Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (297)

Search Parameters:
Keywords = implanted biomedical devices

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
50 pages, 4603 KiB  
Review
Polymeric Composite Thin Films Deposited by Laser Techniques for Antimicrobial Applications—A Short Overview
by Anita Ioana Visan and Irina Negut
Polymers 2025, 17(15), 2020; https://doi.org/10.3390/polym17152020 - 24 Jul 2025
Viewed by 364
Abstract
Polymeric composite thin films have emerged as promising antimicrobial materials, particularly in response to rising antibiotic resistance. This review highlights the development and application of such films produced by laser-based deposition techniques, notably pulsed laser deposition and matrix-assisted pulsed laser evaporation. These methods [...] Read more.
Polymeric composite thin films have emerged as promising antimicrobial materials, particularly in response to rising antibiotic resistance. This review highlights the development and application of such films produced by laser-based deposition techniques, notably pulsed laser deposition and matrix-assisted pulsed laser evaporation. These methods offer precise control over film composition, structure, and thickness, making them ideal for embedding antimicrobial agents such as metal nanoparticles, antibiotics, and natural compounds into polymeric matrices. The resulting composite coatings exhibit enhanced antimicrobial properties against a wide range of pathogens, including antibiotic-resistant strains, by leveraging mechanisms such as ion release, reactive oxygen species generation, and membrane disruption. The review also discusses critical parameters influencing antimicrobial efficacy, including film morphology, composition, and substrate interactions. Applications include biomedical devices, implants, wound dressings, and surfaces in the healthcare and food industries. Full article
(This article belongs to the Special Issue Polymer Thin Films and Their Applications)
Show Figures

Figure 1

12 pages, 786 KiB  
Article
Frictional Cohesive Force and Multifunctional Simple Machine for Advanced Engineering and Biomedical Applications
by Carlos Aurelio Andreucci, Ahmed Yaseen and Elza M. M. Fonseca
Appl. Sci. 2025, 15(15), 8215; https://doi.org/10.3390/app15158215 - 23 Jul 2025
Viewed by 330
Abstract
A new, simple machine was developed to address a long-standing challenge in biomedical and mechanical engineering: how to enhance the primary stability and long-term integration of screws and implants in low-density or heterogeneous materials, such as bone or composite substrates. Traditional screws often [...] Read more.
A new, simple machine was developed to address a long-standing challenge in biomedical and mechanical engineering: how to enhance the primary stability and long-term integration of screws and implants in low-density or heterogeneous materials, such as bone or composite substrates. Traditional screws often rely solely on external threading for fixation, leading to limited cohesion, poor integration, or early loosening under cyclic loading. In response to this problem, we designed and built a novel device that leverages a unique mechanical principle to simultaneously perforate, collect, and compact the substrate material during insertion. This mechanism results in an internal material interlock, enhancing cohesion and stability. Drawing upon principles from physics, chemistry, engineering, and biology, we evaluated its biomechanical behavior in synthetic bone analogs. The maximum insertion (MIT) and removal torques (MRT) were measured on synthetic osteoporotic bones using a digital torquemeter, and the values were compared directly. Experimental results demonstrated that removal torque (mean of 21.2 Ncm) consistently exceeded insertion torque (mean of 20.2 Ncm), indicating effective material interlocking and cohesive stabilization. This paper reviews the relevant literature, presents new data, and discusses potential applications in civil infrastructure, aerospace, and energy systems where substrate cohesion is critical. The findings suggest that this new simple machine offers a transformative approach to improving fixation and integration across multiple domains. Full article
(This article belongs to the Section Materials Science and Engineering)
Show Figures

Figure 1

42 pages, 4253 KiB  
Review
Smart and Biodegradable Polymers in Tissue Engineering and Interventional Devices: A Brief Review
by Rashid Dallaev
Polymers 2025, 17(14), 1976; https://doi.org/10.3390/polym17141976 - 18 Jul 2025
Viewed by 293
Abstract
Recent advancements in polymer science have catalyzed a transformative shift in biomedical engineering, particularly through the development of biodegradable and smart polymers. This review explores the evolution, functionality, and application of these materials in areas such as tissue scaffolding, cardiovascular occluders, and controlled [...] Read more.
Recent advancements in polymer science have catalyzed a transformative shift in biomedical engineering, particularly through the development of biodegradable and smart polymers. This review explores the evolution, functionality, and application of these materials in areas such as tissue scaffolding, cardiovascular occluders, and controlled drug delivery systems. Emphasis is placed on shape-memory polymers (SMPs), conductive polymers, and polymer-based composites that combine tunable degradation, mechanical strength, and bioactivity. The synergy between natural and synthetic polymers—augmented by nanotechnology and additive manufacturing—enables the creation of intelligent scaffolds and implantable devices tailored for specific clinical needs. Key fabrication methods, including electrospinning, freeze-drying, and emulsion-based techniques, are discussed in relation to pore structure and functionalization strategies. Finally, the review highlights emerging trends, including ionic doping, 3D printing, and multifunctional nanocarriers, outlining their roles in the future of regenerative medicine and personalized therapeutics. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

68 pages, 1574 KiB  
Review
Influence of Surface Texture in Additively Manufactured Biocompatible Materials and Triboelectric Behavior
by Patricia Isabela Brăileanu and Nicoleta Elisabeta Pascu
Materials 2025, 18(14), 3366; https://doi.org/10.3390/ma18143366 - 17 Jul 2025
Viewed by 590
Abstract
This study analyzes the recent scientific literature on advanced biocompatible materials for triboelectric nanogenerators (TENGs) in biomedical applications. Focusing on materials like synthetic polymers, carbon-based derivatives, and advanced hybrids, the study interprets findings regarding their triboelectric properties and performance influenced by surface texture [...] Read more.
This study analyzes the recent scientific literature on advanced biocompatible materials for triboelectric nanogenerators (TENGs) in biomedical applications. Focusing on materials like synthetic polymers, carbon-based derivatives, and advanced hybrids, the study interprets findings regarding their triboelectric properties and performance influenced by surface texture and additive manufacturing techniques. Major findings reveal that precise control over surface morphology, enabled by additive manufacturing (AM) is promising for optimizing transferred charge density and maximizing TENG efficiency. The analysis highlights the relevance of these material systems and fabrication strategies for developing self-powered wearable and implantable biomedical devices through enabling biocompatible energy-harvesting components that can operate autonomously without external power, underscoring the need for stringent biocompatibility and performance stability. This work synthesizes current progress, identifying critical material and process design parameters for advancing the field of biocompatible TENGs. Full article
Show Figures

Graphical abstract

12 pages, 2233 KiB  
Opinion
Prosthodontic Considerations for Customized Subperiosteal Implants: A Consensus Report
by Álvaro Tofé-Povedano, Javier Herce-López, Mariano del Canto-Pingarrón, Ramón Sieira-Gil, Carlos Rodado-Alonso, Pablo Garrido-Martínez, Jorge Reyes-Minguillán, Octavi Camps-Font, Alba Sánchez-Torres and Rui Figueiredo
Appl. Sci. 2025, 15(14), 7633; https://doi.org/10.3390/app15147633 - 8 Jul 2025
Viewed by 327
Abstract
(1) Background: The present study was carried out to provide a state-of-the-art review of the prosthodontic factors related to customized subperiosteal implants (CSIs), and to offer clinical guidelines in this regard. (2) Methods: An expert consensus meeting was held in July 2024 in [...] Read more.
(1) Background: The present study was carried out to provide a state-of-the-art review of the prosthodontic factors related to customized subperiosteal implants (CSIs), and to offer clinical guidelines in this regard. (2) Methods: An expert consensus meeting was held in July 2024 in Santpedor (Manresa, Spain) to establish the most relevant clinical guidelines. (3) Results and (4) Conclusions: An interdisciplinary approach including surgeons, prosthodontists, bio-medical engineers and dental technicians, integrating both biological and mechanical considerations when designing CSI rehabilitations, is very important. While the reported survival rate of CSIs appears promising, their long-term performance beyond 5 years remains insufficiently documented. Thus, CSIs are a viable treatment option for patients with insufficient bone to place conventional implants, but there is a clear need to identify and analyze delayed-onset complications associated with these devices. The findings and their broader implications should be thoroughly examined, and potential future research directions should be highlighted. Full article
(This article belongs to the Special Issue Novel Technologies in Oral and Maxillofacial Surgery)
Show Figures

Figure 1

33 pages, 12802 KiB  
Review
Developments and Future Directions in Stretchable Display Technology: Materials, Architectures, and Applications
by Myung Sub Lim and Eun Gyo Jeong
Micromachines 2025, 16(7), 772; https://doi.org/10.3390/mi16070772 - 30 Jun 2025
Viewed by 591
Abstract
Stretchable display technology has rapidly evolved, enabling a new generation of flexible electronics with applications ranging from wearable healthcare and smart textiles to implantable biomedical devices and soft robotics. This review systematically presents recent advances in stretchable displays, focusing on intrinsic stretchable materials, [...] Read more.
Stretchable display technology has rapidly evolved, enabling a new generation of flexible electronics with applications ranging from wearable healthcare and smart textiles to implantable biomedical devices and soft robotics. This review systematically presents recent advances in stretchable displays, focusing on intrinsic stretchable materials, wavy surface engineering, and hybrid integration strategies. The paper highlights critical breakthroughs in device architectures, energy-autonomous systems, durable encapsulation techniques, and the integration of artificial intelligence, which collectively address challenges in mechanical reliability, optical performance, and operational sustainability. Particular emphasis is placed on the development of high-resolution displays that maintain brightness and color fidelity under mechanical strain, and energy harvesting systems that facilitate self-powered operation. Durable encapsulation methods ensuring long-term stability against environmental factors such as moisture and oxygen are also examined. The fusion of stretchable electronics with AI offers transformative opportunities for intelligent sensing and adaptive human–machine interfaces. Despite significant progress, issues related to large-scale manufacturing, device miniaturization, and the trade-offs between stretchability and device performance remain. This review concludes by discussing future research directions aimed at overcoming these challenges and advancing multifunctional, robust, and scalable stretchable display systems poised to revolutionize flexible electronics applications. Full article
(This article belongs to the Special Issue Advances in Flexible and Wearable Electronics: Devices and Systems)
Show Figures

Figure 1

24 pages, 7263 KiB  
Article
Biocompatible and Hermetic Encapsulation of PMUTs: Effects of Parylene F-VT4 and ALD Stacks on Membrane Vibration and Acoustic Performance
by Esmaeil Afshari, Samer Houri, Rik Verplancke, Veronique Rochus, Maarten Cauwe, Pieter Gijsenbergh and Maaike Op de Beeck
Sensors 2025, 25(13), 4074; https://doi.org/10.3390/s25134074 - 30 Jun 2025
Viewed by 446
Abstract
The motivation of this work is to enable the use of piezoelectric micromachined ultrasonic transducer (PMUT)-based implants within the human body for biomedical applications, particularly for power and data transfer for implanted medical devices. To protect surrounding tissue and ensure PMUT functionality over [...] Read more.
The motivation of this work is to enable the use of piezoelectric micromachined ultrasonic transducer (PMUT)-based implants within the human body for biomedical applications, particularly for power and data transfer for implanted medical devices. To protect surrounding tissue and ensure PMUT functionality over time, biocompatible and hermetic encapsulation is essential. This study investigates the impact of Parylene F-VT4 layers of various thicknesses as well as the effect of multilayer stacks of Parylene F-VT4 combined with atomic layer-deposited nanolayers of Al2O3 and HfO2 on the mechanical and acoustic properties of PMUTs. PMUTs with various diameters (40 µm, 60 µm, and 80 µm) are fabricated and tested both as stand-alone devices and as arrays. The mechanical behavior of single stand-alone PMUT devices is characterized in air and in water using laser Doppler vibrometry (LDV), while the acoustic output of arrays is evaluated by pressure measurements in water. Experimental results reveal a non-monotonic change in resonance frequency as a function of increasing encapsulation thickness due to the competing effects of added mass and increased stiffness. The performance of PMUT arrays is clearly influenced by the encapsulation. For certain array designs, the encapsulation significantly improved the arrays’ pressure output, a change that is attributed to the change in the acoustic wavelength and inter-element coupling. These findings highlight the impact of encapsulation in modifying and potentially enhancing PMUT performance. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

24 pages, 7600 KiB  
Article
Microstructure, Porosity, and Bending Fatigue Behaviour of PBF-LB/M SS316L for Biomedical Applications
by Conall Kirk, Weijie Xie, Shubhangi Das, Ben Ferguson, Chenliang Wu, Hau-Chung Man and Chi-Wai Chan
Metals 2025, 15(6), 650; https://doi.org/10.3390/met15060650 - 11 Jun 2025
Viewed by 1055
Abstract
Bending fatigue significantly affects the mechanical stability and lifespan of biomedical implants, such as bone plates and orthopaedic fixation devices, which undergo cyclic loading in the human body. This study examines the microstructure, porosity, and bending fatigue properties of PBF-LB/M SS316L. Samples were [...] Read more.
Bending fatigue significantly affects the mechanical stability and lifespan of biomedical implants, such as bone plates and orthopaedic fixation devices, which undergo cyclic loading in the human body. This study examines the microstructure, porosity, and bending fatigue properties of PBF-LB/M SS316L. Samples were analysed across three faces (top, front, and side) using optical microscopy (OM) and scanning electron microscopy (SEM) to observe microstructural features and porosity. Elemental composition was measured by energy-dispersive X-ray spectroscopy (EDX). Phase structures and grain orientations were characterised via X-ray diffraction (XRD) and electron backscatter diffraction (EBSD). Four-point bending fatigue tests, conducted under two loading conditions, below and slightly above the yield point, demonstrated that defects inherent to the PBF-LB/M process, particularly micropores and unmelted powder particles, strongly influence fatigue crack initiation. Real-time monitoring of crack initiation and propagation on the external sample surface was performed using a high-speed digital microscope. These findings indicate the influence of microstructural defects on fatigue performance in PBF-LB/M SS316L, supporting the design and development of more reliable patient-specific biomedical implants. Full article
Show Figures

Figure 1

33 pages, 11543 KiB  
Review
Recent Progress of Biomaterial-Based Hydrogels for Wearable and Implantable Bioelectronics
by Baojin Chen, Yan Zhu, Renjie Yu, Yunxiang Feng, Zhenpeng Han, Chang Liu, Pengcheng Zhu, Lijun Lu and Yanchao Mao
Gels 2025, 11(6), 442; https://doi.org/10.3390/gels11060442 - 9 Jun 2025
Viewed by 2176
Abstract
Bioelectronics for wearable and implantable biomedical devices has attracted significant attention due to its potential for continuous health monitoring, early disease diagnosis, and real-time therapeutic interventions. Among the various materials explored for bioelectronic applications, hydrogels derived from natural biopolymers have emerged as highly [...] Read more.
Bioelectronics for wearable and implantable biomedical devices has attracted significant attention due to its potential for continuous health monitoring, early disease diagnosis, and real-time therapeutic interventions. Among the various materials explored for bioelectronic applications, hydrogels derived from natural biopolymers have emerged as highly promising candidates, owing to their inherent biocompatibility, mechanical compliance akin to biological tissues, and tunable structural properties. This review provides a comprehensive overview of recent advancements in the design and application of protein-based hydrogels, including gelatin, collagen, silk fibroin, and gluten, as well as carbohydrate-based hydrogels such as chitosan, cellulose, alginate, and starch. Particular emphasis is placed on elucidating their intrinsic material characteristics, modification strategies to improve electrical and mechanical performance, and their applicability for bioelectronic interfaces. The review further explores their diverse applications in physiological and biochemical signal sensing, bioelectric signal recording, and electrical stimulation. Finally, current challenges and future perspectives are discussed to guide the ongoing innovation of hydrogel-based systems for next-generation bioelectronic technologies. Full article
Show Figures

Figure 1

33 pages, 1860 KiB  
Review
Biomimetic Design and Assessment via Microenvironmental Testing: From Food Packaging Biomaterials to Implantable Medical Devices
by Diana V. Portan, Athanasia Koliadima, John Kapolos and Leonard Azamfirei
Biomimetics 2025, 10(6), 370; https://doi.org/10.3390/biomimetics10060370 - 5 Jun 2025
Cited by 1 | Viewed by 730
Abstract
Biomaterials and biomedical devices interact with the human body at different levels. At one end of the spectrum, medical devices in contact with tissue pose risks depending on whether they are deployed on the skin or implanted. On the other hand, food packaging [...] Read more.
Biomaterials and biomedical devices interact with the human body at different levels. At one end of the spectrum, medical devices in contact with tissue pose risks depending on whether they are deployed on the skin or implanted. On the other hand, food packaging and associated material technologies must also be biocompatible to prevent the transfer of harmful molecules and contamination of food, which could impact human health. These seemingly unlinked domains converge into a shared need for the elaboration of new laboratory evaluation protocols that consider recent advances in biomaterials and biodevices, coupled with increasing legal restrictions on the use of animal models. Here, we aim to select and prescribe physiologically relevant microenvironment conditions for biocompatibility testing of novel biomaterials and biodevices. Our discussion spans (1) the development of testing protocols according to material classes, (2) current legislation and standards, and (3) the preparation of biomimetic setups that replicate the microenvironment, with a focus on the multidisciplinary dimension of such studies. Testing spans several characterization domains, beginning with chemical properties, followed by mechanical integrity and, finally, biological response. Biomimetic testing conditions typically include temperature fluctuations, humidity, mechanical stress and loading, exposure to body fluids, and interaction with multifaceted biological systems. Full article
Show Figures

Figure 1

43 pages, 1026 KiB  
Review
Most Important Biomedical and Pharmaceutical Applications of Silicones
by Jerzy J. Chruściel
Materials 2025, 18(11), 2561; https://doi.org/10.3390/ma18112561 - 30 May 2025
Viewed by 1343
Abstract
Many kinds of silicones are a wide family of hybrid inorganic–organic polymers which have valuable physical and chemical properties and find plenty of practical applications, not only industrial, but also numerous medical and pharmaceutical ones, mainly due to their good thermal and chemical [...] Read more.
Many kinds of silicones are a wide family of hybrid inorganic–organic polymers which have valuable physical and chemical properties and find plenty of practical applications, not only industrial, but also numerous medical and pharmaceutical ones, mainly due to their good thermal and chemical stability, hydrophobicity, low surface tension, biocompatibility, and bio-durability. The important biomedical applications of silicones include drains, shunts, and catheters, used for medical treatment and short-term implants; inserts and implants to replace various body parts; treatment, assembly, and coating of various medical devices; breast and aesthetic implants; specialty contact lenses; and components of cosmetics, drugs, and drug delivery systems. The most important achievements concerning the biomedical and pharmaceutical applications of silicones, their copolymers and blends, and also silanes and low-molecular-weight siloxanes have been summarized and updated. The main physiological properties of organosilicon compounds and silicones, and the methods of antimicrobial protection of silicone implants, have also been described and discussed. The toxicity of silicones, the negative effects of breast implants, and the environmental effects of silicone-containing personal care and cosmetic products have been reported and analyzed. Important examples of the 3D printing of silicone elastomers for biomedical applications have been presented as well. Full article
Show Figures

Figure 1

15 pages, 4087 KiB  
Article
A 0.4 V CMOS Current-Controlled Tunable Ring Oscillator for Low-Power IoT and Biomedical Applications
by Md Anas Abdullah, Mohamed B. Elamien and M. Jamal Deen
Electronics 2025, 14(11), 2209; https://doi.org/10.3390/electronics14112209 - 29 May 2025
Viewed by 888
Abstract
This work presents a current-controlled CMOS ring oscillator (CCRO) optimized for ultra-low-voltage applications in next-generation energy-constrained systems. Leveraging bulk voltage tuning in 22 nm FDSOI differential inverter stages, the topology enables frequency adjustment while operating MOSFETs in the subthreshold region—critical for minimizing power [...] Read more.
This work presents a current-controlled CMOS ring oscillator (CCRO) optimized for ultra-low-voltage applications in next-generation energy-constrained systems. Leveraging bulk voltage tuning in 22 nm FDSOI differential inverter stages, the topology enables frequency adjustment while operating MOSFETs in the subthreshold region—critical for minimizing power in sub-1 V environments. Simulations at 0.4 V supply demonstrate robust performance: a three-stage oscillator achieves a 537–800 MHz tuning range with bias current (IBIAS) modulation from 30–130 nA, while a four-stage configuration spans 388–587 MHz. At 70 nA IBIAS, the three-stage design delivers a nominal frequency of 666.8 MHz with just 10.23 µW power dissipation, underscoring its suitability for ultra-low-power IoT and biomedical applications. The oscillator’s linear frequency sensitivity (2.63 MHz/nA) allows precise, dynamic control over performance–power tradeoffs. To address diverse application needs, the design integrates three tunability mechanisms: programmable capacitor arrays for coarse frequency adjustments, configurable stage counts (three- or four-stage topologies), and supply voltage scaling. This multi-modal approach extends the operational range to 1 MHz–1 GHz, ensuring compatibility with low-speed sensor interfaces and high-speed edge-computing tasks. The CCRO’s subthreshold operation at 0.4 V—coupled with nanoampere-level current consumption—makes it uniquely suited for battery-less systems, wearable health monitors, and implantable medical devices where energy efficiency and adaptive clocking are paramount. By eliminating traditional voltage-controlled oscillators’ complexity, this topology offers a compact, scalable solution for emerging ultra-low-power technologies. Full article
Show Figures

Figure 1

19 pages, 3708 KiB  
Article
Multiple Ring Electrode-Based PMUT with Tunable Deflections
by Jan Helmerich, Manfred Wich, Annika Hofmann, Thomas Schaechtle and Stefan Johann Rupitsch
Micromachines 2025, 16(6), 623; https://doi.org/10.3390/mi16060623 - 25 May 2025
Cited by 1 | Viewed by 2437
Abstract
Ultrasonic applications such as non-destructive testing, biomedical imaging or range measurements are currently based on piezoelectric bulk transducers. Yet, these kinds of transducers with their mm to cm dimensions are rather impractical in fields in which both frequencies in the kHz region and [...] Read more.
Ultrasonic applications such as non-destructive testing, biomedical imaging or range measurements are currently based on piezoelectric bulk transducers. Yet, these kinds of transducers with their mm to cm dimensions are rather impractical in fields in which both frequencies in the kHz region and small-feature sizes are required. This fact mainly relates to the inverse relationship between the resonance frequency constant and the transducers’ dimension, yielding a higher frequency and attenuation with a decreasing size. Piezoelectric micromachined ultrasonic transducers (PMUTs), in comparison, incorporate a small-scale µm design while preserving the operating frequency in the desired kHz range. This contribution presents the detailed manufacturing of such a PMUT with a multiple ring electrode‑based structure to additionally adjust the sound pressure fields. The PMUT will be characterized by its deflection in air along with the characterization of the piezoelectric material lead zirconate titanate (PZT) itself. The measurements showed a maximum polarization of 21.8 µC/cm2 at 50 kV/cm, the PMUT’s displacement of 30.50 nm/V in air when all electrodes are driven, and an adjustable deflection via different electrode excitations without the need for additional hardware. The ring design also offered the possibility to emit two distinct frequencies simultaneously. These results demonstrate the potential of the designs for small-feature-size applications as they are in high demand for implantable devices, miniaturized ultrasonic-based communication or drug delivery. Full article
(This article belongs to the Special Issue MEMS Ultrasonic Transducers)
Show Figures

Figure 1

18 pages, 1322 KiB  
Article
A Compact Implantable Multiple-Input-Multiple-Output Antenna for Biotelemetry and Sensing Applications
by Jamel Smida, Mohamed Karim Azizi, Anandh Sam Chandra Bose and Mohamed I. Waly
Sensors 2025, 25(11), 3323; https://doi.org/10.3390/s25113323 - 25 May 2025
Viewed by 526
Abstract
Gastrointestinal (GI) tract diseases are among the most common diseases in the world, resulting in more than 8 million deaths. The majority of these deaths occur due to cancer or tumors. Early detection of these tumors can greatly lower the mortality rate. In [...] Read more.
Gastrointestinal (GI) tract diseases are among the most common diseases in the world, resulting in more than 8 million deaths. The majority of these deaths occur due to cancer or tumors. Early detection of these tumors can greatly lower the mortality rate. In this work, an implantable multiple-input-multiple-output (MIMO) antenna sensor is constructed for GI tract devices to detect the tumor. The implantable MIMO antenna sensor has two embedded antennas, each operating at 915 MHz. Both elements of the system are placed 0.6 mm apart from each other (edge-to-edge). The volume consumed by this design is measured to be 7 × 7 × 0.25 = 12.25 mm3. It occupies a very small volume due to miniaturization achieved using meandered resonating structures and a high-permittivity substrate. It maintains stable radiation performance (gain = −26.2 dBi at resonance). The antenna units are decoupled by maintaining a proper gap between them and adding a slot on the bottom side. An isolation level greater than 28.7 dB is achieved using these approaches. Since the MIMO system utilizes two antenna elements, its effectiveness is verified using MIMO parameters. At SNR = 20 dB, the channel capacity reaches 8.75 bps/Hz. The proposed antenna ensures high channel capacity and enables seamless communication while simultaneously acting as a sensor to monitor internal changes in the observed region. The frequency response change with variations in the permittivity of human tissue, enabling its sensing capability. Moreover, the antenna sensor maintains stable radiation and S-parameter performance throughout the sensing mechanism. Thus, the proposed solution is suitable for biomedical implants requiring both high-data-rate communication and sensing. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

38 pages, 2989 KiB  
Review
Electroactive Polymers for Self-Powered Actuators and Biosensors: Advancing Biomedical Diagnostics Through Energy Harvesting Mechanisms
by Nargish Parvin, Sang Woo Joo, Jae Hak Jung and Tapas Kumar Mandal
Actuators 2025, 14(6), 257; https://doi.org/10.3390/act14060257 - 23 May 2025
Viewed by 1258
Abstract
Electroactive polymers (EAPs) have emerged as versatile materials for self-powered actuators and biosensors, revolutionizing biomedical diagnostics and healthcare technologies. These materials harness various energy harvesting mechanisms, including piezoelectricity, triboelectricity, and ionic conductivity, to enable real-time, energy-efficient, and autonomous sensing and actuation without external [...] Read more.
Electroactive polymers (EAPs) have emerged as versatile materials for self-powered actuators and biosensors, revolutionizing biomedical diagnostics and healthcare technologies. These materials harness various energy harvesting mechanisms, including piezoelectricity, triboelectricity, and ionic conductivity, to enable real-time, energy-efficient, and autonomous sensing and actuation without external power sources. This review explores recent advancements in EAP-based self-powered systems, focusing on their applications in biosensing, soft robotics, and biomedical actuation. The integration of nanomaterials, flexible electronics, and wireless communication technologies has significantly enhanced their sensitivity, durability, and multifunctionality, making them ideal for next-generation wearable and implantable medical devices. Additionally, this review discusses key challenges, including material stability, biocompatibility, and optimization strategies for enhanced performance. Future perspectives on the clinical translation of EAP-based actuators and biosensors are also highlighted, emphasizing their potential to transform smart healthcare and bioelectronic applications. Full article
(This article belongs to the Special Issue Electroactive Polymer (EAP) for Actuators and Sensors Applications)
Show Figures

Figure 1

Back to TopTop