pipelines to avoid routing congestion and frequency degradation caused by deep pipelines. Then, we optimized the NAS strategy by using pipeline blocks and combined with a hardware efficiency reward function. Finally, color component acquisition, CFA demosaicing, dynamic range compression, dynamic precision quantization, and streaming architecture are integrated into our framework. Experiments demonstrate that the proposed method achieves 2.8 W power consumption at 47 °C on a Xilinx ZCU102 platform, with a 54% improvement in throughput (vs. hardware-aware NAS), providing an engineer-ready lightweight network for medical edge devices such as endoscopes. Full article
(This article belongs to the Section Computing and Artificial Intelligence)
Show Figures

Figure 1

21 pages, 7039 KB  
Article
Optimizing Film Cooling Hole Arrangement Along Conjugate Isotherms on Turbine Vanes: A Combined Numerical and Experimental Investigation
by Zhengyu Shi, Changxin Liu, Yuhao Jia, Xing He, Ge Xia and Yongbao Liu
Processes 2025, 13(10), 3344; https://doi.org/10.3390/pr13103344 - 18 Oct 2025
Viewed by 46
Abstract
This study introduces a method for positioning film holes guided by conjugate isotherms. The aerodynamic performance exhibited by the turbine blade was evaluated, and the cooling effectiveness of various film hole configurations were systematically compared through combined numerical simulations and cascade wind tunnel [...] Read more.
This study introduces a method for positioning film holes guided by conjugate isotherms. The aerodynamic performance exhibited by the turbine blade was evaluated, and the cooling effectiveness of various film hole configurations were systematically compared through combined numerical simulations and cascade wind tunnel experiments. Key influencing factors were investigated, and the underlying flow field structures and optimization mechanisms were elucidated. Numerical models reliably captured the aerodynamic and heat transfer characteristics, including pressure distribution and overall cooling effectiveness trends. Elevating the mass flow rate ratio was shown to enhance the overall cooling effectiveness across the blade surface. Modifications in film hole layout altered the cooling effectiveness along the blade region downstream of the holes and influenced cooling behavior in non-perforated areas near the endwall. While mid-blade cooling effectiveness showed minimal variation between Hole pattern #1 and #2, the latter exhibited superior overall cooling effectiveness at both the leading and trailing edges. Moreover, Hole pattern #2 diminished the temperature gradient between the suction and pressure sides, thereby augmenting blade structural integrity. Furthermore, Hole pattern #2 promoted a more even distribution of cooling effectiveness over the blade surface, leading to improved thermal protection. Therefore, strategic arrangement of film holes along conjugate isotherms serves as a vital approach for increasing gas turbine efficiency. Full article
(This article belongs to the Section Materials Processes)
Show Figures

Figure 1

15 pages, 5244 KB  
Article
Eco-Friendly Membrane Separators Based on Furanoate Polymers for Li-Ion Batteries
by Sofia Santi, Luca Bargnesi, Giulia Fredi, Michelina Soccio, Nadia Lotti, Catia Arbizzani and Andrea Dorigato
Polymers 2025, 17(20), 2790; https://doi.org/10.3390/polym17202790 - 18 Oct 2025
Viewed by 51
Abstract
Conventional lithium-ion battery separators made from petroleum-based polymers pose environmental concerns due to their non-renewable origin and energy-intensive production. Novel bio-based alternatives, such as poly(alkylene 2,5-furanoate)s (PAFs), offer improved sustainability and favorable thermomechanical properties. This work investigated electrospun mats of poly(butylene 2,5-furandicarboxylate) (PBF) [...] Read more.
Conventional lithium-ion battery separators made from petroleum-based polymers pose environmental concerns due to their non-renewable origin and energy-intensive production. Novel bio-based alternatives, such as poly(alkylene 2,5-furanoate)s (PAFs), offer improved sustainability and favorable thermomechanical properties. This work investigated electrospun mats of poly(butylene 2,5-furandicarboxylate) (PBF) and poly(pentamethylene 2,5-furandicarboxylate) (PPeF), which, despite structural similarity, exhibit distinct behaviors. PBF mats demonstrated superior performance with fiber diameters of about 1.0 µm and porosity of 53.6% with high thermal stability (Tg = 25 °C, Tm = 170 °C, 18.8% crystallinity). The semicrystalline PBF showed higher electrolyte uptake (531–658 wt%) and had a lower MacMullin number (NM = 3–10) than commercial Celgard separators (NM = 15), indicating enhanced ionic conductivity. Electrochemical testing revealed stability up to 5 V and successful cycling performance with specific capacity of 135 mAh/g after 100 cycles and coulombic efficiency near 100%. In contrast, PPeF’s amorphous nature (Tg = 14 °C) resulted in temperature-sensitive pore closure that enhanced safety by reducing short-circuit risk, although its solubility in carbonate electrolytes limited its application to aqueous systems. These findings highlight the potential of PAF-based separators to improve both the environmental impact and performance of batteries, supporting the development of safer and more sustainable energy storage systems. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Graphical abstract

22 pages, 2259 KB  
Article
Experimental and Numerical Investigation of a Novel Low-Cost Solar Air Heater with Large-Scale V-Shaped Fins to Enhance Heat Transfer
by Omayma Elakrout, Ons Ghriss, Abdallah Bouabidi and Maarten Vanierschot
Energies 2025, 18(20), 5503; https://doi.org/10.3390/en18205503 - 18 Oct 2025
Viewed by 66
Abstract
This study investigates the performance of a novel, low-cost solar air heater equipped with large V-shaped fins using experiments and numerical simulations. The solar air heater consists of an absorber plate, a glass cover and airflow ducts. Its performance is evaluated under varying [...] Read more.
This study investigates the performance of a novel, low-cost solar air heater equipped with large V-shaped fins using experiments and numerical simulations. The solar air heater consists of an absorber plate, a glass cover and airflow ducts. Its performance is evaluated under varying fin configurations: finless and (a)symmetric V-shaped fins with four, six, and eight fins. Computational fluid dynamics simulations using the RNG k-epsilon and discrete ordinate models were validated by experimental findings, showing good agreement with minimal discrepancies between both. The experimental setup recorded a maximum air temperature of 55 °C, corresponding to a temperature rise of 33 °C from an inlet temperature of 22 °C, under an inlet air velocity of 2.7 m/s. Results demonstrate that increasing the number of fins significantly enhances heat transfer efficiency, with heat transfer rising from 134.35 W (finless) to 233.29 W (8 fins). The large-scale fins improved thermal performance significantly while still maintaining a low-pressure drop. Moreover, the fins are very low-cost to implement, in contrast to most heat transfer enhancements in solar air heaters, making this design a very budget-friendly solution. This study provides valuable insights into optimizing solar air heater systems, contributing to the advancement of solar heating solutions for a wide range of energy-efficient applications. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

16 pages, 1096 KB  
Article
The Future of Engine Knock and Fuel Octane Numbers in the Era of Biofuels and Vehicle Electrification
by Vikram Mittal and Reagan Eastlick
Future Transp. 2025, 5(4), 149; https://doi.org/10.3390/futuretransp5040149 - 18 Oct 2025
Viewed by 60
Abstract
Engine knock remains a critical limitation in spark-ignition engine design. Future hybrid powertrains employ downsized engines operating on Atkinson cycles, creating different knock conditions compared to modern naturally aspirated or turbocharged engines. At the same time, petroleum-based gasoline is increasingly being replaced by [...] Read more.
Engine knock remains a critical limitation in spark-ignition engine design. Future hybrid powertrains employ downsized engines operating on Atkinson cycles, creating different knock conditions compared to modern naturally aspirated or turbocharged engines. At the same time, petroleum-based gasoline is increasingly being replaced by biofuels and electrofuels. This study evaluates knock behavior in projected hybrid engine architectures and examines the chemical composition of emerging fuel blends. The analysis shows that hybrid engines benefit from fuels with lower sensitivity, defined as the difference between the Research and Motor Octane Numbers. This is because the higher end-gas temperatures associated with the Atkinson cycle shift the value of K, which is an interpolation factor used to capture the relationship between fuel sensitivity and anti-knock performance. In conventional engines, K is negative, favoring fuels with higher sensitivity. In hybrid engines, the increased engine temperatures result in K becoming positive, favoring low-sensitivity fuels. Using low-sensitivity fuels allows hybrid engines to operate with higher geometric compression ratios and advanced thermodynamic cycles while reducing knock constraints. Biofuels and electrofuels can meet these requirements by producing paraffinic and naphthenic hydrocarbons with high octane quality and low sensitivity. These findings emphasize the need to align renewable fuel development with hybrid engine requirements to improve thermal efficiency, reduce emissions, and reduce reliance on energy-intensive refinery processes for octane enhancement. Full article
Show Figures

Figure 1

36 pages, 4995 KB  
Review
Petroleum Emulsion Stability and Separation Strategies: A Comprehensive Review
by Soroush Ahmadi and Azizollah Khormali
ChemEngineering 2025, 9(5), 113; https://doi.org/10.3390/chemengineering9050113 - 17 Oct 2025
Viewed by 133
Abstract
Crude oil emulsions continue to pose significant challenges across production, transportation, and refining due to their inherent stability and complex interfacial chemistry. Their persistence is driven by the synergistic effects of asphaltenes, resins, acids, waxes, and fine solids, as well as operational factors [...] Read more.
Crude oil emulsions continue to pose significant challenges across production, transportation, and refining due to their inherent stability and complex interfacial chemistry. Their persistence is driven by the synergistic effects of asphaltenes, resins, acids, waxes, and fine solids, as well as operational factors such as temperature, pH, shear, and droplet size. These emulsions increase viscosity, accelerate corrosion, hinder catalytic activity, and complicate downstream processing, resulting in substantial operational, economic, and environmental impacts—underscoring the necessity of effective demulsification strategies. This review provides a comprehensive examination of emulsion behavior, beginning with their formation, classification, and stabilization mechanisms and progressing to the fundamental processes governing destabilization, including flocculation, coalescence, Ostwald ripening, creaming, and sedimentation. Separation techniques are critically assessed across chemical, thermal, mechanical, electrical, membrane-based, ultrasonic, and biological domains, with attention to their efficiency, limitations, and suitability for industrial deployment. Particular emphasis is placed on hybrid and emerging methods that integrate multiple mechanisms to improve performance while reducing environmental impact. By uniting fundamental insights with technological innovations, this work highlights current progress and identifies future directions toward greener, more efficient oil–water separation strategies tailored to diverse petroleum operations. Full article
Show Figures

Figure 1

17 pages, 1364 KB  
Article
Optimization of a Hybrid Recompression Supercritical Carbon Dioxide–Organic Rankine Cycle Regenerative Combined System
by Shengya Hou, Shuaiwei Yang and Qiguo Yang
Energies 2025, 18(20), 5493; https://doi.org/10.3390/en18205493 - 17 Oct 2025
Viewed by 192
Abstract
To efficiently recover waste heat from gas turbines, a hybrid recompression supercritical carbon dioxide (SCO2)–organic Rankine cycle (ORC) regenerative combined system is proposed. The ORC employs a mixed working fluid to enhance thermodynamic matching. Thermodynamic, compactness, and economic models are established [...] Read more.
To efficiently recover waste heat from gas turbines, a hybrid recompression supercritical carbon dioxide (SCO2)–organic Rankine cycle (ORC) regenerative combined system is proposed. The ORC employs a mixed working fluid to enhance thermodynamic matching. Thermodynamic, compactness, and economic models are established to analyze the influence of key operating parameters on system performance. Based on parametric analysis, decision variables are identified and used for single-objective and multi-objective optimizations of system performance metrics. Results show that increasing the split ratio in the recompression cycle improves thermodynamic performance but simultaneously increases both heat transfer area per unit output power (APR) and the levelized electricity cost (LEC). In the ORC, the temperature glide during evaporation and condensation of the mixed working fluid enables better thermal match with the heat source and sink, thereby reducing the required heat transfer area and associated cost rate. Under multi-objective optimization targeting APR and LEC, the optimal decision variables are determined as 560 °C, 4.2, 0.71, 44 °C, and 0.71, respectively. Full article
(This article belongs to the Section B3: Carbon Emission and Utilization)
Show Figures

Figure 1

Back to TopTop