Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (383)

Search Parameters:
Keywords = impact traction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 953 KB  
Article
Comparative Environmental Insights into Additive Manufacturing in Sand Casting and Investment Casting: Pathways to Net-Zero Manufacturing
by Alok Yadav, Rajiv Kumar Garg, Anish Sachdeva, Karishma M. Qureshi, Mohamed Rafik Noor Mohamed Qureshi and Muhammad Musa Al-Qahtani
Sustainability 2025, 17(21), 9709; https://doi.org/10.3390/su17219709 - 31 Oct 2025
Viewed by 272
Abstract
As manufacturing industries pursue net-zero emission (NZE) goals, hybrid manufacturing processes that integrate additive manufacturing (AM) with traditional casting techniques are gaining traction for their sustainability potential across the globe. Therefore, this work presents a “gate-to-gate” life cycle assessment (LCA) comparing AM-assisted sand [...] Read more.
As manufacturing industries pursue net-zero emission (NZE) goals, hybrid manufacturing processes that integrate additive manufacturing (AM) with traditional casting techniques are gaining traction for their sustainability potential across the globe. Therefore, this work presents a “gate-to-gate” life cycle assessment (LCA) comparing AM-assisted sand casting (AM-SC) and AM-assisted investment casting (AM-IC), for Al-Si5-Cu3 alloy as a case material, under various energy scenarios including a conventional grid mix and renewable sources (wind, solar, hydro, and biomass). This study compares multiple environmental impact categories based on the CML 2001 methodology. The outcomes show that AM-SC consistently outperforms AM-IC in most impact categories. Under the grid mix scenario, AM-SC achieves 31.57% lower GWP, 19.28% lower AP, and 21.15% lower EP compared to AM-IC. AM-SC exhibits a 90.5% reduction in “Terrestrial Ecotoxicity Potential” and 75.73% in “Marine Ecotoxicity Potential”. Wind energy delivers the most significant emission reduction across both processes, reducing GWP by up to 98.3%, while AM-IC performs slightly better in HTP. These outcomes of the study offer site-specific empirical insights that support strategic decision-making for process selection and energy optimisation in casting. By quantifying environmental trade-offs aligned with India’s current energy mix and future renewable targets, the study provides a practical benchmark for tracking incremental gains toward the NZE goal. This work followed international standards (ISO 14040 and 14044), and the data were validated with both foundry records and field measurements; this study ensures reliable methods. The findings provide practical applications for making sustainable choices in the manufacturing process and show that the AM-assisted conventional manufacturing process is a promising route toward net-zero goals. Full article
Show Figures

Figure 1

19 pages, 999 KB  
Review
Real-Time Rail Electrification Systems Monitoring: A Review of Technologies
by Jose A. Sainz-Aja, João Pombo, Jordan Brant, Pedro Antunes, José M. Rebelo, José Santos and Diego Ferreño
Sensors 2025, 25(21), 6625; https://doi.org/10.3390/s25216625 - 28 Oct 2025
Viewed by 663
Abstract
Most electrified railway networks are powered through a pantograph–overhead contact line (OCL) interface to ensure safe and reliable operation. The OCL is one of the most vulnerable components of the train traction power system as it is subjected to multiple impacts from the [...] Read more.
Most electrified railway networks are powered through a pantograph–overhead contact line (OCL) interface to ensure safe and reliable operation. The OCL is one of the most vulnerable components of the train traction power system as it is subjected to multiple impacts from the pantographs and to unpredictable environmental conditions. Wear, mounting imperfections, contact incidents, weather conditions, and inadequate maintenance lead to increased degradation of the pantograph–OCL current collection performance, causing degradation on contacting elements and assets failure. Incidents involving the pantograph–OCL system are significant sources of traffic disruption and train delays, e.g., Network Rail statistics show that, on average, delays due to OCL failures are 2500 h per year. In recent years, maintenance strategies have evolved significantly with improvements in technology and the increased interest in using real-time and historical data in decision support. This has led to an expansion in sensing systems for structures, vehicles, and machinery. The railway industry is currently investing in condition monitoring (CM) technologies in order to achieve lower failure rates and increase the availability, reliability, and safety of the railway service. This work presents a comprehensive review of the current CM systems for the pantograph–OCL, including their advantages and disadvantages, and outlines future trends in this area. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

12 pages, 3041 KB  
Article
Characteristics of Stray Current Distribution in the Power Supply System of Subway Tunnels with a Hollow Circular Section Structure
by Junyang Ma, Zihao Wang, Gen Qian, Weihe Lin and Yadong Fan
Energies 2025, 18(21), 5626; https://doi.org/10.3390/en18215626 - 26 Oct 2025
Viewed by 199
Abstract
The DC traction power system adopts the track as the return rail. When the track-to-earth insulation in the subway tunnel deteriorates, stray currents will cause electrochemical corrosion to tunnel steel structures and seriously affect the service life and safety of metro tunnels. Stray [...] Read more.
The DC traction power system adopts the track as the return rail. When the track-to-earth insulation in the subway tunnel deteriorates, stray currents will cause electrochemical corrosion to tunnel steel structures and seriously affect the service life and safety of metro tunnels. Stray currents cannot be directly measured and can only be calculated. Therefore, a calculation model with a hollow circular cross-section structure was proposed, and the stray current distribution in tunnel steel structures was calculated. In addition, the effects of different rail-to-ground transition resistances and adjacent buried metallic pipelines on the stray current distribution of the tunnel steel structures were taken into account. The results show that the total amount of stray current dispersed into the tunnel steel structures and soil is similar. The stray current density distribution in each steel tunnel is related to its location. The total stray current carried by the steel structures of the bottom tunnel segment is 102, 15.7 and 3.1 times higher than that of the top, upper and lower side tunnel segments, respectively. The reduction in the transition resistance and increase in the distance of the train from the traction substation increase the total rail leakage current and have a small effect on the percentage distribution of stray current in tunnel structures. The buried metal pipeline parallel to the tunnel has a lower impact on the total stray current leakage, but can reduce the total stray current in steel structures and drainage net, enlarging the positive stray current scope of some tunnel steel bars, further increasing the stray current density on tunnel steel bars. The results of this study can be used to determine the degree of corrosion of the underground steel tunnels and thereby provide support for corrosion prevention. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

21 pages, 6588 KB  
Article
Multiscale Simulation of Crack Propagation in Impact-Welded Al4Cu9 Alloy Based on Cohesive Zone Model
by Rongqing Luo, Dingjun Xiao, Guangzhao Pei, Haixia Yan, Sen Han, Jiajie Jiang and Miaomiao Zhang
Materials 2025, 18(21), 4862; https://doi.org/10.3390/ma18214862 - 23 Oct 2025
Viewed by 319
Abstract
The fracture behavior of the Al4Cu9 intermetallic compound at the interface of impact-welded Cu/Al joints remains insufficiently explored through integrated multiscale modeling and experimental validation. In this study, molecular dynamic (MD) simulations, finite element (FE) analysis implemented in ABAQUS (version [...] Read more.
The fracture behavior of the Al4Cu9 intermetallic compound at the interface of impact-welded Cu/Al joints remains insufficiently explored through integrated multiscale modeling and experimental validation. In this study, molecular dynamic (MD) simulations, finite element (FE) analysis implemented in ABAQUS (version 2020) and a cohesive zone model (CZM) were combined with optical microscopy (OM) and scanning electron microscopy (SEM) observations of the interface and crack initiation zones in impact-welded Cu/Al specimens to investigate crack propagation mechanisms under different defect configurations. The experimental specimens consisted of 1060 aluminum (Al) and oxygen-free high-conductivity (OFHC) copper, fabricated via impact welding and subsequently annealed at 250 °C for 100 h. The interfacial morphology and crack initiation features obtained from OM and SEM provided direct validation for the traction–separation (T-S) parameters extracted from MD and mapped into the FE model. The results indicate that composite defects (blunt crack + void) cause a significantly greater reduction in fracture energy and stress intensity factor than single defects and that defect effects outweigh temperature effects within the range of 200–500 K. The experimentally observed crack initiation locations were in strong agreement with simulation predictions. This integrated simulation–experiment approach not only elucidates the multiscale fracture mechanisms of the Al4Cu9 interface but also provides a physically validated basis for the reliability assessment and optimization of aerospace Cu/Al welded structures. Full article
(This article belongs to the Special Issue Advances in Microstructure and Properties of Welded–Brazed Joints)
Show Figures

Figure 1

23 pages, 2723 KB  
Review
Assessment Methods for DC Stray Current Corrosion Hazards in Underground Gas Pipelines: A Review Focused on Rail Traction Systems
by Krzysztof Żakowski, Michał Szociński and Stefan Krakowiak
Energies 2025, 18(21), 5570; https://doi.org/10.3390/en18215570 - 23 Oct 2025
Viewed by 407
Abstract
Stray currents leaking from electrified DC rail systems cause the greatest corrosion risk to underground metal gas pipelines and can lead to pipeline wall perforation in a very short time. Leakage and gas explosion, and other direct and indirect effects, can even disrupt [...] Read more.
Stray currents leaking from electrified DC rail systems cause the greatest corrosion risk to underground metal gas pipelines and can lead to pipeline wall perforation in a very short time. Leakage and gas explosion, and other direct and indirect effects, can even disrupt the stability of the energy system. Maintaining the reliability of gas pipelines, therefore, requires protecting them against corrosion caused by stray currents. It is therefore necessary to conduct field studies to identify sections of gas pipelines at risk and where protective installations should be installed. The paper discusses the most important field methods for assessing the risk of stray currents to gas pipelines: the potential of rail traction relative to ground, electric field gradients in the ground associated with stray current flow, correlation of gas pipeline potential and voltage of pipeline vs. the rail, and time-frequency analysis of the pipeline and rail potentials. A typical application case for each method is indicated, and the advantages and disadvantages of each research technique are identified. The criterion for selecting methods for this review was a short measurement duration (tens of minutes), after which it is possible to determine the level of the hazard to the gas pipeline caused by stray currents in the examined location. This is why these methods have an advantage over other research techniques that require long-term monitoring or exposure of probes or sensors. The review will be useful for cathodic protection personnel involved in the operation of gas pipelines and may be helpful in developing new methods for assessing the impact of stray currents. Full article
(This article belongs to the Special Issue Petroleum and Natural Gas Engineering: 2nd Edition)
Show Figures

Figure 1

30 pages, 3449 KB  
Review
Mapping the Trajectory of Planetary Health Education—A Critical and Constructive Perspective from the Global South
by Isaías Lescher Soto, Bernabé Vidal, Lorenzo Verger and Gustavo J. Nagy
Challenges 2025, 16(4), 50; https://doi.org/10.3390/challe16040050 - 21 Oct 2025
Viewed by 503
Abstract
The planetary health approach has gained traction in academic and international governance spheres; however, its limited integration into education systems has hindered its emergence as a universal framework for addressing the triple planetary crisis (climate change, biodiversity loss, and pollution) and its impacts [...] Read more.
The planetary health approach has gained traction in academic and international governance spheres; however, its limited integration into education systems has hindered its emergence as a universal framework for addressing the triple planetary crisis (climate change, biodiversity loss, and pollution) and its impacts on individual well-being and global health systems. We mapped the evolution of the educational approach to planetary health between 2015 and 2025 from a critical and constructive perspective, using a bibliometric and thematic analysis. Through the bibliometric analysis, we found that publications from the Global North predominate, focusing on health programmes and topics such as climate change, One Health, Global Health and Public Health. The thematic analysis, based on inductive categorisation, allowed us to identify criticisms of the educational approach, such as its curricular marginalisation and limited scalability. From an epistemological perspective, these criticisms refer to technoscientific reductionism, the invisibility of non-Western epistemologies and the decoupling of cognition and environment. Given these limitations, we propose a reconstruction of the planetary health approach along three critical dimensions: Motivation, Legitimacy and Epistemology. This reconstruction is projected into short-, medium- and long-term scenarios at the university level, particularly as part of curriculum reform efforts, to broaden the pedagogical impact and promote a more inclusive and transformative vision. Full article
(This article belongs to the Section Planetary Health Education and Communication)
Show Figures

Graphical abstract

32 pages, 4722 KB  
Article
Fuel Cell–Battery Hybrid Trains for Non-Electrified Lines: A Dynamic Simulation Approach
by Giuliano Agati, Domenico Borello, Alessandro Ruvio and Paolo Venturini
Energies 2025, 18(20), 5457; https://doi.org/10.3390/en18205457 - 16 Oct 2025
Viewed by 431
Abstract
Hydrogen-powered hybrid trains equipped with fuel cells (FC) and batteries represent a promising alternative to diesel traction on non-electrified railway lines and have significant potential to support modal shifts toward more sustainable transport systems. This study presents the development of a flexible MATLAB-based [...] Read more.
Hydrogen-powered hybrid trains equipped with fuel cells (FC) and batteries represent a promising alternative to diesel traction on non-electrified railway lines and have significant potential to support modal shifts toward more sustainable transport systems. This study presents the development of a flexible MATLAB-based tool for the dynamic simulation of fuel cell–battery hybrid powertrains. The model integrates train dynamics, rule-based energy management, system efficiencies, and component degradation, enabling both energy and cost analyses over the vehicle’s lifetime. The objective is to assess the techno-economic performance of different powertrain configurations. Sensitivity analyses were carried out by varying two sizing parameters: the nominal power of the fuel cell (parameter m) and the total battery capacity (parameter n), across multiple real-world railway routes. Results show a slight reduction in lifecycle costs as m increases (5.1 €/km for m = 0.50) mainly due to a lower FC degradation. Conversely, increasing battery capacity (n) lowers costs by reducing cycling stress for both battery and FC, from 5.3 €/km (n = 0.10) to 4.5 €/km (n = 0.20). In general, lowest values of m and n provide unviable solutions as the battery discharges completely before the end of the journey. The study highlights the critical impact of the operational profile: for a fixed powertrain configuration (m = 0.45, n = 0.20), the specific cost dramatically increases from 4.44 €/km on a long, flat route to 15.8 €/km on a hilly line and up to 76.7 €/km on a mountainous route, primarily due to severe fuel cell degradation under transient loads. These findings demonstrate that an “all-purpose” train sizing approach is inadequate, confirming the necessity of route-specific powertrain optimization to balance techno-economic performance. Full article
Show Figures

Figure 1

26 pages, 2278 KB  
Article
Optimal Decision-Making for Annuity Insurance Under the Perspective of Disability Risk
by Ziran Xu, Lufei Sun and Xiang Yuan
Mathematics 2025, 13(20), 3290; https://doi.org/10.3390/math13203290 - 15 Oct 2025
Viewed by 306
Abstract
Annuity insurance is a crucial financial tool for mitigating risks associated with aging, yet it has not gained significant traction in China’s insurance market, especially amid the challenges posed by an aging population. This study develops a discrete-time multi-period life-cycle model to analyze [...] Read more.
Annuity insurance is a crucial financial tool for mitigating risks associated with aging, yet it has not gained significant traction in China’s insurance market, especially amid the challenges posed by an aging population. This study develops a discrete-time multi-period life-cycle model to analyze optimal annuity purchases for China’s middle-aged population under disability risk and explores in depth the impact and underlying mechanisms of disability risk on their annuity insurance purchase decisions. Disability is endogenized via two channels: financial-constraint effects (medical costs and pre-retirement income loss) and stochastic health state transitions with recovery and mortality. Using data from China Health and Retirement Longitudinal Study (2018–2020) to estimate age- and gender-specific transition matrices and data from China Household Finance Survey (2019) to link income with initial assets, we solve the model by the endogenous grid method and simulate actuarially fair annuities. The findings reveal substantial under-demand for annuities among China’s middle-aged population. Under inflation, the modest yield premium of annuities over inflation significantly depresses purchases by middle- and low-wealth households, while high-wealth individuals are jointly constrained by rapidly rising health expenditures and inadequate annuity returns. Notably, behavioral patterns could shift fundamentally under a hypothetical zero-inflation scenario. Full article
(This article belongs to the Special Issue Computational Models in Insurance and Financial Mathematics)
Show Figures

Figure 1

49 pages, 1688 KB  
Review
Digital Twin Applications in the Water Sector: A Review
by Pooria Ghorbani Bam, Nader Rezaei, Alexander Roubanis, Dana Austin, Elinor Austin, Brian Tarroja, Imre Takacs, Kris Villez and Diego Rosso
Water 2025, 17(20), 2957; https://doi.org/10.3390/w17202957 - 14 Oct 2025
Cited by 1 | Viewed by 4162
Abstract
As cities develop and resource demands rise, the water sector faces crucial challenges to deliver reliable, sustainable, and efficient services. Digital Twins (DTs), virtual replicas of physical systems, offer a promising tool to transform how we manage water infrastructure. Originally developed in the [...] Read more.
As cities develop and resource demands rise, the water sector faces crucial challenges to deliver reliable, sustainable, and efficient services. Digital Twins (DTs), virtual replicas of physical systems, offer a promising tool to transform how we manage water infrastructure. Originally developed in the aerospace industry, DTs are now gaining traction in the water sector, enabling real-time monitoring, simulation, and predictive control of water and wastewater treatment, collection and distribution networks, and water reclamation and reuse systems. While still emerging in the water sector, DTs have shown potential to enhance operational efficiency, reduce environmental impacts, and support smarter, more resilient water management. This review study provides a comprehensive overview of current DT applications in the water sector, highlighting successful case studies, technical challenges, and knowledge gaps. It also explores how DTs can help bridge the water–energy nexus by optimizing resources utilized across interconnected systems. By synthesizing recent advances and identifying future research directions, this paper illustrates how DTs can play a central role in building sustainable, adaptive, and digitally-enabled water infrastructure. Full article
(This article belongs to the Special Issue AI, Machine Learning and Digital Twin Applications in Water)
Show Figures

Figure 1

15 pages, 2125 KB  
Article
Surface Mapping by RPAs for Ballast Optimization and Slip Reduction in Plowing Operations
by Lucas Santos Santana, Lucas Gabryel Maciel do Santos, Josiane Maria da Silva, Aldir Carpes Marques Filho, Francesco Toscano, Enio Farias de França e Silva, Alexandre Maniçoba da Rosa Ferraz Jardim, Thieres George Freire da Silva and Marco Antonio Zanella
AgriEngineering 2025, 7(10), 332; https://doi.org/10.3390/agriengineering7100332 - 3 Oct 2025
Viewed by 548
Abstract
Driving wheel slippage in agricultural tractors is influenced by soil moisture, density, and penetration resistance. These surface variations reflect post-tillage composition, enabling dynamic mapping via Remotely Piloted Aircraft (RPAs). This study evaluated ballast recommendations based on soil surface data and slippage percentages, correlating [...] Read more.
Driving wheel slippage in agricultural tractors is influenced by soil moisture, density, and penetration resistance. These surface variations reflect post-tillage composition, enabling dynamic mapping via Remotely Piloted Aircraft (RPAs). This study evaluated ballast recommendations based on soil surface data and slippage percentages, correlating added wheel weights at different speeds for a tractor-reversible plow system. Six 94.5 m2 quadrants were analyzed for slippage monitored by RPA (Mavic3M-RTK) pre- and post-agricultural operation overflights and soil sampling (moisture, density, penetration resistance). A 2 × 2 factorial scheme (F-test) assessed soil-surface attribute correlations and slippage under varying ballasts (52.5–57.5 kg/hp) and speeds. Results showed slippage ranged from 4.06% (52.5 kg/hp, fourth reduced gear) to 11.32% (57.5 kg/hp, same gear), with liquid ballast and gear selection significantly impacting performance in friable clayey soil. Digital Elevation Model (DEM) and spectral indices derived from RPA imagery, including Normalized Difference Red Edge (NDRE), Normalized Difference Water Index (NDWI), Bare Soil Index (BSI), Green–Red Vegetation Index (GRVI), Visible Atmospherically Resistant Index (VARI), and Slope, proved effective. The approach reduced tractor slippage from 11.32% (heavy ballast, 4th gear) to 4.06% (moderate ballast, 4th gear), showing clear improvement in traction performance. The integration of indices and slope metrics supported ballast adjustment strategies, particularly for secondary plowing operations, contributing to improved traction performance and overall operational efficiency. Full article
(This article belongs to the Special Issue Utilization and Development of Tractors in Agriculture)
Show Figures

Figure 1

38 pages, 431 KB  
Systematic Review
Electronic Systems in Competitive Motorcycles: A Systematic Review Following PRISMA Guidelines
by Andrei García Cuadra, Alberto Brunete González and Francisco Santos Olalla
Electronics 2025, 14(19), 3926; https://doi.org/10.3390/electronics14193926 - 2 Oct 2025
Viewed by 855
Abstract
Objectives: To systematically review and analyze electronic systems in competitive motorcycles (2020–2025), examining their technical specifications, performance impacts, and technological evolution across MotoGP, World Superbike (WSBK), MotoE, British Superbike (BSB), and Spanish Championship (ESBK) categories. Eligibility criteria: Included studies reporting technical specifications or [...] Read more.
Objectives: To systematically review and analyze electronic systems in competitive motorcycles (2020–2025), examining their technical specifications, performance impacts, and technological evolution across MotoGP, World Superbike (WSBK), MotoE, British Superbike (BSB), and Spanish Championship (ESBK) categories. Eligibility criteria: Included studies reporting technical specifications or performance data of electronic systems in professional motorcycle racing, published between January 2020 and December 2025 in English, Spanish, Italian, or Japanese. Excluded: opinion pieces, amateur racing, and studies without quantitative data. Information sources: IEEE Xplore, SAE Technical Papers, Web of Science, Scopus, and specialized motorsport databases were searched through 15 December 2025. Risk of bias: Modified Cochrane Risk of Bias tool for experimental studies and Newcastle-Ottawa Scale for observational studies. Synthesis of results: Synthesis of results: Random-effects meta-analysis using DerSimonian-Laird method for homogeneous outcomes; narrative synthesis for heterogeneous data. Included studies: 87 studies met inclusion criteria (52 experimental, 38 simulation, 23 technical descriptions, 14 comparative analyses). Electronic systems were categorized into six domains: Engine Control Units (ECU, 28 studies, 22%), Vehicle Dynamics (23 studies, 18%), Traction Control (19 studies, 15%), Data Acquisition (21 studies, 17%), Braking Systems (18 studies, 14%), and Emerging Technologies (18 studies, 14%). Note that studies could address multiple domains. Limitations of evidence: Proprietary restrictions limited access to 31% of technical details; 43% lacked cross-category comparisons. Interpretation: Electronic systems are primary performance differentiators, with computational power following Moore’s Law. Future developments point toward distributed architectures and 5G telemetry. Full article
Show Figures

Figure 1

27 pages, 1387 KB  
Systematic Review
Effectiveness of Electroencephalographic Neurofeedback for Parkinson’s Disease: A Systematic Review and Meta-Analysis
by Leon Andreas W. R. von Altdorf, Martyn Bracewell and Andrew Cooke
J. Clin. Med. 2025, 14(19), 6929; https://doi.org/10.3390/jcm14196929 - 30 Sep 2025
Viewed by 1042
Abstract
Background: Electroencephalographic (EEG) neurofeedback training is gaining traction as a non-pharmacological treatment option for Parkinson’s disease (PD). This paper reports the first pre-registered, integrated systematic review and meta-analysis of studies examining the effects of EEG neurofeedback on cortical activity and motor function in [...] Read more.
Background: Electroencephalographic (EEG) neurofeedback training is gaining traction as a non-pharmacological treatment option for Parkinson’s disease (PD). This paper reports the first pre-registered, integrated systematic review and meta-analysis of studies examining the effects of EEG neurofeedback on cortical activity and motor function in people with PD. Method: We searched Cochrane Databases, PubMed, Embase, Scopus, Web of Science, PsycInfo, grey literature repositories, and trial registers for EEG neurofeedback studies in people with PD. We included randomized controlled trials, single-group experiments, and case studies. We assessed risk of bias using the Cochrane Risk of Bias 2 and Risk of Bias in Non-Randomized Studies tools, and we used the Grading of Recommendations, Assessment, Development and Evaluations tool to assess certainty in the evidence and resultant interpretations. Random-effects meta-analyses were performed. Results: A total of 11 studies (143 participants; Hoehn and Yahr I–IV) met the criteria for inclusion. A first meta-analysis revealed that EEG activity is modified in the prescribed way by neurofeedback interventions. The effect size is large (SMD = 1.30, 95% CI = 0.50–2.10, p = 0.001). Certainty in the estimate is high. Despite successful cortical modulation, a subsequent meta-analysis revealed inconclusive effects of EEG neurofeedback on motor symptomology. The effect size is small (SMD = 0.10, 95% CI = −1.03–1.23, p = 0.86). Certainty in the estimates is low. Narrative evidence revealed that interventions are well-received and may yield specific benefits not detected by general symptomology reports. Conclusion: EEG neurofeedback successfully modulates cortical activity in people with PD, but downstream impacts on motor function remain unclear. The neuromodulatory potential of EEG neurofeedback in people with PD is encouraging. Additional well-powered and high-quality research into the effects of EEG neurofeedback in PD is warranted. Full article
(This article belongs to the Special Issue New Insights into Augmentative Therapy for Parkinson’s Disease)
Show Figures

Figure 1

13 pages, 3375 KB  
Case Report
Post-MVC Cervical Kyphosis Deformity Reduction Using Chiropractic BioPhysics Protocols: 1-Year Follow-Up Case Report
by Nicholas J. Smith, Thomas J. Woodham and Miles O. Fortner
Healthcare 2025, 13(19), 2459; https://doi.org/10.3390/healthcare13192459 - 28 Sep 2025
Viewed by 2205
Abstract
Background/Objectives: This case represents the successful treatment of cervical spine injury from high-speed rear-impact motor vehicle collision and abnormal cervical kyphosis with left arm radiculopathy, utilizing conservative spine care rehabilitation methods. This patient was treated with a multimodal treatment approach integrating a cervical [...] Read more.
Background/Objectives: This case represents the successful treatment of cervical spine injury from high-speed rear-impact motor vehicle collision and abnormal cervical kyphosis with left arm radiculopathy, utilizing conservative spine care rehabilitation methods. This patient was treated with a multimodal treatment approach integrating a cervical spine extension traction protocol. Subject and Methods: A 50-year-old male with a history of motor vehicle collision presented with left arm radiculopathy, as well as cervical and upper thoracic spine pain. Notably the cervical spine presented with kyphotic deformity. The patient presented, after a being struck during a rear-end motor vehicle collision, with neck, upper back, and left arm radiculopathy. Prescription medication and traditional chiropractic care proved ineffective for substantive symptom and quality-of-life improvement. Treatment frequency was three times per week for eight weeks using the Chiropractic Biophysics® protocol of mirror image (MI®) postural exercise, spinal adjustment, and cervical spinal traction. On completion of in-office care, the patient was treated monthly, performed home care at least three times per week, and was re-examined at one year. Results: Final examination after eight weeks of care showed significant improvement in cervical lordosis (21.8 degrees), resulting in reduced cervical kyphosis. The patient completed outcome indices before, during, and 12 months after cessation of active care, all indicating improvement. Conclusions: This case report demonstrates both subjective and objective improvement in cervical spine kyphosis and attendant symptoms. The successful treatment of chronic pain, peripheral weakness, and radiculopathy with long-term follow-up using CBP care is documented as well. The treatment was designed to improve sagittal balance and reduce radiographic abnormalities evincing spinal misalignment. Administration of subjective, objective, and health-related quality-of-life outcome indices during, following, and 12 months post-treatment are suggestive of long-term efficacy of Chiropractic BioPhysics® (CBP) treatment methods. Larger studies are needed to substantiate this given the limitations of a case report. Full article
Show Figures

Figure 1

19 pages, 681 KB  
Article
Impact of Financial Performance and Corporate Governance on ESG Disclosure: Evidence from Saudi Arabia
by Mona Basali
Sustainability 2025, 17(18), 8473; https://doi.org/10.3390/su17188473 - 21 Sep 2025
Viewed by 2904
Abstract
This study investigates the impact of financial performance and corporate governance mechanisms on environmental, social, and governance (ESG) disclosure in Saudi Arabia, a country undergoing significant institutional transformation under Saudi Vision 2030 and Tadawul’s 2021 ESG reporting reforms. While ESG research has gained [...] Read more.
This study investigates the impact of financial performance and corporate governance mechanisms on environmental, social, and governance (ESG) disclosure in Saudi Arabia, a country undergoing significant institutional transformation under Saudi Vision 2030 and Tadawul’s 2021 ESG reporting reforms. While ESG research has gained traction globally, studies in emerging economies, particularly in the Gulf region, remain limited. This paper addresses this gap by examining whether profitability, measured by return on assets (ROA), and board size influence ESG disclosure. This study analyzes 260 firm-year observations of Saudi non-financial listed companies from 2009 to 2023. Using multiple regression analysis, including ordinary least squares (OLS), fixed effects (FE), and generalized method of moments (GMM), the analysis controls for endogeneity and ensures robust results. Findings indicate that board size had a negative and statistically significant relationship with ESG disclosure. The robustness tests confirm the inverse relationship between board size and ESG. ROA showed no correlation with ESG disclosure in the main findings; however, robustness tests revealed a negative and significant correlation. This study is the first to explore these impacts post Tadawul’s 2021 ESG guidelines. It also offers novel insights into ESG practices aligned with Saudi Vision 2030. This study contributes to the literature by situating ESG disclosure within the Saudi context, highlighting the unique role of governance dynamics in shaping sustainability practices in emerging markets. The results carry practical implications for policymakers, regulators, and corporate boards by recommending stronger governance frameworks, such as board-level ESG committees, executive compensation linked to ESG, and sector-specific disclosure standards. Full article
Show Figures

Figure 1

30 pages, 4858 KB  
Article
A Hierarchical Slip-Compensated Control Strategy for Trajectory Tracking of Wheeled ROVs on Complex Deep-Sea Terrains
by Dewei Li, Zizhong Zheng, Yuqi Wang, Zhongjun Ding, Yifan Yang and Lei Yang
J. Mar. Sci. Eng. 2025, 13(9), 1826; https://doi.org/10.3390/jmse13091826 - 20 Sep 2025
Viewed by 396
Abstract
With the rapid development of deep-sea resource exploration and marine scientific research, wheeled remotely operated vehicles (ROVs) have become crucial for seabed operations. However, under complex seabed conditions, traditional ROV control systems suffer from insufficient trajectory tracking accuracy, poor disturbance rejection capability, and [...] Read more.
With the rapid development of deep-sea resource exploration and marine scientific research, wheeled remotely operated vehicles (ROVs) have become crucial for seabed operations. However, under complex seabed conditions, traditional ROV control systems suffer from insufficient trajectory tracking accuracy, poor disturbance rejection capability, and low dynamic torque distribution efficiency. These issues lead to poor motion stability and high energy consumption on sloped terrains and soft substrates, which limits the effectiveness of deep-sea engineering. To address this, we proposed a comprehensive motion control solution for deep-sea wheeled ROVs. To improve modeling accuracy, a coupled kinematic and dynamic model was developed, together with a body-to-terrain coordinate frame transformation. Based on rigid-body kinematics, three-degree-of-freedom kinematic equations incorporating the slip ratio and sideslip angle were derived. By integrating hydrodynamic effects, seabed reaction forces, the Janosi soil model, and the impact of subsidence depth, a dynamic model that reflects nonlinear wheel–seabed interactions was established. For optimizing disturbance rejection and trajectory tracking, a hierarchical control method was designed. At the kinematic level, an improved model predictive control framework with terminal constraints and quadratic programming was adopted. At the dynamic level, non-singular fast terminal sliding mode control combined with a fixed-time nonlinear observer enabled rapid disturbance estimation. Additionally, a dynamic torque distribution algorithm enhanced traction performance and trajectory tracking accuracy. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

Back to TopTop