Most Important Biomedical and Pharmaceutical Applications of Silicones
Abstract
:1. Introduction
Historical Background of Medical and Pharmaceutical Applications of Silicones
2. Biomedical Applications of Silicone Fluids and Thermoplastic Silicone Copolymers
- Biocompatibility and physiological indifference;
- Excellent oxidation, ultraviolet light, and aging resistance;
- Good elasticity and outstanding dielectric properties at different temperatures.
3. Medical Applications of Silicone Elastomers and Rubbers
Examples of 3D Printing of Silicone Elastomers for Biomedical Applications
4. Other Biomedical and Cosmetic Applications of Silicones and Modified Silica
5. Biomedical Applications of Polymeric Nanocomposites Containing POSS Nanofillers
6. Applications of Silane and Siloxane-Modified Thermoplastics in Medicine
7. Silicone-Based Drug Delivery Systems
8. Physiological Properties of Organosilicon Compounds and Silicones
Antimicrobial Protection of Silicone Implants
9. Toxicity and Safety of Siloxanes and Silicones
9.1. Negative Effects of Breast Implants
9.2. Environmental Effects of Silicone Containing Personal Care and Other Products
10. Conclusions and Future Perspectives
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zare, M.; Ghomi, E.R.; Venkatraman, P.D.; Ramakrishna, S. Silicone-based biomaterials for biomedical applications: Antimicrobial strategies and 3D printing technologies. J. Appl. Polym. Sci. 2021, 138, e50969. [Google Scholar] [CrossRef]
- Chruściel, J.J. Silicon-Based Polymers and Materials; Walter de Gruyter GmbH: Berlin, Germany; Boston, MA, USA, 2022. [Google Scholar]
- Brook, M.A. Chapter 3, The chemistry and physical properties of biomedical silicones. In The Chemistry and Physical Properties of Biomedical Silicones; Peters, W., Brandon, H., Jerina, K.L., Wolf, C., Young, V.L., Eds.; Elsevier: Amsterdam, The Netherlands, 2012; pp. 52–67. [Google Scholar]
- Brook, M.A. Functional silicone oils and elastomers: New routes lead to new properties. Chem. Commun. 2023, 59, 12813–12829. [Google Scholar] [CrossRef] [PubMed]
- Marmo, A.C.; Grunlan, M.A. Biomedical Silicones: Leveraging Additive Strategies to Propel Modern Utility. ACS Macro Lett. 2023, 12, 172–182. [Google Scholar] [CrossRef] [PubMed]
- Chruściel, J. Silikony—Surowce dla najnowszych technologii (Silicones—Raw materials for the latest technologies). Chem. Rev. 2007, 11, 36–40. (In Polish) [Google Scholar]
- Sardar, V.B.; Rajhans, D.N.R.; Pathak, A.; Prabhu, T. Developments in silicone material for biomedical applications—A review. In Proceedings of the 14th International Conference on Humanizing Work and Work Environment HWWE-2016, Jalandhar, India, 8–11 December 2016. [Google Scholar]
- Schoen, F.J.; Zhang, G. Biomaterials Science, 4th ed.; Elsevier: London, UK, 2020. [Google Scholar]
- Razavi, M.; Primaveraa, R.; Vykuntaa, A.; Thakora, A.S. Silicone-based bioscaffolds for cellular therapies. Mater. Sci. Eng. C 2021, 119, 111615. [Google Scholar] [CrossRef]
- Panneerselvam, P.; Chauhan, N.P.S.; Simorgh, S. Chapter 16: Silicon-based polymers for biomedical application. In Handbook of Polymers in Medicine; Woodhead Publishing Series in Biomaterials; Woodhead Publishing: Sawston, UK, 2023; pp. 445–461. [Google Scholar]
- Lahey, F.H. Comments made following the speech “Results from using Vitallium tubes in biliary surgery”, read by Pearse, H.E. before the American Surgical Association, Hot Springs, VA. Ann. Surg. 1946, 124, 1027. [Google Scholar]
- Thomas, X. Chapter 17: Silicones in Medical Applications; Dow Corning Europe SA: Seneffe, Belgium, 2009. [Google Scholar]
- De Nicola, R. Permanent Artificial (Silicone) Urethrea. J. Urol. 1950, 63, 168–172. [Google Scholar] [CrossRef]
- Arkles, B.; Redinger, P. Chapter 32: Silicones in Biomedical Applications. In Biocompatible Polymers, Metals, and Composites; Szycher, M., Ed.; Technomic Publishing: Lancaster, PA, USA, 1983; pp. 749–768. [Google Scholar]
- Chawla, A.S. Preparation of silicone coated biomaterials using plasma polymerizations and their preliminary evaluation. Trans. Am. Soc. Artif. Intern. Organs 1979, 25, 287–292. [Google Scholar] [CrossRef]
- Curtis, J.M.; Colas, A. (Dow Corning), 2.3. Silicone Biomaterials: History, Chemistry. In Biomaterials Science, 2nd ed.; Ratner, B.D., Ed.; Elsevier: London, UK, 2004; pp. 80–86. Available online: https://pentasil.eu/images/Silicone%20Biomaterials.pdf (accessed on 2 September 2024).
- Curtis, J.M.; Colas, A. 7.19. Medical Applications of Silicones. In Biomaterials Science, 2nd ed.; Ratner, B.D., Ed.; Elsevier: London, UK, 2004; pp. 697–707. Available online: https://pentasil.eu/images/Silicone%20Biomaterials.pdf (accessed on 2 September 2024).
- Leeper, H.M.; Wright, R.M. Elastomers in medicine. Rubber Chem. Technol. 1983, 56, 523–556. [Google Scholar] [CrossRef]
- Schalau, G.K.; Hyder, A.; Aliyar, H.A. Chapter 14: Silicone Excipients in Pharmaceutical Drug Delivery Applications. In Excipient Applications in Formulation Design and Drug Delivery; Narang, A.S., Boddu, S.H.S., Eds.; Springer International Publishing AG: Cham, Switzerland; Heidelberg, Germany; New York, NY, USA; Dordrecht, The Netherlands; London, UK, 2015; pp. 423–462. [Google Scholar] [CrossRef]
- Rider, J.; Moeller, H. Use of silicone in the treatment of intestinal gas and bloating. J. Am. Med. Assoc. 1960, 174, 2052–2054. [Google Scholar] [CrossRef]
- Black, J. Biological Performance of Materials: Fundamentals of Biocompatibility; Marcel Dekker: New York, NY, USA, 1992; pp. 3–28. [Google Scholar]
- Remes, A.; Williams, D.F. Immune response in biocompatibility. Biomaterials 1992, 13, 731–743. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.generalsilicones.com.tw/applications-en/medical-healthcare-en/?lang=en (accessed on 3 September 2024).
- ISO 10993-1:2018; Biological Evaluation of Medical Devices Part 1: Evaluation and Testing Within a Risk Management Process. ISO: Geneva, Switzerland, 2018.
- Owen, M.J. Why Silicones Behave Funny. Chim. Nouv. 2004, 85, 27–33. [Google Scholar]
- Bračič, M.; Strnad, S.; Zemljič, L.F. Chapter 1: Silicone in Medical Applications. In Bioactive Functionalisation of Silicones with Polysaccharides; Springer Nature Switzerland AG: Cham, Switzerland, 2018; pp. 5–10. [Google Scholar]
- Ratner, B.D. Biomaterials Science: An Introduction to Materials in Medicine; Academic Press: San Diego, CA, USA, 1996. [Google Scholar]
- Owen, M.J. Properties and applications of silicones, applications of PDMS. In Silicones, Silicone-Modified Materials; American Chemical Society: Washington, DC, USA, 2010; pp. 13–18. [Google Scholar]
- Bellussi, G.; Bohnet, M.; Bus, J.; Drauz, K.; Greim, H.; Jäckel, K.-P.; Karst, U.; Kleemann, A.; Kreysa, G.; Laird, T.; et al. Ullmann’s Encyclopedia of Industrial Chemistry, 7th ed.; Wiley-VCH: Weinheim, Germany, 2011. [Google Scholar]
- Colas, A.; Curtis, J.; Biomaterials, S. Chemistry, Medical Applications of Silicones Reprinted from Biomaterials Science, 2nd ed.; Dow Corning Corporation: Midland, MI, USA, 2004. [Google Scholar] [CrossRef]
- Curtis, J.; Klykken, P. A Comparative Assessment of Three Common Catheter Materials. 2008, pp. 1–8. Available online: https://www.academia.edu/72720040/A_Comparative_Assessment_of_Three_Common_Catheter_Materials (accessed on 7 May 2025).
- Trautner, B.; Darouiche, R. Role of biofilm in catheter-associated urinary tract infection. Am. J. Infect. Control 2004, 32, 177–183. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, M.M.; Ivanova, K.; Francesko, A.; Mendoza, E.; Tzanova, T. Immobilization of antimicrobial core-shell nanospheres onto siliconefor prevention of Escherichia coli biofilm formation. Process Biochem. 2017, 59, 116–122. [Google Scholar] [CrossRef]
- Bračič, M.; Strnad, S.; Zemljič, L.F. Chapter 4: Functionalisation of Silicones with Polysaccharides. In Bioactive Functionalisation of Silicones with Polysaccharides; Springer Nature Switzerland AG: Cham, Switzerland, 2018; pp. 27–68. [Google Scholar]
- Efimenko, K.; Wallace, W.E.; Genzer, J. Surface modification of Sylgard-184 poly(dimethylsiloxane) networks by ultraviolet and ultraviolet/ozone treatment. J. Colloid Interface Sci. 2002, 254, 306–315. [Google Scholar] [CrossRef]
- Zhou, J.; Yuan, J.; Zang, X.; Shen, J.; Lin, S. Platelet adhesion and protein adsorption on silicone rubber surface by ozone-induced grafted polymerization with carboxybetaine monomer. Colloids Surf. B Biointerfaces 2005, 41, 55–56. [Google Scholar] [CrossRef]
- Li, M.; Neoh, K.G.; Xu, L.Q.; Wang, R.; Kang, E.T.; Lau, T.; Olszyna, D.P.; Chiong, E. Surface modification of silicone for biomedical applications requiring long-term antibacterial, antifouling, and hemocompatible properties. Langmuir 2012, 28, 16408–16422. [Google Scholar] [CrossRef]
- Oláh, A.; Hillborg, H.; Vancso, G.J. Hydrophobic recovery of UV/ozone treated poly(dimethylsiloxane): Adhesion studies by contact mechanics and mechanism of surface modification. Appl. Surf. Sci. 2005, 239, 410–423. [Google Scholar] [CrossRef]
- Haji, K.; Zhu, Y.; Otsubo, M.; Honda, C. Surface modification of silicone rubber after corona exposure. Plasma Process. Polym. 2007, 4, 1075–1080. [Google Scholar] [CrossRef]
- Zemljič, L.F.; Peršin, Z.; Stenius, P. Improvement of chitosan adsorption onto cellulosic fabrics by plasma treatment. Biomacromolecules 2009, 10, 1181–1187. [Google Scholar] [CrossRef]
- Roth, J.; Albrecht, V.; Nitschke, M.; Bellmann, C.; Simons, F.; Zschoche, S.; Michel, S.; Luhmann, C.; Grundke, K.; Voit, B. Surface functionalization of silicone rubber for permanent adhesion improvement. Langmuir 2008, 24, 12603–12611. [Google Scholar] [CrossRef] [PubMed]
- Bračič, M.; Mohan, T.; Kargl, R.; Griesser, T.; Hribernik, S.; Kostler, S.; Stana-Kleinschek, K.; Fras-Zemljic, L. Preparation of PDMS ultrathin films and patterned surface modification with cellulose. RSC Adv. 2014, 4, 11955–11961. [Google Scholar] [CrossRef]
- Maji, D.; Lahiri, S.K.; Das, S. Study of hydrophilicity and stability of chemically modified PDMS surface using piranha and KOH solution. Surf. Interface Anal. 2012, 44, 62–69. [Google Scholar] [CrossRef]
- Lopez, A.I.; Kumar, A.; Planas, M.R.; Li, Y.; Nguyen, T.V.; Cai, C. Biofunctionalization of silicone polymers using poly(amidoamine) dendrimers and a mannose derivative for prolonged interference against pathogen colonization. Biomaterials 2011, 32, 4336–4346. [Google Scholar] [CrossRef]
- Noll, W. Chemistry and Technology of Silicones; Academic Press: New York, NY, USA, 1968. [Google Scholar]
- Jaques, L.B.; Fidlar, E.; Feldsted, E.T.; MacDonald, A.G. Silicones and blood coagulation. Can. Med. Assoc. J. 1946, 55, 26–31. [Google Scholar]
- Harmand, M.F.; Briquet, F. In vitro comparative evaluation under static conditions of the hemocompatibility of four types of tubing for cardiopulmonary bypass. Biomaterials 1999, 20, 1561–1571. [Google Scholar] [CrossRef]
- Thomas, X. Silicone Adhesives in Healthcare Applications, 2004, Dow Corning Technical Paper, Form No. 52-1057-01. Available online: https://www.semanticscholar.org/paper/Silicone-Adhesives-in-Healthcare-Applications-Dow/a4db5138bda160a2061b2d082ae1e2fa3c5bf401 (accessed on 2 October 2024).
- Bott, R.R.; Gebert, M.S.; Klykken, P.C.; Mazeaud, I.; Thomas, X. Preparation for Topical Use and Treatment. U.S. Patent 20030180281, 25 September 2003. [Google Scholar]
- Liu, J.C.; Tan, E.L.; Chiang, C.C.; Tojo, K.; Chien, Y.W. Mechanistical Analysis of Release Kinetics for Lipophilic Drug from Matrix-Type Drug Delivery Devices. Drug Dev. Ind. Pharm. 1985, 11, 1373–1390. [Google Scholar] [CrossRef]
- Pfister, W.R.; Sweet, R.P.; Walters, P.A. Silicone-Based Sustained- and Controlled-Release Drug Delivery Systems. Natl. SAMPE Symp. Exhib. Proc. Adv. Technol. Mater. Process. 1985, 490–498. Available online: https://jglobal.jst.go.jp/en/detail?JGLOBAL_ID=200902025712621723 (accessed on 12 October 2024).
- Moreau, J.C.; Mazan, J.; Leclerc, B.; Avril, J.L.; Couarraze, G. Optimization of a Silicone Polymer for Drug Controlled Release. In Congres International de Technologie Pharmaceutique, 6th ed.; Association de Pharmacie Galénique Industrielle: Chatenay Malabry, France, 1992; Volume 3, pp. 323–332. [Google Scholar]
- Rogers, W. Sterilisation of Polymer Healthcare Products; Rapra Tech. Ltd.: Shrewsbury, UK, 2005. [Google Scholar]
- Curtis, J.; Steichen, S.D. Chapter: Silicones. In Biomaterials Science; Elsevier: Amsterdam, The Netherlands, 2020; pp. 109–123. [Google Scholar] [CrossRef]
- Colas, A. Silicones in Medical Applications, Medical Plastics 2005; Hexagon Holding ApS.: Copenhagen, Denmark, 2005. [Google Scholar]
- Margulies, H.; Barker, N.W. The coagulation time of blood in silicone tubes. Am. J. Med. Sci. 1973, 218, 42–51. [Google Scholar] [CrossRef]
- Available online: https://www.slideshare.net/UBMCanon/silicone-biomaterial-applications-past-present-and-future (accessed on 5 September 2024).
- Final Monograph 21 CFR 347; Skin Protectant Drug Products for Over-the-Counter Human Use; United States Food and Drug Administration: New Hampshire Avenue, MD, USA, 2003.
- Colas, A.; Aguadisch, L. Les silicones dans les applications pharmaceutiques. Chim. Nouv. 1997, 15, 1779–1790. [Google Scholar]
- Yoda, R. Elastomers for biomedical applications. J. Biomater. Sci. Polym. Ed. 1998, 9, 561–626. [Google Scholar] [CrossRef] [PubMed]
- Mojsiewicz-Pieńkowska, K. Chapter 13: Review of Current Pharmaceutical Applications of Polysiloxanes (Silicones). In Handbook of Polymers for Pharmaceutical Technologies; Thakur, V.K., Thakur, M.K., Eds.; Scrivener Publishing LLC: Beverly, MA, USA, 2015; pp. 363–382. [Google Scholar]
- Lozano, C.M.; Samundeeswari, S.; Shanmugasundaram, S. Silicone Implants in Orthopaedic Traumatology. In Handbook of Orthopaedic Trauma Implantology; Banerjee, A., Biberthaler, P., Shanmugasundaram, S., Eds.; Springer: Singapore, 2023. [Google Scholar] [CrossRef]
- Zeng, X.; Sipaut, C.S.; Ismail, N.M.; Liu, Y.; Farm, Y.Y. Mechanical properties and biological activity of 3D printed silicon nitride materials. Ceram. Int. 2024, 50, 16704–16713. [Google Scholar] [CrossRef]
- Du, X.; Lee, S.S.; Blugan, G.; Ferguson, S.J. Silicon Nitride as a Biomedical Material: An Overview. Int. J. Mol. Sci. 2022, 23, 6551. [Google Scholar] [CrossRef]
- Nyilas, E. Development of blood compatible elastomers. II. Performance of avcothane blood contact surfaces in experimental animal implantations. J. Biomed. Mater. Res. 1972, 6, 97–127. [Google Scholar] [CrossRef]
- Nyilas, E. Polysiloxane Polyurethane Block Copolymers. U.S. Patent 3,562,352, 9 February 1971. [Google Scholar]
- Honda, T.; Kito, Y.; Gibson, W.H.; Nemoto, T.; Cockrell, J.V.; Akutsu, T. One 25 day survivor with total artificial heart. J. Thorac. Cardiovasc. Surg. 1975, 69, 92–101. [Google Scholar] [CrossRef] [PubMed]
- Bennet, E.W. Non-Isomerizable Olefinic Polyoxyalkylene Polymers and Siloxane-Polyoxyalkylene Copolymer Derivatives Thereof. Patent DE 2215393B2, 25 January 1979. U.S. Patent 4,059,605, 22 November 1977. [Google Scholar]
- Mueller, K.; Kleiner, E. Polysiloxane hydrogels. U.S. Patent 4,136,250, 23 January 1979. [Google Scholar]
- Chruściel, J.J.; Leśniak, E. Chapter 9: Modification of thermoplastics with reactive silanes and siloxanes. In Thermoplastic Elastomers; InTech—Open Science: Rijeka, Croatia, 2012; pp. 155–192. ISBN 979-953-307-353-7. [Google Scholar]
- Haman, H.; Tschernko, G. The theory of cell opening in the formation of elastic polyurethane foams. Plaste Kautsch. 1979, 26, 619–624. [Google Scholar]
- Ritter, J.; Dubjaga, J.G.; Komarowan, A.B. Surface viscosity and maximum shearing stress of polyether solutions of organosilicon surfactants. Plaste Kautsch. 1979, 26, 624. [Google Scholar]
- Dvornic, P.R.; Lenz, R.W. High Temperature Siloxane Elastomers; Hűttig & Wepf Verlag: Mamaroneck, NY, USA, 1990; p. 136. [Google Scholar]
- Chen, H.; Brook, M.A.; Sheardown, H. Silicone elastomers for reduced protein adsorption. Biomaterials 2004, 25, 2273–2282. [Google Scholar] [CrossRef]
- Naeimi, M.; Karkhaneh, A.; Barzin, J.; Khorasani, M.T.; Ghaffarieh, A. Novel PDMS-based membranes: Sodium chloride and glucose permeability. J. Appl. Polym. Sci. 2013, 127, 3940–3947. [Google Scholar] [CrossRef]
- Lai, Y.-C. Novel polyurethane–silicone hydrogels. J. Appl. Polym. Sci. 1995, 56, 301–310. [Google Scholar] [CrossRef]
- Aeinehvand, R.; Rahimi, S.K.; Kafshgari, M.H. Chapter: Polyurethanes and Silicone Polyurethane Copolymers in Biomedical Applications. In Encyclopedia of Biomedical Polymers and Polymeric Biomaterials; Taylor and Francis Group: Oxfordshire, UK, 2015. [Google Scholar] [CrossRef]
- Dandeniyage, L.S.; Adhikari, R.; Bown, M.; Shanks, R.; Adhikari, B.; Easton, C.D.; Gengenbach, T.R.; Cookson, D.; Gunatillake, P.A. Morphology and surface properties of high strength siloxane poly(urethane-urea)s developed for heart valve application. J. Biomed. Mater. Res. Part B Appl. Biomater. 2019, 107, 112–121. [Google Scholar] [CrossRef] [PubMed]
- Chaffin, K.A.; Wilson, C.L.; Himes, A.K.; Dawson, J.W.; Haddad, T.D.; Buckalew, A.J.; Simha, N.K. Abrasion and fatigue resistance of PDMS containing multiblock polyurethanes after accelerated water exposure at elevated temperature. Biomaterials 2013, 34, 8030–8041. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://kesaria.com/advantages-disadvantages-of-silicone-rubber/?srsltid=AfmBOorxVmASihYcXsrb_DYJ94-UYc-sW7FLJ3U09_XPZqGP1kbMZNE7 (accessed on 11 September 2024).
- Racles, C.; Dascalu, M.; Bele, A.; Cazacu, M. Chapter 11: Reactive and Functional Silicones for Special Applications. In Reactive and Functional Polymers Volume One; Gutiérrez, T.J., Ed.; Springer Nature Switzerland AG: Cham, Switzerland, 2020; pp. 235–292. [Google Scholar] [CrossRef]
- Cevik, P. Chapter 12: Maxillofacial Silicone Elastomers in Dentistry. In Reactive and Functional Polymers Volume One; Gutiérrez, T.J., Ed.; Springer Nature Switzerland AG: Cham, Switzerland, 2020; pp. 293–300. [Google Scholar] [CrossRef]
- Sikdar, S.; Majumdar, S. Chapter 10: Reactive Silicones as Multifacetic Materials. In Reactive and Functional Polymers Volume One; Gutiérrez, T.J., Ed.; Springer Nature Switzerland AG: Cham, Switzerland, 2020; pp. 207–234. [Google Scholar] [CrossRef]
- Available online: https://www.rubberandseal.com/properties-and-applications-of-silicone-rubber/ (accessed on 7 May 2025).
- de Beer, D.J.; Dzogbewu, T.C.; van der Walt, J. Additive manufacturing of silicone for biomedical applications. Biomed. Eng. Adv. 2025, 9, 100158. [Google Scholar] [CrossRef]
- Available online: https://elastostar.com/what-makes-silicone-rubber-popular-for-use-in-the-healthcare-industry/ (accessed on 11 September 2024).
- Wadhwa, S. Healthcare Uses of Silicon Rubber. 2021. Available online: https://www.linkedin.com/pulse/healthcare-uses-silicon-rubber-sunny-wadhwa (accessed on 12 September 2024).
- Available online: https://www.milosilicone.com/key-applications-of-silicone-materials-in-the-medical-industry/ (accessed on 12 September 2024).
- Silicone Elastomers for Medical Device Applications_001-20387-CDP-REV2-0522_Letter-Spreads, DuPont 2022. Available online: https://www.dupont.com/content/dam/dupont/amer/us/en/liveo/public/documents/en/Silicone%20Elastomers%20for%20Medical%20Device%20Applications_001-20387-CDP-REV2-0522_Letter-spreads.pdf (accessed on 14 September 2024).
- Available online: https://www.glorysungroup.com/blog/Liquid_Silicone_Rubber_in_Medical_Devices (accessed on 7 May 2025).
- Available online: https://www.medteclive.com/en/c/liquid-silicone-rubber-lsr-in-the-medical-technology.51267 (accessed on 14 September 2024).
- Pye, A. Developments in Medical Silicones. 2018. Available online: https://www.ulprospector.com/knowledge/9058/pe-developments-in-medical-silicones/ (accessed on 14 September 2024).
- Available online: https://www.raleighcoatings.com/benefits-of-silicone-dressings-in-wound-care/ (accessed on 15 September 2024).
- Available online: https://www.wacker.com/h/medias/7969-EN.pdf (accessed on 15 September 2024).
- Available online: https://www.simtec-silicone.com/blogs/biocompatibility-of-liquid-silicone-rubber-lsr/ (accessed on 7 May 2025).
- Available online: https://insilicone.com/silicone-in-the-medical-industry-uses-and-benefits/ (accessed on 17 September 2024).
- Calderón, J.A.G.; López, D.C.; Pérez, E.; Montesinos, J.V. Polysiloxanes as polymer matrices in biomedical engineering: Their interesting properties as the reason for the use in medical sciences. Polym. Bull. 2020, 77, 2749–2817. [Google Scholar] [CrossRef]
- Lam, M.; Migonney, V.; Falentin-Daudre, C. Review of silicone surface modification techniques and coatings for antibacterial/antimicrobial applications to improve breast implant surfaces. Acta Biomater. 2021, 121, 68–88. [Google Scholar] [CrossRef]
- França, D.C.C.; de Castro, A.L.; Soubhia, A.M.P.; Tucci, R.; de Aguiar, S.M.H.C.Á.; Goiato, M.C. Biocompatibility Evaluation of 3 Facial Silicone Elastomers. J. Craniofacial Surg. 2011, 22, 837–840. [Google Scholar] [CrossRef]
- Kazemi-Shirazi, H.; Gruber, H.; Greber, G. New silicone rubbers, 2. Biocompatible silicone rubbers. Angew. Makromol. Chem. 1993, 205, 193–201. [Google Scholar] [CrossRef]
- Gao, S.; Liu, Z.; Zeng, W.; Zhang, Y.; Zhang, F.; Wu, D.; Wang, Y. Biocompatible Hydrogel Coating on Silicone Rubber with Improved Antifouling and Durable Lubricious Properties. Gels 2024, 10, 647. [Google Scholar] [CrossRef] [PubMed]
- Keller, M.W.; White, S.R.; Sottos, N.R. A self-healing poly(dimethyl siloxane) elastomer. Adv. Funct. Mater. 2007, 17, 2399–2404. [Google Scholar] [CrossRef]
- Keller, M.W.; White, S.R.; Sottos, N.R. Torsion fatigue response of self-healing poly(dimethylsiloxane) elastomers. Polymer 2008, 49, 3136–3145. [Google Scholar] [CrossRef]
- Beiermann, B.A.; Keller, M.W.; Sottos, N.R. Self-healing flexible laminates for resealing of puncture damage. Smart Mater. Struct. 2009, 18, 085001–085007. [Google Scholar] [CrossRef]
- Alauzun, J.G.; Young, S.; D’Souza, R.; Liu, L.; Brook, M.A.; Sheardown, H.D. Biocompatible, hyaluronic acid modified silicone elastomers. Biomaterials 2010, 31, 3471–3478. [Google Scholar] [CrossRef]
- Chen, W.-H.; Chen, Q.-W.; Chen, Q.; Cui, C.; Duan, S.; Kang, Y.; Liu, Y.; Liu, Y.; Muhammad, W.; Shao, S.; et al. Biomedical polymers: Synthesis, properties, and applications. Sci. China Chem. 2022, 65, 1010–1075. [Google Scholar] [CrossRef] [PubMed]
- Miranda, I.; Souza, A.; Sousa, P.; Ribeiro, J.; Castanheira, E.M.S.; Lima, R.; Minas, G. Properties and Applications of PDMS for Biomedical Engineering: A Review. J. Funct. Biomater. 2022, 13, 2. [Google Scholar] [CrossRef]
- Barthes, J.; Lagarrigue, P.; Riabov, V.; Lutzweiller, G.; Kirsch, J.; Muller, C.; Courtial, E.-J.; Marquette, C.; Projetti, F.; Kzhyskowska, J.; et al. Biofunctionalization of 3D-printed silicone implants with immunomodulatory hydrogels for controlling the innate immune response: An in vivo model of tracheal defect repair. Biomaterials 2021, 268, 120549. [Google Scholar] [CrossRef] [PubMed]
- de Aguiar, K.M.F.R.; Nascimento, M.V.; Faccioni, J.L.; Noeske, P.L.M.; Gätjen, L.; Rischka, K.; Rodrigues-Filho, U.P. Urethanes PDMS-based: Functional hybrid coatings for metallic dental implants. Appl. Surf. Sci. 2019, 484, 1128–1140. [Google Scholar] [CrossRef]
- Tran, P.A.; Fox, K.; Tran, N. Novel hierarchical tantalum oxide-PDMS hybrid coating for medical implants: One pot synthesis, characterization and modulation of fibroblast proliferation. J. Colloid Interface Sci. 2017, 485, 106–115. [Google Scholar] [CrossRef]
- Tavakoli, S.; Nemati, S.; Kharaziha, M.; Akbari-Alavijeh, S. Embedding CuO nanoparticles in PDMS-SiO2 coating to improve antibacterial characteristic and corrosion resistance. Colloids Interface Sci. Commun. 2019, 28, 20–28. [Google Scholar] [CrossRef]
- Cai, L.-H.; Kodger, T.E.; Guerra, R.E.; Pegoraro, A.F.; Rubinstein, M.; Weitz, D.A. Soft Poly(dimethylsiloxane) Elastomers from Architecture Driven Entanglement Free Design. Adv. Mater. 2015, 27, 5132–5140. [Google Scholar] [CrossRef]
- Sun, P.; Guan, Y.; Yang, C.; Hou, H.; Liu, S.; Yang, B.; Li, X.; Chen, S.; Wang, L.; Wang, H.; et al. A Bioresorbable and Conductive Scaffold Integrating Silicon Membranes for Peripheral Nerve Regeneration. Adv. Healthc. Mater. 2023, 12, 2301859. [Google Scholar] [CrossRef]
- Słomkowski, S.; Fortuniak, W.; Chojnowski, J.; Pośpiech, P.; Mizerska, U. Polysiloxane microcapsules, microspheres and their derivatives. Polimery 2017, 62, 499–508. [Google Scholar] [CrossRef]
- Gill, I.; Pastor, E.; Ballesteros, A. Lipase-Silicone Biocomposites: Efficient and Versatile Immobilized Biocatalysts. J. Am. Chem. Soc. 1999, 121, 9487–9496. [Google Scholar] [CrossRef]
- Olander, B.; Wirsen, A.; Albertsson, A.C. Silicone Elastomer Surface Functionalized with Primary Amines and Subsequently Coupled with Heparin. Biomacromolecules 2003, 4, 145–148. [Google Scholar] [CrossRef]
- Hatzi, P.; Tzakis, M.; Eliades, G. Setting characteristics of vinylpolysiloxane interocclusal recording materials. Dent. Mater. 2012, 28, 783–791. [Google Scholar] [CrossRef] [PubMed]
- Mashak, A.; Rahimi, A. Silicone Polymers in Controlled Drug Delivery Systems: A Review. Iran. Polym. J. 2009, 18, 279–295. [Google Scholar]
- Girshevitz, O.; Nitzan, Y.; Sukenik, C.N. Solution-Deposited Amorphous Titanium Dioxide on Silicone Rubber: A Conformal, Crack-Free Antibacterial Coating. Chem. Mater. 2008, 20, 1390–1396. [Google Scholar] [CrossRef]
- Fallahi, D.; Mirzadeh, H.; Khorasani, M.T. Physical, mechanical, and biocompatibility evaluation of three different types of silicone rubber. J. Appl. Polym. Sci. 2003, 88, 2522–2529. [Google Scholar] [CrossRef]
- Hron, P.; Slechtova, J.; Smetana, K.; Dvorankova, B.; Lopour, P. Silicone rubber-hydrogel composites as polymeric biomaterials. IX. Composites containing powdery polyacrylamide hydrogel. Biomaterials 1997, 16, 1069–1073. [Google Scholar] [CrossRef] [PubMed]
- Kheirandish, S.; Jabbari, E. Effect of surface polarity on wettability and friction coefficient of silicone rubber/poly(acrylic acid) hydrogel composite. Coll. Polym. Sci. 2006, 284, 1411–1417. [Google Scholar] [CrossRef]
- Thermoplastic Silicone-Urethane Copolymers: A New Class of Biomedical Elastomers. Available online: https://www.mddionline.com/materials/thermoplastic-silicone-urethane-copolymers-a-new-class-of-biomedical-elastomers (accessed on 1 October 2024).
- Liu, J.; Xu, Y.; Lin, X.; Ma, N.; Zhu, Q.; Yang, K.; Li, X.; Liu, C.; Feng, N.; Zhao, Y.; et al. Immobilization of poly-L-lysine brush via surface-initiated polymerization for the development of long-term antibacterial coating for silicone catheter. Colloids Surf. B Biointerfaces 2023, 221, 113015. [Google Scholar] [CrossRef]
- Wu, Y.; Fu, W.; Liu, L.; Jiang, Y.; Liu, N.; Fang, M.; Ye, H.; Li, J.; Chu, Z.; Qian, H.; et al. APTES-mediated Cu2(OH)3(NO3) nanomaterials on the surface of silicone catheters for abscess. Colloids Surf. B Biointerfaces 2024, 234, 113734. [Google Scholar] [CrossRef] [PubMed]
- Gadzhiev, N.; Gorelov, D.; Malkhasyan, V.; Akopyan, G.; Harchelava, R.; Mazurenko, D.; Kosmala, C.; Okhunov, Z.; Petrov, S. Comparison of silicone versus polyurethane ureteral stents: A prospective controlled study. BMC Urol. 2020, 20, 10. [Google Scholar] [CrossRef] [PubMed]
- Mathias, S.; Wiseman, O. Silicone vs. Polyurethane Stent: The Final Countdown. Clin. Med. 2022, 11, 2746. [Google Scholar] [CrossRef]
- Swanson, J.W.; LeBeau, J.E. The Effect of Implantation on the Physical Properties of Silicone Rubber. In Biomedical Applications of Polymers; Springer: New York, NY, USA, 1975; pp. 197–211. ISBN 978-1-4899-5021-5. [Google Scholar] [CrossRef]
- Available online: https://en.wikipedia.org/wiki/Medical_grade_silicone (accessed on 2 October 2024).
- Lopez-Meza, J.E.; Pino-Ramos, V.H.; Flores-Rojas, G.G.; Mendizabal, E.; Bucio, E. Silicone Rubber Catheters Modified by Poly(N-vinylpyrrolidone) Graft Promoted by Gamma Rays. Polymers 2025, 17, 600. [Google Scholar] [CrossRef] [PubMed]
- Fischer, S.C.L.; Kruttwig, K.; Bandmann, V.; Hensel, R.; Arzt, E. Adhesion and Cellular Compatibility of Silicone-Based Skin Adhesives. Macromol. Mater. Eng. 2017, 302, 1600526. [Google Scholar] [CrossRef]
- Sun, D.; Guo, S.; Yang, L.; Wang, Y.; Wei, X.; Song, S.; Yang, Y.; Gan, Y.; Wang, Z. Silicone elastomer gel impregnated with 20(S)-protopanaxadiol-loaded nanostructured lipid carriers for ordered diabetic ulcer recovery. Acta Pharmacol. Sin. 2020, 41, 119–128. [Google Scholar] [CrossRef]
- Gedawy, A.; Luna, G.; Martinez, J.; Brown, D.; Al-Salami, H.; Dass, C.R. Novel Silicone-Grafted Alginate as a Drug Delivery Scaffold: Pharmaceutical Characterization of Gliclazide-Loaded Silicone-Based Composite Microcapsules. Pharmaceutics 2023, 15, 530. [Google Scholar] [CrossRef]
- Poojari, Y. Silicones for Encapsulation of Medical Device Implants. Silicon 2017, 9, 645–649. [Google Scholar] [CrossRef]
- Bachoux, A.; Desroches, C.; Attik, N.; Chiriac, R.; Toche, F.; Toury, B. Minimizing surface adhesion of Sylgard 184 for medical applications. Appl. Surf. Sci. Adv. 2024, 23, 100624. [Google Scholar] [CrossRef]
- Yang, C.-S.; Yeh, C.-H.; Tung, C.-L.; Jiang, C.-H.; Yeh, M.-L. Mechanical Evaluation of Silicone Gel on Wound Healing of Rat Skin. Wounds 2014, 26, E7–E14. [Google Scholar]
- Galante, R.; Ghisleni, D.; Paradiso, P.; Alves, V.D.; Pinto, T.J.A.; Colaço, R.; Serro, A.P. Sterilization of silicone-based hydrogels for biomedical application using ozone gas: Comparison with conventional techniques. Mater. Sci. Eng. C 2017, 78, 389–397. [Google Scholar] [CrossRef]
- Ding, K.; Wang, Y.; Liu, S.; Wanga, S.; Mi, J. Preparation of medical hydrophilic and antibacterial silicone rubber via surface modification. RSC Adv. 2021, 11, 39950–39957. [Google Scholar] [CrossRef]
- ISO 13485:2016; Medical Devices—Quality Management Systems—Requirements for Regulatory Purposes. ISO: Geneva, Switzerland, 2016.
- Zhao, J.; Xu, R.; Luo, G.; Wu, J.; Xia, H. Self-healing poly(siloxane-urethane) elastomers with remoldability, shape memory and biocompatibility. Polym. Chem. 2016, 7, 7278–7286. [Google Scholar] [CrossRef]
- Duran, M.M.; Moro, G.; Zhang, Y.; Islam, A. 3D printing of silicone and polyurethane elastomers for medical device application: A review. Adv. Ind. Manuf. Eng. 2023, 7, 100125. Available online: http://creativecommons.org/licenses/by/4.0/ (accessed on 3 October 2024). [CrossRef]
- Available online: https://www.chemeurope.com/en/news/161547/no-assembly-required.html (accessed on 4 October 2024).
- Miron, V.M.; Lämmermann, S.; Çakmak, U.; Major, Z. Material Characterization of 3D-printed Silicone Elastomers. Procedia Struct. Integr. 2021, 34, 65–70. [Google Scholar] [CrossRef]
- Xiang, H.; Wang, X.; Ou, Z.; Lin, G.; Yin, J.; Liu, Z.; Zhang, L.; Liu, X. UV-curable 3D printable and biocompatible silicone elastomers. Prog. Org. Coat. 2019, 137, 105372. [Google Scholar] [CrossRef]
- Zulkiflee, I.; Masri, S.; Zawani, M.; Salleh, A.; Amirrah, I.N.; Wee, M.F.M.R.; Yusop, S.M.; Fauzi, M.B. Silicon-Based Scaffold for Wound Healing Skin Regeneration Applications: A Concise Review. Polymers 2022, 14, 4219. [Google Scholar] [CrossRef]
- Hinton, T.J.; Hudson, A.; Pusch, K.; Lee, A.; Feinberg, A.W. 3D Printing PDMS Elastomer in a Hydrophilic Support Bath via Freeform Reversible Embedding ACS Biomater. Sci. Eng. 2016, 2, 1781. [Google Scholar] [CrossRef]
- Abdollahi, S.; Markvicka, E.J.; Majidi, C.; Feinberg, A.W.; Mater, A.H. 3D Printing Silicone Elastomer for Patient-Specific Wearable Pulse Oximeter. Adv. Healthc. Mater. 2020, 9, 1901735. [Google Scholar] [CrossRef]
- Alvial, P.; Bravo, G.; Bustos, M.P.; Moreno, G.; Alfaro, R.; Cancino, R.; Zagal, J.C. Quantitative functional evaluation of a 3D-printed silicone-embedded prosthesis for partial hand amputation: A case report. J. Hand Ther. 2018, 31, 129. [Google Scholar] [CrossRef]
- Unkovskiy, A.; Wahl, E.; Huettig, F.; Keutel, C.; Spintzyk, S. Multimaterial 3D printing of a definitive silicone auricular prosthesis: An improved technique. J. Prosthet. Dent. 2020, 125, 946–950. [Google Scholar] [CrossRef]
- Zheng, S.; Zlatin, M.; Selvaganapathy, P.R.; Brook, M.A. Multiple modulus silicone elastomers using 3D extrusion printing of low viscosity inks. Addit. Manuf. 2018, 24, 86–92. [Google Scholar] [CrossRef]
- Sayyed, A.; Kulkarni, R. Silicone chemicals in cosmetics applications and their implications to the environment, health and sustainability. Euro Cosmet. 2022, 10, 18–24. [Google Scholar]
- Ivanova, E.V.; Minyaylo, E.O.; Temnikov, M.N.; Mukhtorova, L.G.; Yu, M. Atroshchenko, Silicones in Cosmetics. Polym. Sci. Ser. B 2023, 65, 578–594. [Google Scholar] [CrossRef]
- Barel, A.O.; Paye, M.; Maibach, H.I. Handbook of Cosmetic Science and Technology; Informa Healthcare: London, UK, 2009. [Google Scholar]
- Zhu, J.; Van Reeth, I.; Johnson, B.K. The Beauty of Silicone in Hair Care Applications. Available online: https://www.dow.com/documents/27/27-1/27-1550-01-the-beauty-of-silicone-in-hair-care-application.pdf?iframe=true (accessed on 7 May 2025).
- Van Dort, H.; Haller, R.; Pretzer, P.; Urrutia, A.; Brissette, G.; Van Reeth, I.; Caprasse, V. New Formulation Opportunities with Carbinol-Functional Silicones. Available online: https://www.researchgate.net/publication/266590270_New_Formulation_Opportunities_with_Carbinol-Functional_Silicones (accessed on 7 May 2025).
- Urrutia, A.; Van Dort, H.M.; Brissette, G.; Pretzer, P.; Haller, R.; Van Reeth, I.; Caprasse, V. Silicone Carbinol Fluid: Beyond Aesthetics for Color Cosmetics. Available online: https://www.yumpu.com/en/document/view/24355465/silicone-carbinol-fluid-beyond-the-aesthetics-for-dow-corning#google_vignette (accessed on 6 October 2024).
- Carbinol Functional Silicon-Based Technologies for Coatings. Available online: https://www.pcimag.com/articles/82951-carbinol-functional-silicon-based-technologies-for-coatings (accessed on 7 October 2024).
- Kuah, H.X.; Loh, X.J. Chapter 8: Silicones: The Future for Beauty and Everyday Care. In Polymers for Personal Care Products and Cosmetics; Loh, X.J., Ed.; Royal Society of Chemistry: London, UK, 2016; pp. 135–153. [Google Scholar] [CrossRef]
- Chapter: Silicones: A Key Ingredient in Cosmetic and Toiletary Formulations. In Handbook of Cosmetic Science and Technology, 4th ed.; Barel, A.O., Paye, M., Maibach, H.I., Eds.; CRC Press: Boca Raton, FL, USA, 2014; pp. 321–330. [Google Scholar]
- Liu, J.K. Natural products in cosmetics. Nat. Prod. Bioprospect. 2022, 12, 40. [Google Scholar] [CrossRef]
- Marquais-Bienewald, S.; Wallquist, O.; Preuss, A.; Elder, S.T. Polysiloxane Antimicrobials, Pat. WO 2008006744A3, 17 January 2008. [Google Scholar]
- Jamrógiewicz, M.; Żebrowska, M.; Łukasiak, J.; Sznitowska, M. Silikonowe preparaty do leczenia powierzchniowego blizn (Silicone therapy for topical scar treatment). Farm. Pol. 2010, 66, 437–442. (In Polish) [Google Scholar]
- Jońca, J.; Tukaj, C.; Werel, W.; Mizerska, U.; Fortuniak, W.; Chojnowski, J. Bacterial membranes are the target for antimicrobial polysiloxane-methacrylate copolymer. J. Mater. Sci. Mater. Med. 2016, 27, 55. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, Q.; Han, Q.; Mi, Y.; Sun, S.; Feng, C.; Xiao, H.; Yu, P.; Yang, C. Synthesis of polysiloxane with 5,5-dimethylhydantoin-based N-halamine pendants for biocidal functionalization of polyethylene by supercritical impregnation. J. Appl. Polym. Sci. 2017, 134, 44721. [Google Scholar] [CrossRef]
- Liu, W.T.; Yang, Y.; Shen, P.H.; Gao, X.J.; He, S.Q.; Liu, H.; Zhu, C.S. Facile and simple preparation of pH-sensitive chitosan-mesoporous silica nanoparticles for future breast cancer treatment. Express Polym. Lett. 2015, 9, 1068–1075. [Google Scholar] [CrossRef]
- Carpenter, A.W.; Slomberg, D.L.; Rao, K.S.; Schoenfisch, M.H. Influence of Scaffold Size on Bactericidal Activity of Nitric Oxide-Releasing Silica Nanoparticles. ACS Nano 2011, 5, 7235–7244. [Google Scholar] [CrossRef]
- Lu, Y.; Slomberg, D.L.; Sun, B.; Schoenfisch, M.H. Shape- and Nitric Oxide Flux-Dependent Bactericidal Activity of Nitric Oxide-Releasing Silica Nanorods. Small 2013, 9, 2189–2198. [Google Scholar] [CrossRef]
- Krasucka, A.P.; Goworek, J. MCM-41 silica as a host material for controlled drug delivery systems. Ann. Univ. M. Curie-Skłodowska Lub. Pol. 2015, 70, 45–66. [Google Scholar]
- Liu, S.; Guo, R.; Li, C.; Lu, C.; Yang, G.; Wang, F.; Nie, J.; Ma, C.; Gao, M. POSS hybrid hydrogels: A brief review of synthesis, properties and applications. Eur. Polym. J. 2021, 143, 110180. [Google Scholar] [CrossRef]
- Wu, J.; Mather, P.T. POSS Polymers: Physical Properties and Biomaterials Applications. Polym. Rev. 2009, 49, 25–63. [Google Scholar] [CrossRef]
- Majumdar, P.; Lee, E.; Gubbins, N.; Stafslien, S.J.; Daniels, J.; Thorson, C.J.; Chisholm, B.J. Synthesis and antimicrobial activity of quaternary ammonium-functionalized POSS (Q-POSS) and polysiloxane coatings containing Q-POSS. Polymer 2009, 50, 1124–1133. [Google Scholar] [CrossRef]
- Engstrand, J.; López, A.; Engqvist, H.; Persson, C. Polyhedral oligomeric silsesquioxane (POSS)-poly(ethylene glycol) (PEG) hybrids as injectable biomaterials. Biomed. Mater. 2012, 7, 035013. [Google Scholar] [CrossRef]
- Wang, D.K.; Varanasi, S.; Strounina, E.; Hill, D.J.T.; Symons, A.L.; Whittaker, A.K.; Rasoul, F. Synthesis and Characterization of a POSS-PEG Macromonomer and POSS-PEG-PLA Hydrogels for Periodontal Applications. Biomacromolecules 2014, 15, 666–679. [Google Scholar] [CrossRef]
- Shen, J.; Li, H.; Lu, C.; Yang, G.; Wang, F.; Nie, J.; Hu, X.; Dong, N.; Shi, J. Hydrolytically degradable POSS-PEG hybrid hydrogels prepared in aqueous phase with tunable mechanical properties, swelling ratio and degradation rate. React. Funct. Polym. 2018, 123, 91–96. [Google Scholar] [CrossRef]
- Yu, J.; Liu, Z.; Shen, J.; Lu, C.; Hu, X.; Dong, N.; Yang, G.; Chen, Z.; Nie, J. Biodegradable Inorganic–Organic POSS–PEG Hybrid Hydrogels as Scaffolds for Tissue Engineering. Macromol. Mater. Eng. 2017, 302, 1700142. [Google Scholar] [CrossRef]
- Jung, J.H.; Chou, K.; Furgal, J.C.; Laine, R.M. Synthesis of acetoxyphenyl-; hydroxy-phenyl-terminated polyfunctional T8; T10, T12 silsesquioxanes and initial studies on their use in the formation of highly crosslinked polyesters. Appl. Organometal. Chem. 2013, 27, 666–672. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, C.; Fang, S.; Sun, J.; Li, C.; Hu, Y. Synthesis and characterization of well-defined star PLLA with a POSS core and their microspheres for controlled release. Colloid Polym. Sci. 2013, 291, 789–803. [Google Scholar] [CrossRef]
- Gomez-Sanchez, C.; Kowalczyk, T.; De Eguino, G.R.; Lopez-Arraiza, A.; Infante, A.; Rodriguez, C.I.; Kowalewski, T.A.; Sarrionandia, M.; Aurrekoetxe, J. Electrospinning of poly(lactic acid)/polyhedral oligomeric silsesquioxane nanocomposites and their potential in chondrogenic tissue regeneration. J. Biomater. Sci. Polym. Ed. 2014, 25, 802–825. [Google Scholar] [CrossRef] [PubMed]
- Xie, M.; Ge, J.; Lei, B.; Zhang, Q.; Chen, X.; Ma, P.X. Star-shaped; biodegradable, and elastomeric PLLA-PEG-POSS hybrid membrane with biomineralization activity for guiding bone tissue regeneration. Macromol. Biosci. 2015, 15, 1656–1662. [Google Scholar] [CrossRef]
- Pu, Y.; Zhang, L.; Zheng, H.; He, B.; Gu, Z. Drug release of pH-sensitive poly(L-aspartate)-b-poly(ethylene glycol) micelles with POSS cores. Polym. Chem. 2014, 5, 463–470. [Google Scholar] [CrossRef]
- Xue, Y.; Chen, H. Synthesis and cytotoxicity of POSS modified single walled carbon nanotubes. J. Nanomater. 2015, 2015, 407437. [Google Scholar] [CrossRef]
- Cui, D.; Tian, F.; Ozkan, C.S.; Wang, M.; Gao, H. Effect of Single Wall Carbon Nanotubes on Human HEK293 Cells. Toxicol. Lett. 2005, 155, 73–85. [Google Scholar] [CrossRef]
- Tai, N.R.; Salacinski, H.J.; Edwards, A.; Hamilton, G.; Seifalian, A.M. Compliance Properties of Conduits Used in Vascular Reconstruction. Br. J. Surg. 2000, 87, 1516–1524. [Google Scholar] [CrossRef]
- Kannan, R.Y.; Salacinski, H.J.; Butler, P.E.; Hamilton, G.; Seifalian, A.M. Current status of prosthetic bypass grafts: A review. J. Biomed. Mater. Res. Part B 2005, 74, 570–581. [Google Scholar] [CrossRef] [PubMed]
- Punshon, G.; Vara, D.S.; Sales, K.M.; Kidane, A.G.; Salacinski, H.J.; Seifalian, A.M. Interactions between endothelial cells and a poly(carbonate-silsesquioxane-bridge-urea)urethane. Biomaterials 2005, 26, 6271–6279. [Google Scholar] [CrossRef]
- Kannan, R.Y.; Sales, K.M.; Salacinski, H.J.; Butler, P.E. Endothelialisation of Poly (Carbonate-Siloxane-Urea) Urethane. Med. J. Malays. 2004, 59 (Suppl. B), 107–108. [Google Scholar]
- Ghanbari, H.; Marashi, S.M.; Rafiei, Y.; Chaloupka, K.; Seifalian, A.M. Chapter 9: Biomedical Application of Polyhedral Oligomeric Silsesquioxane Nanoparticles. In Applications of Polyhedral Oligomeric Silsesquioxanes; Advances in Silicon Science 3; Hartmann-Thompson, C., Ed.; Springer: Dordrecht, The Netherlands, 2011. [Google Scholar] [CrossRef]
- Tian, J.; Wong, K.K.; Ho, C.M.; Lok, C.N.; Yu, W.Y.; Che, C.M. Topical delivery of silver nanoparticles promotes wound healing. Chem. Med. Chem. 2007, 2, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Nadworny, P.L.; Wang, J.; Tredget, E.E.; Burrell, R.E. Anti-inflammatory activity of nanocrystalline silver in a porcine contact dermatitis model. Nanomedicine 2008, 4, 241–251. [Google Scholar] [CrossRef] [PubMed]
- Sibbald, R.G.; Contreras-Ruiz, J.; Coutts, P.; Fierheller, M.; Rothman, A.; Woo, K. Bacteriology; inflammation, and healing: A study of nanocrystalline silver dressings in chronic venous leg ulcers. Adv. Skin. Wound Care 2007, 20, 549–558. [Google Scholar] [CrossRef]
- Chen, X.; Wang, D.; Li, X.; Liu, Y.; Hu, L.J. POSS/TiO2 Nanohybrids as Sun Protection Factors for Skin Changes Caused by Ultraviolet A Radiation. Mater. Sci. Forum 2009, 610–613, 1039–1043. [Google Scholar] [CrossRef]
- Wang, D.; Wei, S.Y.; Hu, L.J. POSS/TiO2 Nanohybrids as Sun Protection Ingredients for Greenhouse Covers. Adv. Mater. Res. 2010, 113–116, 2077–2080. [Google Scholar] [CrossRef]
- Hu, L.; Chen, X.; Wang, D.; Liu, Y. Silsesquioxane materials as sun protection factor ingredients and as films for greenhouse covers. Polym. Mater. Sci. Eng. (PMSE) Prepr. 2009, 100, 271–272. [Google Scholar]
- Wang, H.; Lin, D.; Wang, D.; Hu, L.; Huang, Y.; Liu, L.; Loy, D.A. Computational and experimental determinations of the UV adsorption of polyvinylsilsesquioxane-silica and titanium dioxide hybrids. Bio-Med. Mater. Eng. 2014, 24, 651–657. [Google Scholar] [CrossRef]
- Yahyaei, H.; Mohseni, M.; Ghanbari, H.; Messori, M. Synthesis and characterization of polyhedral oligomeric titanized silsesquioxane: A new biocompatible cage like molecule for biomedical application. Mater. Sci. Eng. C 2016, 61, 293–300. [Google Scholar] [CrossRef]
- Huang, Q.; Cheng, G.P.-M.; Chiu, K.; Wang, G.-Q. Surface Modification of Intraocular Lenses. Chin. Med. J. 2016, 129, 206–214. [Google Scholar] [CrossRef]
- Janaszewska, A.; Gradzinska, K.; Marcinkowska, M.; Klajnert-Maculewicz, B.; Stańczyk, W.A. In Vitro Studies of Polyhedral Oligo Silsesquioxanes: Evidence for Their Low Cytotoxicity. Materials 2015, 8, 6062–6070. [Google Scholar] [CrossRef]
- Gradzińska, K.; Łabęcka, K.; Kowalewska, A.; Stańczyk, W.A. Silsesquioxane nanocarriers in diagnostics and biomedicine. Polimery 2016, 61, 231–238. [Google Scholar] [CrossRef]
- Piórecka, K.; Radzikowska, E.; Kurjata, J.; Rózga-Wijas, K.; Stańczyk, W.A.; Wielgus, E. Synthesis of the first POSS cage–anthracycline conjugates via amide bonds. New J. Chem. 2016, 40, 5997–6000. [Google Scholar] [CrossRef]
- Sobierajska, E.; Konopka, M.; Janaszewska, A.; Piorecka, K.; Blauz, A.; Klajnert-Maculewicz, B.; Stańczyk, M.; Stańczyk, W.A. Unusual Enhancement of Doxorubicin Activity on Co-Delivery with Polyhedral Oligomeric Silsesquioxane (POSS). Materials 2017, 10, 559. [Google Scholar] [CrossRef]
- Chen, Y.; Zeng, G.; Liu, W. Robust and stimuli-responsive POSS hybrid PDMAEMA hydrogels for controlled drug release. J. Biomed. Mater. Res. Part A 2016, 104, 2345–2355. [Google Scholar] [CrossRef]
- Kannan, R.Y.; Salacinski, H.J.; De Groot, J.; Clatworthy, I.; Bozec, L.; Horton, M.; Butler, P.E.; Seifalian, A.M. The Antithrombogenic Potential of a Polyhedral Oligomeric Silsesquioxane (POSS) Nanocomposite. Biomacromolecules 2006, 7, 215–223. [Google Scholar] [CrossRef] [PubMed]
- Crowley, C.; Klanrit, P.; Butler, C.R.; Varanou, A.; Plate, M.; Hynds, R.E.; Chambers, R.C.; Seifalian, A.M.; Birchall, M.A.; Janes, S.M. Surface modification of a POSS-nanocomposite material to enhance cellular integration of a synthetic bioscaffold. Biomaterials 2016, 83, 283–293. [Google Scholar] [CrossRef]
- Janowski, B.; Pielichowski, K. Polimery nanohybrydowe zawierające poliedryczne oligosilseskwioksany (Nano-hybrid polymers containing polyhedral oligosilsesquioxanes). Polimery 2008, 53, 85–98. (In Polish) [Google Scholar] [CrossRef]
- Jancia, M.; Pielichowski, K. Modern polyurethane elastomers modified with polyhedral silsesquioxanes. Chemik 2011, 65, 1035–1040. [Google Scholar]
- Wang, J.; Liu, Y.; Yu, J.; Sun, Y.; Xie, W. Study of POSS on the Properties of Novel Inorganic Dental Composite Resin. Polymers 2020, 12, 478. [Google Scholar] [CrossRef]
- Arkles, B. Look What You Can Make Out of Silicones (Biomedical Applications of Silicones). Chemtech 1983, 13, 542–555. [Google Scholar]
- Luciani, G.; Constantini, A.; Silvestri, B.; Tescione, F.; Branda, F.; Pezzella, A. Synthesis, Structure and Bioactivity of pHEMA/SiO2 Hybrids Derived through in situ Sol-gel Process. J. Sol-Gel Sci. Technol. 2008, 46, 166–175. [Google Scholar] [CrossRef]
- Ragheb, R.T.; Riffle, J.S. Synthesis and Characterization of Poly(lactide-b-siloxane-b-lactide) copolymers as Magnetite nanoparticle dispersants. Polymer 2008, 49, 5397–5404. [Google Scholar] [CrossRef]
- Pant, R.R.; Buckley, J.L.; Fulmer, P.A.; Wynne, J.H.; McCluskey, D.M.; Philips, J.P. Hybrid Siloxane Epoxy Coatings Containing Ouaternary Ammonium Moieties. J. Appl. Polym. Sci. 2008, 110, 3080–3086. [Google Scholar] [CrossRef]
- Sheth, J.P.; Aneja, A.; Wilkes, G.L.; Yilgor, E.; Atilla, G.E.; Yilgor, I.; Beyer, F.L. Influence of System Variables on the Morphological and Dynamic Mechanical Behavior of PDMS Based Segmented Polyurethane and Polyurea Copolymers: A comparative Perspective. Polymer 2004, 45, 6919–6932. [Google Scholar] [CrossRef]
- Mashak, A. In vitro Drug Release from Silicone Rubber-Polyacrylamide composite. Silicone Chem. 2008, 3, 295–301. [Google Scholar] [CrossRef]
- Zhou, C.J.; Guan, R.F.; Feng, S.Y. The preparation of a new polysiloxane copolymer with glucosylthioureylene groups on the side chains. Eur. Polym. J. 2004, 40, 165–170. [Google Scholar] [CrossRef]
- Cavic, B.A.; Thompson, M. Protein adsorption to organosiloxane surfaces studied by acoustic wave sensor. Analyst 1998, 123, 2191–2196. [Google Scholar] [CrossRef]
- Yang, J.M.; Shih, C.H.; Chang, C.-N.; Lin, F.H.; Jiang, J.M.; Hsu, Y.G.; Su, W.Y.; See, L.C. Preparation of epoxy–SiO2 hybrid sol–gel material for bone cement. J. Biomed. Mater. Res. 2003, 64, 138–146. [Google Scholar] [CrossRef]
- Tamayo, A.; Tellez, L.; Rodriguez-Reyes, M.; Mazo, M.A.; Rubio, F.; Rubio, J. Surface properties of bioactive TEOS–PDMS–TiO2–CaO ormosils. J. Mater. Sci. 2014, 49, 4656–4669. [Google Scholar] [CrossRef]
- Chen, Q.; Miyata, N.; Kokubo, T. Bioactivity and Mechanical Properties of Poly(dimethyl-siloxane)-Modified Calcia–Silica Hybrids with Added Titania. J. Am. Ceram. Soc. 2003, 86, 806–810. [Google Scholar] [CrossRef]
- Hijón, N.; Manzano, M.; Salinas, A.; Vallet-Regí, M. Bioactive CaO−SiO2−PDMS Coatings on Ti6Al4V Substrates. Chem. Mater. 2005, 17, 1591–1596. [Google Scholar] [CrossRef]
- Zielecka, M.; Cyruchin, K.; Szulc, A. Biologicznie Czynny Preparat Krzemowy i Sposób Otrzymywania Biologicznie Czynnego Preparatu Krzemowego (Biologically Active Silicon Preparation and Method of Obtaining Such Preparation). Polish Patent PL 194223, 14 November 2006. [Google Scholar]
- Wang, H.; Wang, F.; Li, X.; Peng, X.; Cia, Z.; Wang, Z. Preparation and performance investigation of polydimethylsiloxane microsphere/polyvinyl alcohol composite hydrogel. Mater. Lett. 2018, 228, 399–402. [Google Scholar] [CrossRef]
- Chekina, N.A.; Pavlyuchenko, V.N.; Danilichev, V.F.; Ushakov, N.A.; Novikov, S.A.; Ivanchev, S.S. A new polymeric silicone hydrogel for medical applications: Synthesis and properties. Polym. Adv. Technol. 2006, 17, 872–877. [Google Scholar] [CrossRef]
- Zhang, J.-T.; Pan, C.-J.; Keller, T.; Bhat, R.; Gottschaldt, M.; Schubert, U.S.; Jandt, K.D. Monodisperse, Temperature Sensitive Microgels Crosslinked by Si-O-Si Bonds. Macromol. Mater. Eng. 2009, 294, 396–404. [Google Scholar] [CrossRef]
- Wang, Y.-P.; Yuan, K.; Li, Q.-L.; Wang, L.-P.; Gu, S.-J.; Pei, X.-W. Preparation and characterization of poly(N-isopropylacrylamide) films on a modified glass surface via surface initiated redox polymerization. Mater. Lett. 2005, 59, 1736–1740. [Google Scholar] [CrossRef]
- Pavlovic, D.; Linhardt, J.G.; Kunzler, J.F.; Shipp, D.A. Synthesis of Amphiphilic Multiblock and Triblock Copolymers of PDMS and Poly(N,N′-dimethacrylamide). J. Polym. Sci. Part A Polym. Chem. 2008, 46, 7033–7048. [Google Scholar] [CrossRef]
- Luo, Z.; He, T.; Yu, H.; Dai, L. A Novel ABC Triblock Copolymer with Very Low Surface Energy: Poly(dimethylsiloxane)-block-Poly(methyl methacrylate)-block-Poly(2,2,3,3,4,4,4-heptafluorobutylmethacrylate). Macromol. React. Eng. 2008, 2, 398–406. [Google Scholar] [CrossRef]
- Ohnishi, M.; Uno, T.; Kubo, M.; Itoh, T. Synthesis and Radical Polymerization of Dissymmetric Fumarates with Alkoxyethyl and Bulky Siloxy Groups. J. Polym. Sci. Part A Polym. Chem. 2009, 47, 420–432. [Google Scholar] [CrossRef]
- Schoener, C.A.; Weyand, C.B.; Murthy, R.; Grunlan, M.A. Shape Memory Polymers with Silicon-Containing Segments. J. Mater. Chem. 2010, 20, 1787–1793. [Google Scholar] [CrossRef]
- Shi, X.; Chen, Z.; Yang, Y. Toughening of Poly(L-lactide) with Methyl MQ Silicone Resin. Eur. Polym. J. 2014, 50, 243–248. [Google Scholar] [CrossRef]
- Sheth, J.P.; Yilgor, E.; Erenturk, B.; Ozhalici, H.; Yilgor, I.; Wilkes, G.L. Structure-property Behavior of PDMS Based Segmented Polyurea Copolymers Modified with Poly(propylene Oxide). Polymer 2005, 46, 8185–8193. [Google Scholar] [CrossRef]
- Synytska, A.; Biehlig, E.; Ionov, L. Adaptive PEG−PDMS brushes: Effect of architecture on adhesiveness in air and under water. Macromolecules 2014, 47, 8377. [Google Scholar] [CrossRef]
- Martinelli, E.; Guazzelli, E.; Bartoli, C.; Gazzarri, M.; Chiellini, F.; Galli, G.; Callow, M.E.; Callow, J.A.; Finlay, J.A.; Hill, S. Amphiphilic pentablock copolymers and their blends with PDMS for antibiofouling coatings. J. Polym. Sci. Part A Polym. Chem. 2015, 53, 1213. [Google Scholar] [CrossRef]
- Inoue, H.; Matsukawa, K. Synthesis and Gas Permeability of Cyclotetrasiloxane-Containing Methacrylate Copolymers. J. Macromol. Sci.—Pure Appl. Chem. 1992, 29, 415–440. [Google Scholar] [CrossRef]
- Stefanović, S.; Gođevac, D.; Špírková, M.; Jovančić, P.; Tešević, V.; Milačić, V.; Pergal, M.V. Impact of the poly(propylene oxide)-b-poly(dimethylsiloxane)-b-poly(propylene oxide) macrodiols on the surface related properties of polyurethane copolymers. Hem. Ind. 2016, 70, 725–738. [Google Scholar] [CrossRef]
- Simmons, A.; Hyvarinen, J.; Odell, R.A.; Martin, D.J.; Gunatillake, P.A.; Noble, K.R.; Poole-Warren, L.A. Long-term in vivo biostability of poly(dimethylsiloxane)/poly(hexamethylene oxide) mixed macrodiol-based polyurethane elastomers. Biomaterials 2004, 25, 4887–4900. [Google Scholar] [CrossRef]
- Kobayashi, S.; Kumagai, S.; Muto, S.; Otsu, Y.; Fukui, H.; Ono, K. COSMETIC, Publication no. Japanese Patent JP 60 163 809A (1985); Registration no. JP, 1788467B. Decision to Grant a Patent 15.06.1993. Chem. Abstr. 1986, 104, 10402n. Available online: https://patents.google.com/patent/JPS60163809A/en?oq=JP+60163809A (accessed on 7 May 2025).
- Reutsch, S.F. Non-Greasy Petrolatum Emulsion. Patent EP 529 847, September 131993. Chem. Abstr. 1993, 118, 240473e. Available online: https://worldwide.espacenet.com/patent/search/family/025021650/publication/EP0529847B1?q=EP529847 (accessed on 7 May 2025).
- Etteyeb, N.; Jaouen, V.; Steunou, N.; Gharbi, N.; Coradin, T. Elaboration, Stability and Enzymatic Degradation of Hydroxypropylcellulose/Polysiloxane Biocomposite Membranes. Silicon 2012, 4, 79–84. [Google Scholar] [CrossRef]
- Nguyen, T.D.H.; Perrin, F.-X.; Nguyen, D.L. New hybrid materials based on poly(ethyleneoxide)-grafted polysilazane by hydrosilylation and their anti-fouling activities. Beilstein J. Nanotechnol. 2013, 4, 671. [Google Scholar] [CrossRef]
- Rezaei, S.M.; Ishak, Z.A.M. Grafting of collagen onto interpenetrating polymer networks of poly(2-hydroxyethyl methacrylate) and poly(dimethyl siloxane) polymer films for biomedical applications. Express Polym. Lett. 2014, 8, 39–49. [Google Scholar] [CrossRef]
- Szmechtyk, T.; Sienkiewicz, N.; Koter, K.; Kobierska, A.; Strzelec, K. Novel biocompatible transversal pneumatic artificial muscles made of PDMS/PET satin composite. Pol. J. Chem. Technol. 2016, 18, 89–96. [Google Scholar] [CrossRef]
- Reilly, B.; Bruner, S. Silicones for Drug-Delivery Applications. 2006. Available online: https://www.mddionline.com/materials/silicones-for-drug-delivery-applications (accessed on 8 October 2024).
- Bachrach, A.; Zilkha, A. Attachment of drugs to polydimethylsiloxanes. Eur. Polym. J. 1984, 20, 493–500. [Google Scholar] [CrossRef]
- Blanco, I. Polysiloxanes in Theranostics and Drug Delivery: A Review. Polymers 2018, 10, 755. [Google Scholar] [CrossRef]
- Czarnobaj, K. The Role of Polydimethylsiloxane in the Molecular Structure of Silica Xerogels Intended for Drug Carriers. Sci. Pharm. 2015, 83, 519–533. [Google Scholar] [CrossRef]
- Malcolm, K.; Woolfson, D.; Russell, J.; Tallon, P.; McAuley, L.; Craig, D. Influence of Silicone Elastomer Solubility and Diffusivity on the In Vitro Release of Drugs from Intravaginal Rings. J. Control. Release 2003, 90, 217–225. [Google Scholar] [CrossRef]
- Ghannam, M.; Tojo, K.; Chien, Y. Kinetics and Thermodynamics of Drug Permeation Through Silicone Elastomers (I) Effect of Penetrant Hydrophilicity; Marcel Dekker: New York, NY, USA, 1986; pp. 303–325. [Google Scholar]
- Nabahi, S. Intravaginal Drug-Delivery Device. U.S. Patent 6,039,968, 21 March 2000. [Google Scholar]
- Kiran, P.; Niket, P.; Viral, S.; Upadhyay, U.M. Nusil Silicone Technology in Pharmaceutical Drug Delivery System: A Review, Intern. J. Pharm. Res. Allied Sci. 2012, 1, 24–34. [Google Scholar]
- McClay, A. Intravaginal Drug-Delivery Devices for the Administration of 17β-estradiol Precursors. U.S. Patent 5,855,906, 5 January 1999. [Google Scholar]
- Passmore, C.; Gilligan, C. Intravaginal Drug-Delivery Devices for the Administration of Testosterone and Testosterone Precursors. U.S. Patent 6,416,780, 9 July 2002. [Google Scholar]
- Nabahi, S. Intravaginal Drug-Delivery Device. U.S. Patent 6,103,256, 15 August 2000. [Google Scholar]
- Colas, A.; Malczewski, R.; Ulman, K. Silicone tubing for pharmaceutical processing. PharmaChem 2004, 3, 30–36. [Google Scholar]
- Ulman, K.; Thomas, X. Silicone Pressure Sensitive Adhesives. In Advances in Pressure Sensitive Adhesive Technology-2; Satas, D., Ed.; Satas and Ass.: Warwick, RI, USA, 1995; p. 133. [Google Scholar]
- Rowe, V.K.; Spencer, H.C.; Bass, S.L. Toxicological studies on certain commercial silicones and hydrolyzable silane intermediates. J. Ind. Hyg. Toxicol. 1948, 30, 332–352. [Google Scholar]
- Pozzani, U.C.; Carpenter, C.P. Response of rodents to repeated inhalation of vapors of tetraethyl orthosilicate. Arch. Ind. Hyg. Occupat. Med. 1951, 4, 465–468. [Google Scholar]
- Voronkov, M.G. Biological activity of silatranes. Top. Curr. Chem. 1979, 84, 77–135. [Google Scholar] [PubMed]
- Fritz, G.; Poppenburg, G. Zur quantitativen Bestimmung der Phosphin-Gruppe in hydrolysierbaren Element-Phosphor-Verbindungen. Z. Anorg. Allg. Chem. 1964, 331, 147–150. [Google Scholar] [CrossRef]
- Schmidbaur, H.; Husek, H. Hexaalkylplumbosiloxane. J. Organometal. Chem. 1964, 1, 257. [Google Scholar] [CrossRef]
- Łukasiak, J.; Falkiewicz, B.; Dąbrowska, E.; Stołyhwo, M. E-900-polidimetylosiloksany jako problem toksykologiczny. Bromat. Chem. Toksykol. 1996, 29, 199–204. (In Polish) [Google Scholar]
- Rościszewski, P.; Łukasiak, J.; Dorosz, A.; Galiński, J.; Szponar, M. Biodegradation of polyorganosiloxanes. Makromol. Symp. 1998, 130, 337. [Google Scholar] [CrossRef]
- Łukasiak, J.; Dorosz, A.; Prokopowicz, M.; Rościszewski, P.; Falkiewicz, B. Chapter; Biodegradation of Silicones (Organosiloxanes). In Biopolymers; Miscellaneous Biopolymers and Biodegradation of Synthetic Polymers; Matsumura, S., Steinbüchel, A., Eds.; Wiley-Blackwell: Hoboken, NJ, USA, 2002; Volume 9, pp. 539–568. ISBN 978-3-527-30228-4. [Google Scholar]
- Mojsiewicz-Pieńkowska, K.; Łukasiak, J. Some directions of polydimethylsiloxanes applications and possibilities of these compounds analyses. Polimery 2006, 51, 186–191. [Google Scholar] [CrossRef]
- Rutkowski, A. Dodatki Funkcjonalne do Żywności (Functional Food Additives); Wydawnictwo Agro & Food Technology: Katowice, Poland, 1993. (In Polish) [Google Scholar]
- European Pharmacopeia; Council of Europe: Strasbourg, France, 2001–2004.
- British Pharmacopeia; Great Britain Medicines Commission, Stationery Office: London, UK, 2001; Volume 1.
- Gorczyca, D.P. The Augmented breast. In Radiologic and Clinical Perspectives; Thieme: New York, NY, USA, 1997. [Google Scholar]
- Anderson, A.B.; Robertson, C.R. Absorption spectra indicate conformational alteration of myoglobin adsorbed on poly- dimethylsiloxane. Biophys. J. 1995, 68, 2091–2097. [Google Scholar] [CrossRef]
- Pfleiderer, B.; Garrido, L. Migration and accumulation of silicone in the liver of women with silicone gel-filled breast implants. Magn. Reson. Med. 1995, 33, 8–17. [Google Scholar] [CrossRef]
- Raimondi, M.L.; Sassava, C.; Bellobono, J.R. Kinetic study of release of silicon compounds from polysiloxane tissue expanders. J. Biomed. Mater. Res. 1995, 29, 59–63. [Google Scholar] [CrossRef]
- Available online: https://biomonitoring.ca.gov/sites/default/files/downloads/1208cyclosiloxanes.pdf (accessed on 7 May 2025).
- Libermann, E.; Lykissa, E.D.; Barrios, R.; Ou, C.N.; Kala, G.; Kala, S. Cyclosiloxanes Produce Fatal Liver and Lung Damage in Mice. Environ. Health Perspect. 1999, 107, 161–165. [Google Scholar] [CrossRef]
- Varaprath, S.; Salyers, K.L.; Plotzke, K.P.; Nonavati, S. Extraction of octamethylcyclotetrasiloxane and its metabolites from biological matrices. Anal. Biochem. 1998, 256, 14–22. [Google Scholar] [CrossRef] [PubMed]
- Final Report on the Safety Assessment of Cyclomethicone. J. Am. Coll. Toxicol. 1991, 10, 9–19. [CrossRef]
- Łukasiak, J.; Jamrógiewicz, Z.; Czarnowski, W.; Krechniak, J.; Falkiewicz, B. Polydimethylosiloxanes as food additive—Improper recommendations. Bromat. Chem. Toksykol. 1999, 32, 99. [Google Scholar]
- Łukasiak, J.; Jamrógiewicz, Z.; Jachowska, D.; Czarnowski, W.; Hrabowska, M.; Prokopowicz, M.; Falkiewicz, B. Absorption and distribution of orally administered siloxanes in rat organs. Polimery 2001, 46, 546. [Google Scholar] [CrossRef]
- Hayden, J.F.; Barlow, S.A. Structure-activity relationships of organosiloxanes and the female reproductive system. Toxicol. Appl. Pharmacol. 1972, 21, 68–79. [Google Scholar] [CrossRef]
- Urinary Catheterisation—Harvard Health. Duxford, UK, 2021. Available online: https://www.health.harvard.edu/medical-tests-and-procedures/urinary-catheterization-a-to-z (accessed on 10 October 2024).
- Huang, X.-D.; Yao, K.; Zhang, H.; Huang, X.-J.; Xu, Z.-K. Surface modification of silicone intraocular lens by 2-methacryloylo-xyethyl phosphorylcholine binding to reduce Staphylococcus epidermidis adherence. Clin. Exp. Ophthalmol. 2007, 35, 462–467. [Google Scholar] [CrossRef] [PubMed]
- Ham, J.; Kim, Y.; An, T.; Kang, S.; Ha, C.; Wufue, M.; Kim, Y.; Jeon, B.; Kim, S.; Kim, J.; et al. Covalently Grafted 2-Methacryloyloxyethyl Phosphorylcholine Networks Inhibit Fibrous Capsule Formation around Silicone Breast Implants in a Porcine Model. ACS Appl. Mater. Interfaces 2020, 12, 30198–30212. [Google Scholar] [CrossRef]
- Anjum, S.; Singh, S.; Benedicte, L.; Roger, P.; Panigrahi, M.; Gupta, B. Biomodification Strategies for the Development of Antimicrobial Urinary Catheters: Overview and Advances. Glob. Challenges 2018, 2, 1700068. [Google Scholar] [CrossRef]
- Eltorai, A.E.M.; Haglin, J.; Perera, S.; Brea, B.A.; Ruttiman, R.; Garcia, D.R.; Born, C.T.; Daniels, A.H. Antimicrobial technology in orthopedic and spinal implants. World J. Orthop. 2016, 7, 361–369. [Google Scholar] [CrossRef]
- Gomes, R.N.; Borges, I.; Pereira, A.T.; Maia, A.F.; Pestana, M.; Magalhaes, F.D.; Pinto, A.M.; Gonçalves, I.C. Antimicrobial graphene nanoplatelets coatings for silicone catheters. Carbon 2018, 139, 635–647. [Google Scholar] [CrossRef]
- Rubini, D.; Hari, B.N.V.; Nithyanand, P. Chitosan coated catheters alleviates mixed species biofilms of Staphylococcus epidermidis and Candida albicans. Carbohydr. Polym. 2021, 252, 117192. [Google Scholar] [CrossRef] [PubMed]
- Gosau, M.; Bürgers, R.; Vollkommer, T.; Holzmann, T.; Prantl, L. Effectiveness of antibacterial copper additives in silicone implants. J. Biomater. Appl. 2013, 28, 187–198. [Google Scholar] [CrossRef] [PubMed]
- Zare, M.; Namratha, K.; Thakur, M.S.; Yallappa, S.; Byrappa, K. Comprehensive biological assessment and photocatalytic activity of surfactant assisted solvothermal synthesis of ZnO nanogranules. Mater. Chem. Phys. 2018, 215, 148–156. [Google Scholar] [CrossRef]
- Zare, M.; Namratha, K.; Ilyas, S.; Hezam, A.; Mathur, S.; Byrappa, K. Smart Fortified PHBV-CS Biopolymer with ZnO–Ag Nanocomposites for Enhanced Shelf Life of Food Packaging. ACS Appl. Mater. Interfaces 2019, 11, 48309–48320. [Google Scholar] [CrossRef]
- Barnea, Y.; Hammond, D.C.; Geffen, Y.; Navon-Venezia, S.; Goldberg, K. Plasma Activation of a Breast Implant Shell in Conjunction With Antibacterial Irrigants Enhances Antibacterial Activity. Aesthetic Surg. J. 2018, 38, 1188–1196. [Google Scholar] [CrossRef]
- Li, Z.; Liu, H.; Xu, X.; Ma, L.; Shang, S.; Song, Z. Surface modification of silicone elastomer with rosin acid-based quaternary ammonium salt for antimicrobial and biocompatible properties. Mater. Des. 2020, 189, 108493. [Google Scholar] [CrossRef]
- Haq, I.U.; Krukiewicz, K. Antimicrobial approaches for medical implants coating to prevent implants associated infections: Insights to develop durable antimicrobial implants. Appl. Surf. Sci. Adv. 2023, 18, 100532. [Google Scholar] [CrossRef]
- Kasapgil, E.; Badv, M.; Cantu, C.A.; Rahmani, S.; Erbil, H.Y.; Sakir, I.A.; Weitz, J.I.; Hosseini-Doust, Z.; Didar, T.F. Polysiloxane Nanofilaments Infused with Silicone Oil Prevent Bacterial Adhesion and Suppress Thrombosis on Intranasal Splints. ACS Biomater. Sci. Eng. 2021, 7, 541–552. [Google Scholar] [CrossRef]
- Genualdi, S.; Harner, T.; Cheng, Y.; MacLeod, M.; Hansen, K.M.; van Egmond, R.; Shoeib, M.; Lee, S.C. Global Distribution of Linear and Cyclic Volatile Methyl Siloxanes in Air. Environ. Sci. Technol. 2011, 45, 3349–3354. [Google Scholar] [CrossRef]
- Franzen, A.; Greene, T.; Van Landingham, C.; Gentry, R. Toxicology of octamethylcyclotetrasiloxane (D4). Toxicol. Lett. 2017, 279, 2–22. [Google Scholar] [CrossRef]
- American Chemistry Council, Silicones Environmental, Health, and Safety Center (SEHSC), Report Concerning: “Request for Risk Evaluation Under the Toxic Substances Control Act; Octamethylcyclotetrasiloxane (D4; CASRN: 556-67-2)”, January 2020. Available online: https://www.epa.gov/sites/default/files/2020-04/documents/d4_mrre_dossier_28jan2020_1.pdf (accessed on 15 October 2024).
- Clewell, H.; Greene, T.; Gentry, R. Dermal absorption of cyclic and linear siloxanes: A review. J. Toxicol. Environ. Health Part B 2024, 27, 106–129. [Google Scholar] [CrossRef] [PubMed]
- Malka, M. Silicones in Cosmetics: Risks & Alternatives; May 2023. Available online: https://ingredientswellness.com/blogs/news/silicones-in-cosmetics-risks-alternatives?srsltid=AfmBOooNAOeTZ534SZ85DxSb_6N0U1H_z0xFyUCFOG2eJdyKKdbD4IDL (accessed on 16 October 2024).
- Mohanan, P.V.; Rathinam, K. Biocompatibility studies on silicone rubber. In Proceedings of the First Regional Conference, IEEE Engineering in Medicine and Biology Society and 14th Conference of the Biomedical Engineering Society of India. An International Meet, New Delhi, India, 15–18 February 1995; pp. 4/11–4/12. [Google Scholar] [CrossRef]
- Dijkman, H.B.P.M.; Slaats, I.; Bult, P. Assessment of Silicone Particle Migration Among Women Undergoing Removal or Revision of Silicone Breast Implants in the Netherlands. JAMA Netw. Open. 2021, 4, e2125381. [Google Scholar] [CrossRef] [PubMed]
- Mustafá, M.J.C.R.; de Faria Castro Fleury, E.; Dijkman, H.B.P.M. Case Report: Evidence of Migratory Silicone Particles Arising From Cohesive Silicone Breast Implants. Front. Glob. Women’s Health 2022, 3, 730276. [Google Scholar] [CrossRef] [PubMed]
- Tervaert, J.W.C.; Colaris, M.J.; van der Hulst, R.R. Silicone breast implants and autoimmune rheumatic diseases: Myth or reality. Curr. Opin. Rheumatol. 2017, 29, 348–354. [Google Scholar] [CrossRef]
- Onnekink, C.; Kappel, R.M.; Boelens, W.C.; Pruijn, G.J.M. Low molecular weight silicones induce cell death in cultured cells. Sci. Rep. 2020, 10, 9558. [Google Scholar] [CrossRef]
- Colaris, M.J.L.; Ruhl, T.; Beier, J.P. Effects of Silicone Breast Implants on Human Cell Types In Vitro: A Closer Look on Host and Implant. Aesth. Plast. Surg. 2022, 46, 2208–2217. [Google Scholar] [CrossRef]
- Available online: https://www.tcimedicine.com/post/can-chemicals-in-breast-implants-be-the-source-of-illness (accessed on 17 October 2024).
- Shoenfeld, Y.; Agmon-Levin, N. ‘ASIA’—Autoimmune/inflammatory syndrome induced by adjuvants. J. Autoimmun. 2011, 36, 4–8. [Google Scholar] [CrossRef]
- Wolfe, F. ‘Silicone related symptoms’ are common in patients with fibromyalgia: No evidence for a new disease. J. Rheumatol. 1999, 26, 1172–1175. [Google Scholar]
- Brown, S.L.; Silverman, B.G.; Berg, W.A. Rupture of silicone-gel breast implants: Causes; sequelae; diagnosis. Lancet 1997, 350, 1531–1537. [Google Scholar] [CrossRef]
- Bar-Meir, E.; Teuber, S.S.; Lin, H.C.; Alosacie, I.; Goddard, G.; Terybery, J.; Barka, N.; Shen, B.; Peter, J.B.; Blank, M.; et al. Multiple autoantibodies in patients with silicone breast implants. J. Autoimmun. 1995, 8, 267–277. [Google Scholar] [CrossRef]
- Colaris, M.J.L.; van der Hulst, R.R.; Tervaert, J.W.C. Vitamin D deficiency as a risk factor for the development of autoantibodies in patients with ASIA and silicone breast implants: A cohort study and review of the literature. Clin. Rheumatol. 2017, 36, 981–993. [Google Scholar] [CrossRef] [PubMed]
- Spit, K.A.; Azahaf, S.; de Blok, C.J.M.; Bult, P.; Nanayakkara, P.W.B.; Driessen, R.J.B. A Rare Observation of Silicone-Associated Scleroderma-Like Syndrome: How to Recognize and Diagnose Similar Cases. Ann. Intern. Med. Clin. Cases 2023, 2, e221290. [Google Scholar] [CrossRef]
- ISO 14607:2024; Non-Active Surgical Implants—Mammary Implants—Specific Requirements. ISO: Geneva, Switzerland, 2024.
- Fromme, H.; Witte, M.; Fembacher, L.; Gruber, L.; Hagl, T.; Smolic, S.; Fiedler, D.; Sysoltseva, M.; Schober, W. Siloxane in baking moulds, emission to indoor air and migration to food during baking with an electric oven. Environ. Int. 2019, 126, 145–151. [Google Scholar] [CrossRef]
- Geueke, B. Dossier—Silicones; Food Packaging Forum: Zürich, Switzerland, 2015. [Google Scholar] [CrossRef]
- Available online: https://www.debralynndadd.com/q-a/the-toxicity-of-silicone/ (accessed on 7 May 2025).
- Available online: https://www.canada.ca/en/health-canada/services/household-products/safe-use-cookware.html (accessed on 18 October 2024).
- Available online: https://www.glorysungroup.com/blog/eco-friendly-silicone (accessed on 5 November 2024).
- Available online: https://consumersiliconeproducts.com/blog/silicone-sustainable-and-recyclable.html (accessed on 7 May 2025).
- 2021 Sustainability Report, Sustainability of Silicone. Available online: https://www.compo-sil.com/wp-content/uploads/2023/08/2021_GS_Sustainability-Report-_C-1.pdf (accessed on 19 October 2024).
- Koštić, A.; Marolt, A.; Glavač, N.K. Silicones in cosmetics and their impact on the environment. CosmEthically Act. J. 2021, 1, 34–39. Available online: https://cosmethicallyactive.com/silicones-in-cosmetics-and-their-impact-on-the-environment/ (accessed on 20 October 2024).
- Lambert, J. Silicone Safety and the Cosmetic Industry. Available online: https://www.cosmeticsandtoiletries.com/research/literature-data/article/21836227/silicone-safety-and-the-cosmetic-industry (accessed on 21 October 2024).
1. |
|
2. |
|
3. |
|
4. |
|
1. |
|
2. |
|
3. |
|
4. |
|
1. |
|
2. |
|
3. |
|
4. |
|
5. |
|
1. | Chemical resistance, excellent oxidation, and UV resistance. |
2. | Good elastomeric properties and softness. |
3. | High thermal stability and superior aging resistance. |
4. | Good resistance to low temperatures. |
5. | Sterilizable (e.g., autoclave and gamma irradiation). |
6. | Excellent dielectric properties over a wide range of temperatures. |
7. | Physiological indifference, satisfactory biocompatibility, FDA food-grade compliance, and perfect biodegradation resistance. |
1. |
|
2. |
|
3. |
|
4. |
|
5. |
|
6. |
|
7. |
|
8. |
|
9. |
|
Ref. | ||
---|---|---|
1. |
| [1,6,13,87,96] |
2. |
| [1,91,95] |
3. |
| [1,91,95,96] |
4. |
| [1,87,89,91,95,96] |
5. |
| [1,8,85,96] |
6. |
| [6,95] |
7. |
| [1,60,97] |
8. |
| [1,3,96,98] |
9. |
| [1,92,93,94] |
10. |
| [97] |
11. |
| [19,60], see Section 7 |
12. |
| [1,89,96] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chruściel, J.J. Most Important Biomedical and Pharmaceutical Applications of Silicones. Materials 2025, 18, 2561. https://doi.org/10.3390/ma18112561
Chruściel JJ. Most Important Biomedical and Pharmaceutical Applications of Silicones. Materials. 2025; 18(11):2561. https://doi.org/10.3390/ma18112561
Chicago/Turabian StyleChruściel, Jerzy J. 2025. "Most Important Biomedical and Pharmaceutical Applications of Silicones" Materials 18, no. 11: 2561. https://doi.org/10.3390/ma18112561
APA StyleChruściel, J. J. (2025). Most Important Biomedical and Pharmaceutical Applications of Silicones. Materials, 18(11), 2561. https://doi.org/10.3390/ma18112561