Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (936)

Search Parameters:
Keywords = image repair

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 1947 KiB  
Article
Quantitative Magnetic Resonance Imaging and Patient-Reported Outcomes in Patients Undergoing Hip Labral Repair or Reconstruction
by Kyle S. J. Jamar, Adam Peszek, Catherine C. Alder, Trevor J. Wait, Caleb J. Wipf, Carson L. Keeter, Stephanie W. Mayer, Charles P. Ho and James W. Genuario
J. Imaging 2025, 11(8), 261; https://doi.org/10.3390/jimaging11080261 - 5 Aug 2025
Abstract
This study evaluates the relationship between preoperative cartilage quality, measured by T2 mapping, and patient-reported outcomes following labral tear treatment. We retrospectively reviewed patients aged 14–50 who underwent primary hip arthroscopy with either labral repair or reconstruction. Preoperative T2 values of femoral, acetabular, [...] Read more.
This study evaluates the relationship between preoperative cartilage quality, measured by T2 mapping, and patient-reported outcomes following labral tear treatment. We retrospectively reviewed patients aged 14–50 who underwent primary hip arthroscopy with either labral repair or reconstruction. Preoperative T2 values of femoral, acetabular, and labral tissue were assessed from MRI by blinded reviewers. International Hip Outcome Tool (iHOT-12) scores were collected preoperatively and up to two years postoperatively. Associations between T2 values and iHOT-12 scores were analyzed using univariate mixed linear models. Twenty-nine patients were included (mean age of 32.5 years, BMI 24 kg/m2, 48.3% female, and 22 repairs). Across all patients, higher T2 values were associated with higher iHOT-12 scores at baseline and early postoperative timepoints (three months for cartilage and six months for labrum; p < 0.05). Lower T2 values were associated with higher 12- and 24-month iHOT-12 scores across all structures (p < 0.001). Similar trends were observed within the repair and reconstruction subgroups, with delayed negative associations correlating with worse tissue quality. T2 mapping showed time-dependent correlations with iHOT-12 scores, indicating that worse cartilage or labral quality predicts poorer long-term outcomes. These findings support the utility of T2 mapping as a preoperative tool for prognosis in hip preservation surgery. Full article
(This article belongs to the Special Issue New Developments in Musculoskeletal Imaging)
Show Figures

Figure 1

29 pages, 1351 KiB  
Review
Molecular Targets for Pharmacotherapy of Head and Neck Squamous Cell Carcinomas
by Robert Sarna, Robert Kubina, Marlena Paździor-Heiske, Adrianna Halama, Patryk Chudy, Paulina Wala, Kamil Krzykawski and Ilona Nowak
Curr. Issues Mol. Biol. 2025, 47(8), 609; https://doi.org/10.3390/cimb47080609 - 1 Aug 2025
Viewed by 95
Abstract
Head and neck squamous cell carcinomas (HNSCCs) represent a heterogeneous group of tumors with a complex molecular profile. Despite therapeutic advances, patient prognosis remains poor, emphasizing the need for more effective treatment strategies. Traditional chemotherapy, with cisplatin and 5-fluorouracil (5-FU), remains the gold [...] Read more.
Head and neck squamous cell carcinomas (HNSCCs) represent a heterogeneous group of tumors with a complex molecular profile. Despite therapeutic advances, patient prognosis remains poor, emphasizing the need for more effective treatment strategies. Traditional chemotherapy, with cisplatin and 5-fluorouracil (5-FU), remains the gold standard but is limited by toxicity and tumor resistance. Immunotherapy, particularly immune checkpoint inhibitors targeting programmed cell death protein 1 (PD-1) and its ligand (PD-L1), has improved overall survival, especially in patients with high PD-L1 expression. In parallel, targeted therapies such as poly (ADP-ribose) polymerase 1 (PARP1) inhibitors—which impair DNA repair and increase replication stress—have shown promising activity in HNSCC. Cyclin-dependent kinase (CDK) inhibitors are also under investigation due to their potential to correct dysregulated cell cycle control, a hallmark of HNSCC. This review aims to summarize current and emerging pharmacotherapies for HNSCC, focusing on chemotherapy, immunotherapy, and PARP and CDK inhibitors. It also discusses the evolving role of targeted therapies in improving clinical outcomes. Future research directions include combination therapies, nanotechnology-based delivery systems to enhance treatment specificity, and the development of diagnostic tools such as PARP1-targeted imaging to better guide personalized treatment approaches. Full article
(This article belongs to the Special Issue Future Challenges of Targeted Therapy of Cancers: 2nd Edition)
Show Figures

Figure 1

25 pages, 5899 KiB  
Review
Non-Invasive Medical Imaging in the Evaluation of Composite Scaffolds in Tissue Engineering: Methods, Challenges, and Future Directions
by Samira Farjaminejad, Rosana Farjaminejad, Pedram Sotoudehbagha and Mehdi Razavi
J. Compos. Sci. 2025, 9(8), 400; https://doi.org/10.3390/jcs9080400 - 1 Aug 2025
Viewed by 254
Abstract
Tissue-engineered scaffolds, particularly composite scaffolds composed of polymers combined with ceramics, bioactive glasses, or nanomaterials, play a vital role in regenerative medicine by providing structural and biological support for tissue repair. As scaffold designs grow increasingly complex, the need for non-invasive imaging modalities [...] Read more.
Tissue-engineered scaffolds, particularly composite scaffolds composed of polymers combined with ceramics, bioactive glasses, or nanomaterials, play a vital role in regenerative medicine by providing structural and biological support for tissue repair. As scaffold designs grow increasingly complex, the need for non-invasive imaging modalities capable of monitoring scaffold integration, degradation, and tissue regeneration in real-time has become critical. This review summarizes current non-invasive imaging techniques used to evaluate tissue-engineered constructs, including optical methods such as near-infrared fluorescence imaging (NIR), optical coherence tomography (OCT), and photoacoustic imaging (PAI); magnetic resonance imaging (MRI); X-ray-based approaches like computed tomography (CT); and ultrasound-based modalities. It discusses the unique advantages and limitations of each modality. Finally, the review identifies major challenges—including limited imaging depth, resolution trade-offs, and regulatory hurdles—and proposes future directions to enhance translational readiness and clinical adoption of imaging-guided tissue engineering (TE). Emerging prospects such as multimodal platforms and artificial intelligence (AI) assisted image analysis hold promise for improving precision, scalability, and clinical relevance in scaffold monitoring. Full article
(This article belongs to the Special Issue Sustainable Biocomposites, 3rd Edition)
Show Figures

Figure 1

10 pages, 1959 KiB  
Case Report
Rectal Clear Cell Carcinoma Arising from Endometriosis: Case Report and Literature Review
by Adriana Ioana Gaia-Oltean, Dan Boitor-Borza, Voicu Caius Simedrea, Vlad Braicu, Laura-Ancuta Pop and Romeo Micu
Diagnostics 2025, 15(15), 1936; https://doi.org/10.3390/diagnostics15151936 - 31 Jul 2025
Viewed by 205
Abstract
Background and Clinical Significance: Endometriosis is a common gynecological disease that can occasionally be associated with malignant transformation. The most common site of malignant transformation is the ovary, but there can also be rare extragonadal endometriosis-associated malignancy sites, such as the intestines, rectovaginal [...] Read more.
Background and Clinical Significance: Endometriosis is a common gynecological disease that can occasionally be associated with malignant transformation. The most common site of malignant transformation is the ovary, but there can also be rare extragonadal endometriosis-associated malignancy sites, such as the intestines, rectovaginal septum, and abdominal wall. A low number of malignant degenerations of rectal endometriosis are described in the literature. However, the majority of these cases report endometrioid adenocarcinoma as the most frequent histopathological type of tumor. On the other hand, Müllerian clear cell carcinoma is sporadic. Case Presentation: We present the case of a 43-year-old woman with clear cell carcinoma of the rectum, which developed on an endometriosis nodule, and the surgical outcome. Imaging of the case was performed by MRI. The patient was offered curative surgery. The pathology report confirmed a clear cell carcinoma developed on an endometriosis lesion, and immunochemistry helped in the characterization of the tumor. The patient developed a rectovaginal fistula. An ileostomy and surgical repair of the fistulous opening were performed, with a favorable postoperative recovery. Conclusions: Malignant transformation of endometriosis lesions is possible and should be taken into consideration. Müllerian clear cell carcinoma development within rectovaginal endometriosis is extremely rare. Full article
(This article belongs to the Special Issue Diagnosis and Management of Gynecological Cancers: Third Edition)
Show Figures

Figure 1

10 pages, 517 KiB  
Article
Computed Tomography-Derived Psoas Muscle Index as a Diagnostic Predictor of Early Complications Following Endovascular Aortic Repair: A Retrospective Cohort Study from Two European Centers
by Joanna Halman, Jan-Willem Elshof, Ksawery Bieniaszewski, Leszek Bieniaszewski, Natalia Zielińska, Adam Wójcikiewicz, Mateusz Dźwil, Łukasz Znaniecki and Radosław Targoński
J. Clin. Med. 2025, 14(15), 5333; https://doi.org/10.3390/jcm14155333 - 28 Jul 2025
Viewed by 336
Abstract
Background/Objective: Sarcopenia is a predictor of poor surgical outcomes in older adults. The Psoas Muscle Index (PMI), calculated from routine preoperative CT scans, has been proposed as an imaging-based marker of physiological reserve, but its diagnostic utility in vascular surgery remains unclear. We [...] Read more.
Background/Objective: Sarcopenia is a predictor of poor surgical outcomes in older adults. The Psoas Muscle Index (PMI), calculated from routine preoperative CT scans, has been proposed as an imaging-based marker of physiological reserve, but its diagnostic utility in vascular surgery remains unclear. We aimed to assess the predictive value of PMI for early complications following elective abdominal aortic aneurysm (AAA) repair in two European centers. Methods: We retrospectively analyzed 245 patients who underwent open or endovascular AAA repair between 2018 and 2022 in Poland and The Netherlands. PMI was measured at the level of third lumbar vertebrae (L3) level, normalized to height, and stratified into center-specific tertiles. Early complications were compared across tertiles, procedures, and centers. Multivariate logistic regression was used to adjust for age, comorbidities, and procedure type. Results: Low PMI was significantly associated with early complications in EVAR patients at the Polish center (p = 0.004). No associations were found in open repair or at the Dutch center. Mean PMI values did not differ significantly between centers. Conclusions: PMI may serve as a context-dependent imaging biomarker for early risk stratification following AAA repair, particularly in endovascular cases. Its predictive value is influenced by institutional and procedural factors, highlighting the need for prospective validation and standardization before clinical adoption. Full article
(This article belongs to the Section Vascular Medicine)
Show Figures

Figure 1

11 pages, 1106 KiB  
Review
Three-Dimensional Ultraviolet Fluorescence Imaging in Cultural Heritage: A Review of Applications in Multi-Material Artworks
by Luca Lanteri, Claudia Pelosi and Paola Pogliani
J. Imaging 2025, 11(7), 245; https://doi.org/10.3390/jimaging11070245 - 21 Jul 2025
Viewed by 374
Abstract
Ultraviolet-induced fluorescence (UVF) imaging represents a simple but powerful technique in cultural heritage studies. It is a nondestructive and non-invasive imaging technique which can supply useful and relevant information to define the state of conservation of an artifact. UVF imaging also helps to [...] Read more.
Ultraviolet-induced fluorescence (UVF) imaging represents a simple but powerful technique in cultural heritage studies. It is a nondestructive and non-invasive imaging technique which can supply useful and relevant information to define the state of conservation of an artifact. UVF imaging also helps to establish the value of an artwork by indicating inpainting, repaired areas, grouting, etc. In general, ultraviolet fluorescence imaging output takes the form of 2D photographs in the case of both paintings and sculptures. For this reason, a few years ago the idea of applying the photogrammetric method to create 3D digital twins under ultraviolet fluorescence was developed to address the requirements of restorers who need daily documentation tools for their work that are simple to use and can display the entire 3D object in a single file. This review explores recent applications of this innovative method of ultraviolet fluorescence imaging with reference to the wider literature on the UVF technique to make evident the practical importance of its application in cultural heritage. Full article
(This article belongs to the Section Color, Multi-spectral, and Hyperspectral Imaging)
Show Figures

Figure 1

32 pages, 1319 KiB  
Review
Effects of Targeted Radionuclide Therapy on Cancer Cells Beyond the Ablative Radiation Dose
by Guillermina Ferro-Flores, Erika Azorín-Vega, Blanca Ocampo-García, Myrna Luna-Gutiérrez, Pedro Cruz-Nova and Laura Meléndez-Alafort
Int. J. Mol. Sci. 2025, 26(14), 6968; https://doi.org/10.3390/ijms26146968 - 20 Jul 2025
Viewed by 607
Abstract
Targeted radionuclide therapy (TRT) utilizes radiopharmaceuticals to deliver radiation directly to cancer cells while sparing healthy tissues. Beyond the absorbed dose of ablative radiation, TRT induces non-targeted effects (NTEs) that significantly enhance its therapeutic efficacy. These effects include radiation-induced bystander effects (RIBEs), abscopal [...] Read more.
Targeted radionuclide therapy (TRT) utilizes radiopharmaceuticals to deliver radiation directly to cancer cells while sparing healthy tissues. Beyond the absorbed dose of ablative radiation, TRT induces non-targeted effects (NTEs) that significantly enhance its therapeutic efficacy. These effects include radiation-induced bystander effects (RIBEs), abscopal effects (AEs), radiation-induced genomic instability (RIGI), and adaptive responses, which collectively influence the behavior of cancer cells and the tumor microenvironment (TME). TRT also modulates immune responses, promoting immune-mediated cell death and enhancing the efficacy of combination therapies, such as the use of immune checkpoint inhibitors. The molecular mechanisms underlying TRT involve DNA damage, oxidative stress, and apoptosis, with repair pathways like homologous recombination (HR) and non-homologous end joining (NHEJ) playing critical roles. However, challenges such as tumor heterogeneity, hypoxia, and radioresistance limit the effectiveness of this approach. Advances in theranostics, which integrate diagnostic imaging with TRT, have enabled personalized treatment approaches, while artificial intelligence and improved dosimetry offer potential for treatment optimization. Despite the significant survival benefits of TRT in prostate cancer and neuroendocrine tumors, 30–40% of patients remain unresponsive, which highlights the need for further research into molecular pathways, long-term effects, and combined therapies. This review outlines the dual mechanisms of TRT, direct toxicity and NTEs, and discusses strategies to enhance its efficacy and expand its use in oncology. Full article
(This article belongs to the Special Issue Targeted Therapy of Cancer: Innovative Drugs and Molecular Tools)
Show Figures

Figure 1

21 pages, 2522 KiB  
Article
Using Convolutional Neural Networks and Pattern Matching for Digitization of Printed Circuit Diagrams
by Lukas Fuchs, Marc Diesse, Matthias Weber, Arif Rasim, Julian Feinauer and Volker Schmidt
Electronics 2025, 14(14), 2889; https://doi.org/10.3390/electronics14142889 - 19 Jul 2025
Viewed by 258
Abstract
The efficient and reliable maintenance and repair of industrial machinery depend critically on circuit diagrams, which serve as essential references for troubleshooting and must be updated when machinery is modified. However, many circuit diagrams are not available in structured, machine-readable format; instead, they [...] Read more.
The efficient and reliable maintenance and repair of industrial machinery depend critically on circuit diagrams, which serve as essential references for troubleshooting and must be updated when machinery is modified. However, many circuit diagrams are not available in structured, machine-readable format; instead, they often exist as unstructured PDF files, rendered images, or even photographs. Existing digitization methods often address isolated tasks, such as symbol detection, but fail to provide a comprehensive solution. This paper presents a novel pipeline for extracting the underlying graph structures of circuit diagrams, integrating image preprocessing, pattern matching, and graph extraction. A U-net model is employed for noise removal, followed by gray-box pattern matching for device classification, line detection by morphological operations, and a final graph extraction step to reconstruct circuit connectivity. A detailed error analysis highlights the strengths and limitations of each pipeline component. On a skewed test diagram from a scan with slight rotation, the proposed pipeline achieved a device detection accuracy of 88.46% with no false positives and a line detection accuracy of 94.7%. Full article
Show Figures

Figure 1

16 pages, 1625 KiB  
Article
Flow Characteristics by Blood Speckle Imaging in Non-Stenotic Congenital Aortic Root Disease Surrounding Valve-Preserving Operations
by Shihao Liu, Justin T. Tretter, Lama Dakik, Hani K. Najm, Debkalpa Goswami, Jennifer K. Ryan and Elias Sundström
Bioengineering 2025, 12(7), 776; https://doi.org/10.3390/bioengineering12070776 - 17 Jul 2025
Viewed by 431
Abstract
Contemporary evaluation and surgical approaches in congenital aortic valve disease have yielded limited success. The ability to evaluate and understand detailed flow characteristics surrounding surgical repair may be beneficial. This study explores the feasibility and utility of echocardiographic-based blood speckle imaging (BSI) in [...] Read more.
Contemporary evaluation and surgical approaches in congenital aortic valve disease have yielded limited success. The ability to evaluate and understand detailed flow characteristics surrounding surgical repair may be beneficial. This study explores the feasibility and utility of echocardiographic-based blood speckle imaging (BSI) in assessing pre- and post-operative flow characteristics in those with non-stenotic congenital aortic root disease undergoing aortic valve repair or valve-sparing root replacement (VSRR) surgery. Transesophageal echocardiogram was performed during the pre-operative and post-operative assessment surrounding aortic surgery for ten patients with non-stenotic congenital aortic root disease. BSI, utilizing block-matching algorithms, enabled detailed visualization and quantification of flow parameters from the echocardiographic data. Post-operative BSI unveiled enhanced hemodynamic patterns, characterized by quantified changes suggestive of the absence of stenosis and no more than trivial regurgitation. Rectification of an asymmetric jet and the reversal of flow on the posterior aspect of the ascending aorta resulted in a reduced oscillatory shear index (OSI) of 0.0543±0.0207 (pre-op) vs. 0.0275±0.0159 (post-op) and p=0.0044, increased peak wall shear stress of 1.9423±0.6974 (pre-op) vs. 3.6956±1.4934 (post-op) and p=0.0035, and increased time-averaged wall shear stress of 0.6885±0.8004 (pre-op) vs. 0.8312±0.303 (post-op) and p=0.23. This correction potentially attenuates cellular alterations within the endothelium. This study demonstrates that children and young adults with non-stenotic congenital aortic root disease undergoing valve-preserving operations experience significant improvements in flow dynamics within the left ventricular outflow tract and aortic root, accompanied by a reduction in OSI. These hemodynamic enhancements extend beyond the conventional echocardiographic assessments, offering immediate and valuable insights into the efficacy of surgical interventions. Full article
Show Figures

Graphical abstract

17 pages, 6691 KiB  
Article
Antibiotic-Coated Melt Electrowritten Polycaprolactone Meshes: Fabrication and In Vitro Antibacterial Evaluation
by Joana Pinheiro Martins, Ana Sofia de Sousa, Sofia Costa de Oliveira, António Augusto Fernandes and Elisabete Teixeira da Silva
Macromol 2025, 5(3), 33; https://doi.org/10.3390/macromol5030033 - 16 Jul 2025
Viewed by 300
Abstract
In recent years, pelvic organ prolapse (POP) cases have been rising, affecting women’s quality of life. Synthetic surgical transvaginal meshes used for POP treatment were withdrawn from the United States market in 2019 due to high risks, including infection, vaginal mesh erosion, and [...] Read more.
In recent years, pelvic organ prolapse (POP) cases have been rising, affecting women’s quality of life. Synthetic surgical transvaginal meshes used for POP treatment were withdrawn from the United States market in 2019 due to high risks, including infection, vaginal mesh erosion, and POP reoccurrence. Biodegradable mesh implants with three-dimensional printing technology have emerged as an innovative alternative. In this study, polycaprolactone (PCL) meshes for POP repair were fabricated using melt electrospinning writing (MEW) and mechanically evaluated through uniaxial tensile tests. Following this, they were coated with antibiotics—azithromycin, gentamicin sulfate, and ciprofloxacin—commonly used for genitourinary tract infections. Zone inhibition and biofilm assays evaluated antibiotic effectiveness in preventing mesh infections by Escherichia coli, and methicillin-susceptible (MSSA) and methicillin-resistant (MRSA) Staphylococcus aureus. The meshes presented a mechanical behavior closer to vaginal tissue than commercially available meshes. Fourier transform infrared analysis confirmed antibiotic incorporation. Ciprofloxacin demonstrated antibacterial activity against MRSA, with a 92% reduction in metabolic activity and a 99% biomass reduction. Gentamicin and ciprofloxacin displayed inhibitory activity against MSSA and E. coli. Scanning electron microscopy images support these conclusions. This methodology may offer a more effective, patient-friendly solution for POP repair, improving healing and the quality of life for affected women. Full article
Show Figures

Figure 1

28 pages, 9133 KiB  
Article
Semantic Segmentation of Corrosion in Cargo Containers Using Deep Learning
by David Ornelas, Daniel Canedo and António J. R. Neves
Sustainability 2025, 17(14), 6480; https://doi.org/10.3390/su17146480 - 15 Jul 2025
Viewed by 330
Abstract
As global trade expands, the pressure on container terminals to improve efficiency and capacity grows. Several inspections are performed during the loading and unloading process to minimize delays. In this paper, we explore corrosion as it poses a persistent threat that compromises the [...] Read more.
As global trade expands, the pressure on container terminals to improve efficiency and capacity grows. Several inspections are performed during the loading and unloading process to minimize delays. In this paper, we explore corrosion as it poses a persistent threat that compromises the durability of containers and leads to costly repairs. However, identifying this threat is no simple task. Corrosion can take many forms, progress unpredictably, and be influenced by various environmental conditions and container types. In collaboration with the Port of Sines, Portugal, this work explores a potential solution for a real-time computer-vision system, with the aim to improve container inspections using deep-learning algorithms. We propose a system based on the semantic segmentation model, DeepLabv3+, for precise corrosion detection using images provided from the terminal. After preparing the data and annotations, we explored two approaches. First, we leveraged a pre-trained model originally designed for bridge corrosion detection. Second, we fine-tuned a version specifically for cargo container assessment. With a corrosion detection performance of 49%, this work showcases the potential of deep learning to automate inspection processes. It also highlights the importance of generalization and training in real-world scenarios and explores innovative solutions for smart gates and terminals. Full article
Show Figures

Graphical abstract

21 pages, 21264 KiB  
Review
Screening and Procedural Guidance for Mitral Transcatheter Edge-to-Edge Repair (M-TEER)
by Andromahi Zygouri, Prayuth Rasmeehirun, Guillaume L’Official, Konstantinos Papadopoulos, Ignatios Ikonomidis and Erwan Donal
J. Clin. Med. 2025, 14(14), 4902; https://doi.org/10.3390/jcm14144902 - 10 Jul 2025
Viewed by 1105
Abstract
Mitral regurgitation (MR) is a common valvular heart disease associated with significant morbidity and mortality. For patients at high or prohibitive surgical risk, mitral transcatheter edge-to-edge repair (M-TEER) offers a less invasive alternative to surgery. This review outlines key aspects of patient selection [...] Read more.
Mitral regurgitation (MR) is a common valvular heart disease associated with significant morbidity and mortality. For patients at high or prohibitive surgical risk, mitral transcatheter edge-to-edge repair (M-TEER) offers a less invasive alternative to surgery. This review outlines key aspects of patient selection and procedural planning for M-TEER, with a focus on clinical and echocardiographic criteria essential for success. Comprehensive imaging—especially 2D and 3D transesophageal echocardiography—is critical to assess leaflet anatomy, coaptation geometry, and mitral valve area. Selection criteria differ between primary and secondary MR and are guided by trials such as COAPT and MITRA-FR. Optimal outcomes rely on careful screening, anatomical suitability, and multidisciplinary evaluation. With growing experience and advancing technology, M-TEER has become a transformative option for treating severe MR in non-surgical candidates. Full article
(This article belongs to the Special Issue Advances in Structural Heart Diseases)
Show Figures

Figure 1

15 pages, 2509 KiB  
Article
A New Tool to Decrease Interobserver Variability in Biomarker Annotation in Solid Tumor Tissue for Spatial Transcriptomic Analysis
by Sravya Palavalasa, Emily Baker, Jack Freeman, Aditri Gokul, Weihua Zhou, Dafydd Thomas, Wajd N. Al-Holou, Meredith A. Morgan, Theodore S. Lawrence and Daniel R. Wahl
Curr. Issues Mol. Biol. 2025, 47(7), 531; https://doi.org/10.3390/cimb47070531 - 9 Jul 2025
Viewed by 294
Abstract
Integrating spatial transcriptomic data with immunofluorescence image data is challenging using existing tools due to their differences in spatial resolution. Immunofluorescence provides information about protein expression at the cellular or subcellular level, whereas spatial transcriptomic platforms typically rely on multicellular “spots” for RNA [...] Read more.
Integrating spatial transcriptomic data with immunofluorescence image data is challenging using existing tools due to their differences in spatial resolution. Immunofluorescence provides information about protein expression at the cellular or subcellular level, whereas spatial transcriptomic platforms typically rely on multicellular “spots” for RNA profiling. Our study coupled spatial transcriptomics of irradiated glioblastoma tissues with immunofluorescence for γH2AX, a marker of DNA damage within the nuclei of cells. We then compared gene expression in γH2AX-positive and negative regions within the tissue. There was significant interobserver variability in manual annotation of γH2AX positivity in multicellular spots by three different researchers (Kappa statistic = 0.345), despite all of them being familiar with γH2AX immunofluorescence and having predefined imaging parameters for annotation. This variability led to different researchers nominating different genes as being associated with DNA repair. To overcome this problem, we have developed a new tool using MATLAB. This tool performs “spot”-wise image analysis and uses researcher-defined parameters such as immunofluorescent marker intensity threshold and number of positive cells to annotate the “spots” as γH2AX positive or negative. The tissue with the most variability in manual annotation was annotated reproducibly by our MATLAB tool, leading to reproducible downstream analysis. Full article
(This article belongs to the Topic Single-Cell Technologies: From Research to Application)
Show Figures

Figure 1

30 pages, 3108 KiB  
Article
Research on the Integrated Scheduling of Imaging and Data Transmission for Earth Observation Satellites
by Guanfei Yu and Kunlun Zhang
Algorithms 2025, 18(7), 418; https://doi.org/10.3390/a18070418 - 8 Jul 2025
Viewed by 259
Abstract
This study focuses on the integrated scheduling issues of imaging and data transmission for Earth observation satellites, where each target needs to be imaged and transmitted within a feasible time window. The scheduling process also takes into account the constraints of satellite energy [...] Read more.
This study focuses on the integrated scheduling issues of imaging and data transmission for Earth observation satellites, where each target needs to be imaged and transmitted within a feasible time window. The scheduling process also takes into account the constraints of satellite energy and storage capacity. In this paper, a mixed-integer linear programming (MILP) model for the integrated scheduling of imaging data transmission has been proposed. The MILP model was validated through numerical experiments based on simulation data from SuperView-1 series satellites. Additionally, some neighborhood mechanisms are designed based on the characteristics of the problem. Based on the neighborhood mechanisms, the rule-based large neighborhood search algorithm (RLNS) was designed, which constructs initial solutions through various scheduling rules and iteratively optimizes the solutions using multiple destroying and repairing operators. To address the shortcomings of the overly regular mechanism of the destruction and repair operator for large neighborhood search, we design a genetic algorithms (GA) for tuning the heuristic scheduling rules. The calculation results demonstrate the effectiveness of RLNS and GA, highlighting their advantages over CPLEX in solving large-scale problems. Full article
(This article belongs to the Section Combinatorial Optimization, Graph, and Network Algorithms)
Show Figures

Figure 1

14 pages, 731 KiB  
Article
Enhancing Bone–Cartilage Interface Healing in Osteochondral Autograft Transplantation: Effects of BMAC Augmentation and Rehabilitation Protocols
by Robert Gherghel, Ilie Onu, Ana Onu, Ioana-Irina Rezus, Ovidiu Alexa, Daniel Andrei Iordan, Luana Andreea Macovei and Elena Rezus
Life 2025, 15(7), 1066; https://doi.org/10.3390/life15071066 - 3 Jul 2025
Viewed by 453
Abstract
This study aimed to evaluate the effectiveness of different rehabilitation protocols following osteochondral autograft transplantation (OAT) in patients with focal osteochondral defects of the femoral condyle, using the MOCART 2.0 knee score as a primary imaging outcome. Twenty-nine patients were divided into three [...] Read more.
This study aimed to evaluate the effectiveness of different rehabilitation protocols following osteochondral autograft transplantation (OAT) in patients with focal osteochondral defects of the femoral condyle, using the MOCART 2.0 knee score as a primary imaging outcome. Twenty-nine patients were divided into three groups: Group 1 (n = 9) received OAT with bone marrow aspirate concentrate (BMAC) and a 12-week two-phase rehabilitation program; Group 2 (n = 11) received OAT with a 12-week program without BMAC; and Group 3 (n = 9) received OAT with a shortened 6-week program. At the 12-month follow-up, Group 1 demonstrated a superior cartilage repair quality, with the highest mean MOCART 2.0 score (96.1), compared to Group 2 (80.2) and Group 3 (71.7). Notably, complete defect filling was observed in five patients in Group 1 versus four in Group 2 and only one in Group 3. The integration and surface integrity were also better preserved in Group 1. The addition of BMAC and an extended, progressive rehabilitation protocol significantly enhanced the morphological cartilage repair parameters. These results suggest that a biologically enhanced and prolonged recovery plan may offer a greater structural restoration of cartilage after OAT than conventional or accelerated protocols. Full article
(This article belongs to the Special Issue Recent Advances in Physiotherapy for Musculoskeletal)
Show Figures

Figure 1

Back to TopTop