Eco-Friendly Membrane Separators Based on Furanoate Polymers for Li-Ion Batteries
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation
2.3. Characterization
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
PAFs | Poly(alkylene 2,5-furanoate)s |
PBF | Poly(butylene 2,5-furandicarboxylate) |
PPeF | Poly(pentamethylene 2,5-furandicarboxylate) |
LIBs | Lithium-ion batteries |
SIBs | Sodium-ion batteries |
PE | Polyethylene |
PP | Polypropylene |
FDCA | 2,5-furandicarboxylic acid |
PEF | Poly(ethylene 2,5-furandicarboxylate) |
PET | Poly(ethylene terephthalate) |
PBT | Poly(butylene terephthalate) |
2,5-DMF | Dimethyl 2,5-furandicarboxylate |
1,4-BD | 1,4-butanediol |
1,5-BD | 1,5-pentanediol |
HFIP | Hexafluoro-2 propanol |
DMF | Dimethylformamide |
PTFE | Polytetrafluoroethylene |
EC | Ethylene carbonate |
DMC | Dimethyl carbonate |
TBT | Titanium tetrabutoxide |
TIP | Titanium isopropoxide |
PMMA | Polymethylmethacrylate |
FESEM | Field-emission scanning electron microscopy |
DSC | Differential scanning calorimetry |
EIS | Electrochemical impedance spectroscopy |
CV | Cyclic voltammetry |
GCD | Galvanostatic charge and discharge |
ESW | Electrochemical stability window |
LFP | Lithium iron phosphate |
References
- Zhang, G.; Wei, X.; Zhu, J.; Chen, S.; Han, G.; Dai, H. Revealing the failure mechanisms of lithium-ion batteries during dynamic overcharge. J. Power Sources 2022, 543, 231867. [Google Scholar] [CrossRef]
- Yang, M.; Hou, J. Membranes in Lithium Ion Batteries. Membranes 2012, 2, 367–383. [Google Scholar] [CrossRef]
- Lingappan, N.; Lee, W.; Passerini, S.; Pecht, M.A. Comprehensive review of separator membranes in lithium-ion batteries. Renew. Sust. Energ. Rev. 2023, 187, 113726. [Google Scholar] [CrossRef]
- Li, L.; Duan, Y. Engineering Polymer-Based Porous Membrane for Sustainable Lithium-Ion Battery Separators. Polymers 2023, 15, 3690. [Google Scholar] [CrossRef]
- Xie, W.; Li, T.; Tiraferri, A.; Drioli, E.; Figoli, A.; Crittenden, J.C.; Liu, B. Toward the Next Generation of Sustainable Membranes from Green Chemistry Principles. ACS Sust. Chem. Eng. 2021, 9, 50–75. [Google Scholar] [CrossRef]
- Serra, J.P.; Barnosa, J.C.; Silva, M.M.; Gonçalves, R.; Uranga, J.; Costa, C.M.; Guerrero, P.; de la Caba, K.; Lanceros-Mendez, S. Wool/soy protein isolate membranes as separators toward more sustainable lithium-ion batteries. J. Energy Storage 2024, 75, 109748. [Google Scholar] [CrossRef]
- De Marco, A.; Lacarbonara, G.; Rea, M.; Tombolesi, S.; Petruzzelli, R.; Gualandi, C.; Focarete, M.L.; Arbizzani, C. Alginate-based separators for sustainable energy storage devices. J. Power Sources 2025, 660, 238505. [Google Scholar] [CrossRef]
- Foltýn, T.; Všetečka, J.; Svoboda, R.; Podzimek, Š.; Vinklárek, J.; Honzíček, J. Depolymerized Poly(ethylene-2,5-furanoate) as a Sustainable Feedstock for Biobased Unsaturated Polyester Resins. Macromolecules 2025. [Google Scholar] [CrossRef]
- Lee, Y.J.; Seo, J.Y.; Lee, M.; Jeon, H.; Park, J.; Park, S.B.; Oh, D.X.; Koo, J.M. High-performance furandicarboxylate polyesters: Structure–property relationships in 1,3-propanediol and neopentyl glycol copolymers. Polym. Test. 2025, 152, 108990. [Google Scholar] [CrossRef]
- Yadav, G.; Yadav, N.; Roy, S.; Shukla, P.; Sharma, R.K.; Chaudhary, G.R.; Singh, S.; Basu, S.; Ahmaruzzaman, M. Next generation nanomaterials for electrosynthesis of 2,5-furandicarboxylic acid from 5-(hydroxymethyl)furfural: Approaches, mechanisms, and challenges. J. Electroanal. Chem. 2025, 997, 119449. [Google Scholar] [CrossRef]
- Arnáiz, V.; Pedraza, L.; Díez-Poza, C.; Santiago-Calvo, M.; López, E.; Barbero, A. Exploration of Structure–Property Relationships by Altering Glycol Backbone Unsaturation (Double/Triple Bonds) in Furan-Based Polyesters. Eur. J. Org. Chem. 2025, e202500576. [Google Scholar] [CrossRef]
- Pardalis, N.; Xanthopoulou, E.; Jourdainne, N.; Klonos, P.A.; Kyritsis, A.; Guigo, N.; Bikiaris, D.N. Effect of Carbon-Based Nanofillers with Different Geometries on the Crystallization Behavior and Molecular Dynamics of Poly(Butylene Furanoate) (PBF). Macromol. Chem. Phys. 2025, e00215. [Google Scholar] [CrossRef]
- Peng, C.; Lyu, M.; Guo, P.; Jia, Z.; Li, M.; Sang, L.; Wei, Z. Toughening Biodegradable Poly(glycolic acid) with Balanced Mechanical Properties by Biobased Poly(butylene 2,5-furanoate). J. Polym. Environ. 2025, 33, 2161–2172. [Google Scholar] [CrossRef]
- Tu, Z.; Zhang, X.; Li, J.; Li, L.; Zhou, F.; Ma, H.; Wei, Z. Fully biobased poly(butylene furanoate) copolyesters from renewable 2,3-butanediol: Much more than just strengthening and toughening. Eur. Polym. J. 2024, 220, 113477. [Google Scholar] [CrossRef]
- Siracusa, C.; Manfroni, M.; Coatti, A.; Quartinello, F.; Soccio, M.; Lotti, N.; Guebitz, G.M.; Pellis, A. Mechanistic study of enzymatic hydrolysis of poly(butylene succinate)/poly(pentamethylene 2,5-furanoate)-based blend and block copolymer. Polym. Degrad. Stab. 2025, 242, 111631. [Google Scholar] [CrossRef]
- Yin, M.; Guo, Z.; Liu, F.; Hu, H.; Lu, W.; Zhu, J.; Wang, J. Effects of Molecular Weight on the Properties of Biodegradable Poly(pentamethylene furanoate). ACS Sustain. Chem. Eng. 2025, 13, 9783–9792. [Google Scholar] [CrossRef]
- Sahu, P.; Sharma, L.; Dawsey, T.; Gupta, R.K. Fully Biobased High-Molecular-Weight Polyester with Impressive Elasticity, Thermo-Mechanical Properties, and Enzymatic Biodegradability: Replacing Terephthalate. Macromolecules 2024, 57, 9302–9314. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, J.; Dong, Y.; Zhang, X.; Hu, H.; Oyoung, L.; Hu, D.; Zhu, J. Synthesis of 2,5-furandicarboxylic acid-based biodegradable copolyesters with excellent gas barrier properties composed of various aliphatic diols. Eur. Polym. J. 2022, 181, 111677. [Google Scholar] [CrossRef]
- Santi, S.; Soccio, M.; Fredi, G.; Lotti, N.; Dorigato, A. Uncharted development of electrospun mats based on bioderived poly(butylene 2,5-furanoate) and poly(pentamethylene 2,5-furanoate). Polymer 2023, 279, 126021. [Google Scholar] [CrossRef]
- Fredi, G.; Santi, S.; Soccio, M.; Lotti, N.; Dorigato, A. Electrospun Poly(butylene 2,5-furanoate) and Poly(pentamethylene 2,5-furanoate) Mats: Structure–Property Relationships and Thermo-Mechanical and Biological Characterization. Molecules 2025, 30, 841. [Google Scholar] [CrossRef]
- Soccio, M.; Martinez-Tong, D.E.; Alegria, A.; Munari, A.; Lotti, N. Molecular dynamics of fully biobased poly(butylene 2,5-furanoate) as revealed by broadband dielectric spectroscopy. Polymer 2017, 128, 24–30. [Google Scholar] [CrossRef]
- Bianchi, E.; Soccio, M.; Siracusa, V.; Gazzano, M.; Thiyagarajan, S.; Lotti, N. Poly(butylene 2,4-furanoate), an Added Member to the Class of Smart Furan-Based Polyesters for Sustainable Packaging: Structural Isomerism as a Key to Tune the Final Properties. ACS Sustain. Chem. Eng. 2021, 9, 11937–11949. [Google Scholar] [CrossRef]
- Guidotti, G.; Soccio, M.; García-Gutiérrez, M.C.; Ezquerra, T.; Siracusa, V.; Gutiérrez-Fernández, E.; Munari, A.; Lotti, N. Fully Biobased Superpolymers of 2,5-Furandicarboxylic Acid with Different Functional Properties: From Rigid to Flexible, High Performant Packaging Materials. ACS Sustain. Chem. Eng. 2020, 8, 9558–9568. [Google Scholar] [CrossRef] [PubMed]
- Soccio, M.; Costa, M.; Lotti, N.; Gazzano, M.; Siracusa, V.; Salatelli, E.; Munari, A. Novel fully biobased poly(butylene 2,5-furanoate/diglycolate) copolymers containing ether linkages: Structure-property relationships. Eur. Polym. J. 2016, 81, 397–412. [Google Scholar] [CrossRef]
- Terella, A.; De Giorgio, F.; Rahmanipour, M.; Malavolta, L.; Paolasini, E.; Fabiani, D.; Focarete, M.L.; Arbizzani, C. Functional separators for the batteries of the future. J. Power Sources 2020, 449, 227556. [Google Scholar] [CrossRef]
- Li, Y.; Li, Q.; Tan, Z. A review of electrospun nanofiber-based separators for rechargeable lithium-ion batteries. J. Power Sources 2019, 443, 227262. [Google Scholar] [CrossRef]
- Yerkinbekova, Y.; Kalybekkyzy, S.; Tolganbek, N.; Kahraman, M.V.; Bakenov, Z.; Mentbayeva, A. Photo-crosslinked lignin/PAN electrospun separator for safe lithium-ion batteries. Sci. Rep. 2022, 12, 18272. [Google Scholar] [CrossRef]
- Laurita, R.; Zaccaria, M.; Gherardi, M.; Fabiani, D.; Merlettini, A.; Pollicino, A.; Focarete, M.L.; Colombo, V. Plasma Processing of Electrospun Li-Ion Battery Separators to Improve Electrolyte Uptake. Plasma Process. Polym. 2016, 13, 124–133. [Google Scholar] [CrossRef]
- Li, H.Y.; Li, G.A.; Lee, Y.Y.; Tuan, H.Y.; Liu, Y.L. A Thermally Stable, Combustion-Resistant, and Highly Ion-Conductive Separator for Lithium-Ion Batteries Based on Electrospun Fiber Mats of Crosslinked Polybenzoxazine. Energy Technol. 2016, 4, 551. [Google Scholar] [CrossRef]
- Francis, C.F.J.; Kyratzis, I.L.; Best, A.S. Lithium-Ion Battery Separators for Ionic-Liquid Electrolytes: A Review. Adv. Mater. 2020, 32, 1904205. [Google Scholar] [CrossRef]
- Liang, H.; Wan, L.; Xu, Z. Poly(vinylidene fluoride) separators with dual-asymmetric structure for high-performance lithium ion batteries. Chin. J. Polym. Sci. 2016, 34, 1423–1435. [Google Scholar] [CrossRef]
- Yu, Y.; Liu, M.; Chen, Z.; Zhang, Z.; Qiu, T.; Hu, Z.; Xiang, H.; Zhu, L.; Guiyin, X.; Zhu, M. Advances in Nonwoven-Based Separators for Lithium-Ion Batteries. Adv. Fiber Mater. 2023, 5, 1827–1851. [Google Scholar] [CrossRef]
- Wu, Y.S.; Yang, C.C.; Luo, S.P.; Chen, Y.L.; Wei, C.N.; Lue, S.J. PVDF-HFP/PET/PVDF-HFP composite membrane for lithium-ion power batteries. Int. J. Hydrogen Energy 2017, 42, 6862–6875. [Google Scholar] [CrossRef]
- Di Cillo, D.; Bargnesi, L.; Lacarbonara, G.; Arbizzani, C. Ammonium and Tetraalkylammonium Salts as Additives for Li Metal Electrodes. Batteries 2023, 9, 142. [Google Scholar] [CrossRef]
- Méry, A.; Rousselot, S.; Lepage, D.; Dollé, M. A Critical Review for an Accurate Electrochemical Stability Window Measurement of Solid Polymer and Composite Electrolytes. Materials 2021, 14, 3840. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Li, Y.; Yu, M.; Peng, Y.; Ran, F. Electrolyte-Wettability Issues and Challenges of ElectrodeMaterials in Electrochemical Energy Storage, Energy Conversion, and Beyond. Adv. Sci. 2023, 10, 2300283. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Liu, J.; Qi, Y.; Sun, T.; Li, X. Unveiling the Roles of Binder in the Mechanical Integrity of Electrodes for Lithium-Ion Batteries. J. Electrochem. Soc. 2013, 160, A1502–A1509. [Google Scholar] [CrossRef]
- Tong, B.; Wang, J.; Liu, Z.; Ma, L.; Zhou, Z.; Peng, Z. Identifying compatibility of lithium salts with LiFePO4 cathode using a symmetric cell. J. Power Sources 2018, 384, 80–85. [Google Scholar] [CrossRef]
Polymer | Solvent | Concentration (g/mL) | Flow Rate (mL/min) |
---|---|---|---|
PBF | H/C in ratio 1:1 | 0.11 | 0.01 |
PPeF | D/C in ratio 1:5 | 0.20 | 0.10 |
Label | Polymer | Concentration (g/mL) | Solvent | Flow Rate (mL/min) | Post-Processing |
---|---|---|---|---|---|
PBF-N | PBF | 0.11 | H/C in ratio 1:1 | 0.01 | No |
PBF-T | PBF | 0.11 | H/C in ratio 1:1 | 0.01 | Yes |
PPeF-N | PPeF | 0.20 | D/C in ratio 1:5 | 0.10 | No |
PPeF-T | PPeF | 0.20 | D/C in ratio 1:5 | 0.10 | Yes |
PBF-N | PBF-T | PPeF-N | PPeF-T | |
---|---|---|---|---|
Porosity (%) | 53.6 | 54.5 | 44.9 | 32.4 |
Fiber diameter (µm) | 1.0 ± 0.2 | 1.1 ± 0.4 | 2.6 ± 0.7 | 3.6 ± 0.9 |
PBF-N | PPeF-N | ||
---|---|---|---|
1st heating scan | Tg (°C) | 25.0 | 14.0 |
Tcc (°C) | 71.0 | - | |
ΔHcc (J/g) | 32.2 | - | |
Tm (°C) | 170.0 | - | |
ΔHm (J/g) | 56.4 | - | |
(%) | 18.8 | - | |
Cooling scan | Tcc (°C) | 113.0 | - |
ΔHcc (J/g) | 46.3 | - | |
2nd heating scan | Tg (°C) | 31.0 | 13.0 |
Tcc (°C) | 90.0 | - | |
ΔHcc (J/g) | 5.2 | - | |
Tm (°C) | 168.0 | - | |
ΔHm (J/g) | 50.7 | - |
Separator | Area (cm2) | Thickness (cm) | σseparator (mS/cm) | σelectrolyte (mS/cm) | NM |
---|---|---|---|---|---|
PBF-N | 0.785 | 2.2 × 10−3 | 4.0 | 12.1 | 3 |
PBF-T | 2.0 × 10−3 | 1.2 | 10 | ||
Celgard | 2.4 × 10−3 | 0.8 | 15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santi, S.; Bargnesi, L.; Fredi, G.; Soccio, M.; Lotti, N.; Arbizzani, C.; Dorigato, A. Eco-Friendly Membrane Separators Based on Furanoate Polymers for Li-Ion Batteries. Polymers 2025, 17, 2790. https://doi.org/10.3390/polym17202790
Santi S, Bargnesi L, Fredi G, Soccio M, Lotti N, Arbizzani C, Dorigato A. Eco-Friendly Membrane Separators Based on Furanoate Polymers for Li-Ion Batteries. Polymers. 2025; 17(20):2790. https://doi.org/10.3390/polym17202790
Chicago/Turabian StyleSanti, Sofia, Luca Bargnesi, Giulia Fredi, Michelina Soccio, Nadia Lotti, Catia Arbizzani, and Andrea Dorigato. 2025. "Eco-Friendly Membrane Separators Based on Furanoate Polymers for Li-Ion Batteries" Polymers 17, no. 20: 2790. https://doi.org/10.3390/polym17202790
APA StyleSanti, S., Bargnesi, L., Fredi, G., Soccio, M., Lotti, N., Arbizzani, C., & Dorigato, A. (2025). Eco-Friendly Membrane Separators Based on Furanoate Polymers for Li-Ion Batteries. Polymers, 17(20), 2790. https://doi.org/10.3390/polym17202790