An Improved Stiffness Model for Spur Gear with Surface Roughness Under Thermal Elastohydrodynamic Lubrication
Abstract
1. Introduction
2. Tooth Surface Morphological Characteristics
3. TEHL Model
3.1. TEHL Equations
3.2. Solution of Combined Friction Coefficient
4. The Comprehensive Mesh Stiffness Modelling
4.1. Time-Varying Mesh Stiffness Model
4.2. Contact Stiffness Model
4.3. Thermal Stiffness Model
5. Lubrication Performance and Meshing Characteristics Analysis
5.1. Model Validation
5.2. The Effect of Torque
5.3. The Effect of Rotational Speed
5.4. The Effect of Fractal Parameters
6. Conclusions
- (1)
- The fractal characteristic of the tooth surface morphology is verified by experiment, which is described using the WM fractal function. Compared to the lubrication performance of the smooth and rough tooth surfaces, the maximum values of the pressure and temperature rise are obviously greater by 29.82% and 24.7% compared to that of the smooth tooth surface, which aligns more closely with actual conditions.
- (2)
- Increasing T1 can increase the oil film pressure and friction coefficient, and reduce the film thickness. Moreover, the rough peak contact probability and fluctuation increase significantly, which indicates the lubrication state becomes poorer.
- (3)
- The higher the n1 is, the smaller the local pressure, friction coefficient, and stiffness will be, while, the thicker the film thickness is, the smaller the meshing stiffness will be, which helps to reduce the disturbance caused by roughness.
- (4)
- The fractal parameters have significant effects on the meshing characteristics. With a decreasing D and increasing G, the pressure and film thickness, friction, and temperature rise exhibit a nonlinear variation, but the contact stiffness and comprehensive meshing stiffness have clearly diminished, which lead to a poor lubrication state of the gear. The research work can provide certain guidance for the design and processing of gears.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Özgüven, H.N.; Houser, D.R. Mathematical models used in gear dynamics—A review. J. Sound Vib. 1988, 121, 383–411. [Google Scholar] [CrossRef]
- Zhou, S.H.; Zhang, D.S.; Zhou, C.H.; Yu, X.H.; Zhou, Z.C.; Ren, Z.H. A comprehensive mesh stiffness model for spur gear considering coupling effective of thermo-elastohydrodynamic lubrication. Phys. Fluids 2024, 36, 117172. [Google Scholar] [CrossRef]
- Li, H.; Liu, H.; Zhu, C.; Parker, R.G. Effects of lubrication on gear performance: A review. Mech. Mach. Theory 2020, 145, 103701. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Yang, P.R.; Tong, J.W.; Li, H.Q. Transient thermoelastohydrodynamic lubrication analysis of an involute spur gear. Chin. J. Mech. Eng. 2004, 40, 10–15. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Li, H.Q.; Tong, J.W.; Yang, P.R. Transient thermoelastohydrodynamic lubrication analysis of an involute spur gear. Tribol. Int. 2004, 37, 773–782. [Google Scholar] [CrossRef]
- Yin, Z.M.; Fan, Z.M.; Wang, M.K. Thermal elastohydrodynamic lubrication characteristics of double involute gears at the graded position of tooth waist. Tribol. Int. 2020, 144, 106028. [Google Scholar] [CrossRef]
- Zhou, C.J.; Pan, L.J.; Xu, J.; Han, X. Non-Newtonian thermal elastohydrodynamic lubrication in point contact for a crowned herringbone gear drive. Tribol. Int. 2017, 116, 470–481. [Google Scholar] [CrossRef]
- Zhou, C.J.; Xiao, Z.L.; Chen, S.Y.; Han, X. Normal and tangential oil film stiffness of modified spur gear with non-Newtonian elastohydrodynamic lubrication. Tribol. Int. 2017, 109, 319–327. [Google Scholar] [CrossRef]
- Xiao, Z.L.; Li, Z.D.; Shi, X.; Zhou, C.J. Oil film damping analysis in non-Newtonian transient thermal elastohydrodynamic lubrication for gear transmission. J. Appl. Mech. 2018, 85, 035001. [Google Scholar] [CrossRef]
- Zhou, C.J.; Xiao, Z.L. Stiffness and damping models for the oil film in line contact elastohydrodynamic lubrication and applications in the gear drive. Appl. Math. Model. 2018, 61, 634–649. [Google Scholar] [CrossRef]
- Xiao, Z.L.; Zhou, C.J.; Chen, S.Y.; Li, Z.D. Effects of oil film stiffness and damping on spur gear dynamics. Nonlinear Dyn. 2021, 96, 145–159. [Google Scholar] [CrossRef]
- Xiao, Z.L.; Zhou, C.J.; Li, Z.D.; Zheng, M. Thermo-mechanical characteristics of high-speed and heavy-load modified gears with elasto-hydrodynamic contacts. Tribol. Int. 2019, 131, 406–414. [Google Scholar] [CrossRef]
- Lu, R.X.; Tang, W.C.; Huang, Q.; Xie, J.J. An improved load distribution model for gear transmission in thermal elastohydrodynamic lubrication. Lubricants 2023, 11, 177. [Google Scholar] [CrossRef]
- Xue, J.H.; Li, W.; Li, Q.C. Dynamic load and thermal elastohydrodynamic lubrication of gear system based on time-varying stiffness. J. Cent. South Univ. Sci. Tech. 2014, 45, 2603–2609. [Google Scholar]
- Xue, J.H.; Li, W.; Qin, C.Y. The scuffing load capacity of involute spur gear systems based on dynamic loads and transient thermal elastohydrodynamic lubrication. Tribol. Int. 2014, 79, 74–83. [Google Scholar] [CrossRef]
- Jian, G.X.; Wang, Y.Q.; Zhang, P.; Li, Y.K.; Luo, H. Thermal elastohydrodynamic lubrication of modified gear system considering vibration. J. Cent. South Univ. 2020, 27, 3350–3363. [Google Scholar] [CrossRef]
- Huang, W.K.; Ma, H.; Zhao, Z.F.; Wang, P.F.; Peng, Z.K.; Zhang, X.X.; Zhao, S.T. An iterative model for mesh stiffness of spur gears considering slice coupling under elastohydrodynamic lubrication. J. Cent. South Univ. 2023, 30, 3414–3434. [Google Scholar] [CrossRef]
- Marques, P.; Martins, R.; Seabra, J. Analytical load sharing and mesh stiffness model for spur/helical and internal/external gears-Towards constant mesh stiffness gear design. Mech. Mach. Theory 2017, 113, 126–140. [Google Scholar] [CrossRef]
- Raghuwanshi, N.K.; Parey, A. Experimental measurement of mesh stiffness by laser displacement sensor technique. Measurement 2018, 128, 63–70. [Google Scholar] [CrossRef]
- Raghuwanshi, N.K.; Parey, A. A new technique of gear mesh stiffness measurement using experimental modal analysis. J. Vib. Acoust. 2019, 141, 021018. [Google Scholar] [CrossRef]
- Karpat, F.; Yuce, C.; Dogan, O. Experimental measurement and numerical validation of single tooth stiffness for involute spur gears. Measurement 2020, 150, 107043. [Google Scholar] [CrossRef]
- Chakroun, A.E.; Hammami, C.; Hammami, A.; De-Juan, A. Gear mesh stiffness of polymer-metal spur gear system using generalized Maxwell model. Mech. Mac. Theory 2022, 175, 104934. [Google Scholar] [CrossRef]
- Pleguezuelos, M.; Sánchez, M.B.; Pedrero, J.I. Analytical model for meshing stiffness, load sharing, and transmission error for spur gears with profile modification under non-nominal load conditions. Appl. Math. Model. 2021, 97, 344–365. [Google Scholar] [CrossRef]
- Pedrero, J.I.; Sanchez, M.B.; Pleguezuelos, M. Analytical model of meshing stiffness, load sharing, and transmission error for internal spur gears with profile modification. Mech. Mach. Theory 2024, 197, 105650. [Google Scholar] [CrossRef]
- Abruzzo, M.; Beghini, M.; Santus, C.; Presicce, F. A dynamic model combining the average and the local meshing stiffnesses and based on the static transmission error for spur gears with profile modification. Mech. Mach. Theory 2023, 180, 105139. [Google Scholar] [CrossRef]
- Chevrel-Fraux, C.; Casanova, P.; Royet, M. Modelling and computation of the torsional stiffness of a planetary gear train. Forsch. Ingenieurwesen 2025, 89, 114. [Google Scholar] [CrossRef]
- Anuradha, G.; Sekhar, A.S.; Shakya, P. Evaluation of contact curve profiles and improved analytical methodology for dynamic mesh stiffness in spiral bevel gears. Mech. Mach. Theory 2025, 214, 106079. [Google Scholar] [CrossRef]
- Autiero, M.; Paoli, G.; Cirelli, M.; Valentini, P.P. Influence of profile modifications on spur gear sliding power losses: An integrated approach with advanced mesh stiffness and partial EHL. Mech. Mach. Theory 2025, 214, 106118. [Google Scholar] [CrossRef]
- Pei, X. Scale Effects of surface-texture distribution on lubrication and friction. Tribol. Lett. 2025, 73, 86. [Google Scholar] [CrossRef]
- Pei, X.; Cui, H.X. Evolution of point contact interface lubrication characteristics considering dynamic response under pure impact motion. J. Tribol. 2025, 147, 124101. [Google Scholar] [CrossRef]
- Akbarzadeh, S.; Khonsari, M.M. Thermoelastohydrodynamic analysis of spur gears with consideration of surface roughness. Tribol. Lett. 2008, 32, 129–141. [Google Scholar] [CrossRef]
- Akbarzadeh, S.; Khonsari, M.M. Performance of spur gears considering surface roughness and shear thinning lubricant. Tribol. Lett. 2008, 130, 021503. [Google Scholar] [CrossRef]
- Shi, X.J.; Sun, W.; Lu, X.Q.; Ma, X.; Zhu, D.; Zhao, B.; He, T. Three-dimensional mixed lubrication analysis of spur gears with machined roughness. Tribol. Int. 2019, 140, 105864. [Google Scholar] [CrossRef]
- Sun, Z.; Chen, S.Y.; Tang, J.Y.; Hu, Z.H.; Tao, X.; Wang, Q.; Yang, S.; Jiang, P. New deterministic model for calculating mesh stiffness and damping of rough-surface gears considering elastic-plastic contact and energy-dissipation mechanism. Mech. Syst. Signal Process. 2024, 216, 111502. [Google Scholar] [CrossRef]
- Zhou, C.J.; Xing, M.C.; Hu, B. A mesh stiffness model with the asperity contact for spur gear in mixed elastohydrodynamic lubrication. J. Braz. Soc. Mech. Sci. 2022, 44, 466. [Google Scholar] [CrossRef]
- Wang, H.B.; Zhou, C.J.; Wang, H.H.; Hu, B.; Liu, Z. A novel contact model for rough surfaces using piecewise linear interpolation and its application in gear wear. Wear 2021, 476, 203685. [Google Scholar] [CrossRef]
- Xiao, H.F.; Gao, J.S.; Wu, J.Z. Mesh stiffness model of a spur gear pair with surface roughness in mixed elastohydrodynamic lubrication. J. Braz. Soc. Mech. Sci. 2022, 44, 136. [Google Scholar] [CrossRef]
- Cheng, G.; Xiao, K.; Wang, J.X.; Pu, W.; Hang, Y.F. Calculation of gear meshing stiffness considering lubrication. J. Tribol. 2020, 142, 031602. [Google Scholar] [CrossRef]
- Yin, L.; Deng, C.L.; Yu, W.N.; Shao, Y.M.; Wang, L.M. Dynamic characteristics of gear system under different micro-topographies with the same roughness on tooth surface. J. Cent. South Univ. 2020, 27, 2311–2323. [Google Scholar] [CrossRef]
- Pei, X.; Nie, J.H.; Guo, H.T.; Li, S.; Zuo, Y.J. An involute gear pair meshing stiffness model considering time-varying friction under mixed lubrication. Nonlinear Dyn. 2024, 120, 254–268. [Google Scholar] [CrossRef]
- Tian, H.X.; Zhao, X.J.; Huang, W.K.; Ma, H. A stiffness model for EHL contact on smooth/rough surfaces and its application in mesh stiffness calculation of the planetary gear set. Tribol. Int. 2024, 196, 109720. [Google Scholar] [CrossRef]
- Gu, Y.K.; Chen, R.H.; Qiu, G.Q.; Huang, P. A time-varying meshing stiffness model for gears with mixed elastohydrodynamic lubrication based on load-sharing. Qual. Reliab. Eng. Int. 2024, 40, 1461–1483. [Google Scholar] [CrossRef]
- Jiang, H.J.; Liu, F.H.; Zhang, J.Q.; Li, Y.B.; Han, W.; Liu, J.; Liu, G.; Yang, X.; Kong, X. Dynamics analysis of spur gears considering random surface roughness with improved gear body stiffness. Int. J. Non-Linear Mech. 2024, 158, 104583. [Google Scholar] [CrossRef]
- Huang, K.; Xiong, Y.S.; Wang, T.; Chen, Q. Research on the dynamic response of high-contact-ratio spur gears influenced by surface roughness under EHL condition. Appl. Surf. Sci. 2017, 392, 8–18. [Google Scholar] [CrossRef]
- Wen, Y.Q.; Zhou, W.; Tang, J.Y. Research on the correlation between roughness parameters and contact stress on tooth surfaces and its dominant characteristics. Measurement 2024, 238, 115399. [Google Scholar] [CrossRef]
- You, S.Y.; Tang, J.Y. Thermoelastoplastic hydrodynamic lubrication contact analysis of three-dimensional rough tooth surface considering micro-scale effect and thermal effect. Tribol. Int. 2024, 191, 109134. [Google Scholar] [CrossRef]
- Zhao, Z.F.; Han, H.Z.; Wang, P.F.; Ma, H.; Zhang, S.; Yang, Y. An improved model for meshing characteristics analysis of spur gears considering fractal surface contact and friction. Mech. Mach. Theory 2021, 158, 104219. [Google Scholar] [CrossRef]
- Ausloos, M.; Berman, D.H. A multivariate Weierstrass-Mandelbrot function. Pro. R. Soc. A-Math. Phys. 1985, 400, 331–350. [Google Scholar] [CrossRef]
- Yan, W.; Komvopoulos, K. Contact analysis of elastic-plastic fractal surfaces. J. Appl. Phys. 1998, 84, 3617–3624. [Google Scholar] [CrossRef]
- Xu, K.; Yuan, Y.; Chen, J.J. The effects of size distribution functions on contact between fractal rough surfaces. AIP Adv. 2018, 8, 075317. [Google Scholar] [CrossRef]
- Yang, P.; Wen, S. A generalized Reynolds equation for non-Newtonian thermal elastohydrodynamic lubrication. J. Tribol. 1990, 112, 631–636. [Google Scholar] [CrossRef]
- Roelands, C.J.A. Correlational Aspects of the Viscosity-Temperature-Pressure Relationship of Lubricating Oils. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 1966. [Google Scholar]
- Hamrock, B.J.; Jacobson, B.O. Elastohydrodynamic lubrication of line contacts. Tribol. T. 1984, 27, 275–287. [Google Scholar] [CrossRef]
- Sainso, P.; Velex, P.; Duverger, O. Contribution of gear body to tooth deflections-a new bidimensional analytical formula. J. Mech. Des. 2004, 126, 748–752. [Google Scholar] [CrossRef]
- Chaari, F.; Fakhfakh, T.; Haddar, M. Analytical modelling of spur gear tooth crack and influence on gear mesh stiffness. Eur. J. Mech. A-Solid 2009, 28, 461–468. [Google Scholar] [CrossRef]
- Ma, H.; Pang, X.; Song, R.Z.; Yang, J. Time-varying mesh stiffness calculation of spur gears based on improved energy method. J. Northeast. Uni. Nat. Sci. 2014, 35, 863–866. [Google Scholar] [CrossRef]
- Xiao, H.F.; Sun, Y.Y.; Xu, J.W. Investigation into the normal contact stiffness of rough surface in line contact mixed elastohydrodynamic lubrication. Tribol. Trans. 2018, 61, 742–753. [Google Scholar] [CrossRef]
- Gou, X.F.; Zhu, L.Y.; Qi, C.J. Nonlinear dynamic model of a gear-rotor-bearing system considering the flash temperature. J. Sound Vib. 2017, 410, 187–208. [Google Scholar] [CrossRef]
Parameters | Value | Parameters | Value |
---|---|---|---|
Number of teeth z1, z2 | 24, 16 | Density of gear ρ1, ρ2 (kg/m3) | 7850 |
Module m (mm) | 5.0 | Viscosity of lubricant η (Pa·s) | 0.03 |
Tooth width BH (mm) | 10 | Density of lubricant ρ (kg/m3) | 860 |
Pressure angle α (°) | 20 | Pressure–viscosity coefficient (Pa−1) | 2.0 × 10−8 |
Elasticity modulus E1, E2 (GPa) | 210 | Coefficient of heat conduction h1, h2 (J/ms°C) | 46.47 |
Rotational speed n1 (r/min) | 2000 | Initial tooth surface temperature T0 (°C) | 20 |
Torque T1 (N·m) | 100 | Poisson ratio ν1, ν2 | 0.3 |
Parameters | p | h | f | ΔT | kc | kcm | Fluctuation |
---|---|---|---|---|---|---|---|
T1 ↑ | ↑ | ↓ | ↑ | ↑ | ↑ | ↑ | ↑ |
n1 ↑ | Local ↓ | Local ↑ | Local ↓ | ↑ | ↓ | ↓ | ↓ |
D ↑ | Local ↓ | Local ↓ | ↑ | ↑ | ↑ | ↑ | ↓ |
G ↑ | Local ↓ | Local ↑ | Local ↑ | Local ↑ | ↓ | ↓ | ↑ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, S.; Li, X.; An, C.; Xu, T.; Zhang, D.; Zhang, Y.; Ren, Z. An Improved Stiffness Model for Spur Gear with Surface Roughness Under Thermal Elastohydrodynamic Lubrication. Mathematics 2025, 13, 3335. https://doi.org/10.3390/math13203335
Zhou S, Li X, An C, Xu T, Zhang D, Zhang Y, Ren Z. An Improved Stiffness Model for Spur Gear with Surface Roughness Under Thermal Elastohydrodynamic Lubrication. Mathematics. 2025; 13(20):3335. https://doi.org/10.3390/math13203335
Chicago/Turabian StyleZhou, Shihua, Xuan Li, Chao An, Tengyuan Xu, Dongsheng Zhang, Ye Zhang, and Zhaohui Ren. 2025. "An Improved Stiffness Model for Spur Gear with Surface Roughness Under Thermal Elastohydrodynamic Lubrication" Mathematics 13, no. 20: 3335. https://doi.org/10.3390/math13203335
APA StyleZhou, S., Li, X., An, C., Xu, T., Zhang, D., Zhang, Y., & Ren, Z. (2025). An Improved Stiffness Model for Spur Gear with Surface Roughness Under Thermal Elastohydrodynamic Lubrication. Mathematics, 13(20), 3335. https://doi.org/10.3390/math13203335