Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (28)

Search Parameters:
Keywords = ice-albedo feedback

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4801 KiB  
Article
Projection of Cloud Vertical Structure and Radiative Effects Along the South Asian Region in CMIP6 Models
by Praneta Khardekar, Hemantkumar S. Chaudhari, Vinay Kumar and Rohini Lakshman Bhawar
Atmosphere 2025, 16(6), 746; https://doi.org/10.3390/atmos16060746 - 18 Jun 2025
Viewed by 350
Abstract
The evaluation of cloud distribution, properties, and their interaction with the radiation (longwave and shortwave) is of utmost importance for the proper assessment of future climate. Therefore, this study focuses on the Coupled Model Inter-Comparison Project Phase-6 (CMIP6) historical and future projections using [...] Read more.
The evaluation of cloud distribution, properties, and their interaction with the radiation (longwave and shortwave) is of utmost importance for the proper assessment of future climate. Therefore, this study focuses on the Coupled Model Inter-Comparison Project Phase-6 (CMIP6) historical and future projections using the Shared Socio-Economic Pathways (SSPs) low- (ssp1–2.6), moderate- (ssp2–4.5), and high-emission (ssp5–8.5) scenarios along the South Asian region. For this purpose, a multi-model ensemble mean approach is employed to analyze the future projections in the low-, mid-, and high-emission scenarios. The cloud water content and cloud ice content in the CMIP6 models show an increase in upper and lower troposphere simultaneously in future projections as compared to ERA5 and historical projections. The longwave and shortwave cloud radiative effects at the top of the atmosphere are examined, as they offer a global perspective on radiation changes that influence atmospheric circulation and climate variability. The longwave cloud radiative effect (44.14 W/m2) and the shortwave cloud radiative effect (−73.43 W/m2) likely indicate an increase in cloud albedo. Similarly, there is an expansion of Hadley circulation (intensified subsidence) towards poleward, indicating the shifting of subtropical high-pressure zones, which can influence regional monsoon dynamics and cloud distributions. The impact of future projections on the tropospheric temperature (200–600 hPa) is studied, which seems to become more concentrated along the Tibetan Plateau in the moderate- and high-emission scenarios. This increase in the tropospheric temperature at 200–600 hPa reduces atmospheric stability, allowing stronger convection. Hence, the strengthening of convective activities may be favorable in future climate conditions. Thus, the correct representation of the model physics, cloud-radiative feedback, and the large-scale circulation that drives the Indian Summer Monsoon (ISM) is of critical importance in Coupled General Circulation Models (GCMs). Full article
(This article belongs to the Section Climatology)
Show Figures

Figure 1

25 pages, 3076 KiB  
Article
The Milankovitch Theory Revisited to Explain the Mid-Pleistocene and Early Quaternary Transitions
by Jean-Louis Pinault
Atmosphere 2025, 16(6), 702; https://doi.org/10.3390/atmos16060702 - 10 Jun 2025
Viewed by 1414
Abstract
The theory of orbital forcing as formulated by Milankovitch involves the mediation by the advance (retreat) of ice sheets and the resulting variations in terrestrial albedo. This approach poses a major problem: that of the period of glacial cycles, which varies over time, [...] Read more.
The theory of orbital forcing as formulated by Milankovitch involves the mediation by the advance (retreat) of ice sheets and the resulting variations in terrestrial albedo. This approach poses a major problem: that of the period of glacial cycles, which varies over time, as happened during the Mid-Pleistocene Transition (MPT). Here, we show that various hypotheses are called into question because of the finding of a second transition, the Early Quaternary Transition (EQT), resulting from the million-year period eccentricity parameter. We propose to complement the orbital forcing theory to explain both the MPT and the EQT by invoking the mediation of western boundary currents (WBCs) and the resulting variations in heat transfer from the low to the high latitudes. From observational and theoretical considerations, it appears that very long-period Rossby waves winding around subtropical gyres, the so-called “gyral” Rossby waves (GRWs), are resonantly forced in subharmonic modes from variations in solar irradiance resulting from the solar and orbital cycles. Two mutually reinforcing positive feedbacks of the climate response to orbital forcing have been evidenced: namely the change in the albedo resulting from the cyclic growth and retreat of ice sheets in accordance with the standard Milankovitch theory, and the modulation of the velocity of the WBCs of subtropical gyres. Due to the inherited resonance properties of GRWs, the response of the climate system to orbital forcing is sensitive to small changes in the forcing periods. For both the MPT and the EQT, the transition occurred when the forcing period merged with one of the natural periods of the climate system. The MPT occurred 1.25 Ma ago, when the dominant period shifted from 41 ka to 98 ka, with both periods corresponding to changes in the Earth’s obliquity and eccentricity. The EQT occurred 2.38 Ma ago, when the dominant period shifted from 408 ka to 786 ka, with both periods corresponding to changes in the Earth’s eccentricity. Through this paradigm shift, the objective of this self-consistent approach is essentially to spark new debates around a problem that has been pending since the discovery of glacial–interglacial cycles, where many hypotheses have been put forward without, however, fully answering all our questions. Full article
(This article belongs to the Section Climatology)
Show Figures

Figure 1

36 pages, 5902 KiB  
Review
Arctic Warming: Cascading Climate Impacts and Global Consequences
by Ishfaq Hussain Malik, Rayees Ahmed, James D. Ford and Abdur Rahim Hamidi
Climate 2025, 13(5), 85; https://doi.org/10.3390/cli13050085 - 27 Apr 2025
Viewed by 3033
Abstract
The Arctic is undergoing unprecedented transformations with implications for regional ecosystems, Indigenous communities, and global climate systems. Ocean heat transport, permafrost thawing, and ice–albedo interactions are some of the feedback mechanisms that contribute to the increase in average temperatures in the Arctic. These [...] Read more.
The Arctic is undergoing unprecedented transformations with implications for regional ecosystems, Indigenous communities, and global climate systems. Ocean heat transport, permafrost thawing, and ice–albedo interactions are some of the feedback mechanisms that contribute to the increase in average temperatures in the Arctic. These processes increase the risks associated with climate change globally by speeding up the loss of sea ice, changes in biodiversity, and greenhouse gas emissions. This review synthesises recent advances in Arctic climate science, focusing on the drivers and feedback mechanisms of Arctic amplification, its cascading impacts on ecosystems and socioeconomic systems, and emerging governance challenges. It highlights critical knowledge gaps, specifically regarding the importance of Indigenous knowledge and interdisciplinary approaches in climate adaptation strategies. This study emphasises the need for inclusive, transformative, and collaborative approaches by analysing governance frameworks, climate policies, and community resilience initiatives. Innovative adaptation strategies are suggested, such as ecosystem-based adaptations, climate-resilient infrastructure, and the switch to renewable energy to address these issues. Arctic-specific governance recommendations are proposed to develop sustainable solutions that preserve its ecology while reducing its global effects by filling research gaps and promoting international collaboration. The future of the Arctic is not merely a regional issue but also a global one, requiring swift and coordinated action to address climate challenges. Full article
Show Figures

Figure 1

20 pages, 8703 KiB  
Article
Atmospheric Variability and Sea-Ice Changes in the Southern Hemisphere
by Carlos Diego Gurjão, Luciano Ponzi Pezzi, Claudia Klose Parise, Flávio Barbosa Justino, Camila Bertoletti Carpenedo, Vanúcia Schumacher and Alcimoni Comin
Atmosphere 2025, 16(3), 284; https://doi.org/10.3390/atmos16030284 - 27 Feb 2025
Viewed by 959
Abstract
The Antarctic sea ice concentration (SIC) plays a crucial role in global climate dynamics by influencing atmospheric and oceanic circulation. This study examines SIC variability and its relationship with major climate modes, including the El Niño-Southern Oscillation (ENSO), Pacific-South American (PSA) pattern, Southern [...] Read more.
The Antarctic sea ice concentration (SIC) plays a crucial role in global climate dynamics by influencing atmospheric and oceanic circulation. This study examines SIC variability and its relationship with major climate modes, including the El Niño-Southern Oscillation (ENSO), Pacific-South American (PSA) pattern, Southern Annular Mode (SAM), and Antarctic Dipole (ADP). Using NSIDC satellite-derived sea ice data and ERA5 reanalysis from 1980 to 2022, we analyzed SIC anomalies in the Weddell, Ross, and Bellingshausen and Amundsen (B&A) Seas, assessing their response to climatic forcings across different timescales. Our findings reveal strong linkages between SIC variability and large-scale atmospheric circulation. ENSO-related teleconnections drive a dipolar SIC response, with warming in the Pacific sector and cooling in the Atlantic during El Niño, and the opposite pattern during La Niña. PSA and ADP further modulate this response by altering Rossby wave propagation and heat fluxes, leading to significant SIC fluctuations. The ADP emerges as a dominant driver of interannual SIC anomalies, showing an out-of-phase relationship between the Atlantic and Pacific sectors of the Southern Ocean. Regional SIC trends exhibit contrasting patterns: the Ross Sea shows a significant positive SIC trend, while the B&A and Weddell Seas experience persistent negative anomalies due to enhanced meridional heat transport and stronger westerly winds. SAM strongly influences SIC, particularly in the Atlantic sector, with delayed responses of up to six months, likely due to ice-albedo feedbacks and ocean memory effects. These results enhance our understanding of Antarctic sea ice variability and its sensitivity to large-scale climate oscillations. Given the observed trends and ongoing climate change, further research is needed to assess how these processes will evolve under future warming scenarios. This study highlights the importance of continuous satellite observations and high-resolution climate modeling for improving projections of Antarctic sea ice behavior and its implications for the global climate system. Full article
(This article belongs to the Section Climatology)
Show Figures

Figure 1

17 pages, 1427 KiB  
Article
Tropical Glaciation and Glacio-Epochs: Their Tectonic Origin in Paleogeography
by Hsien-Wang Ou
Climate 2025, 13(1), 9; https://doi.org/10.3390/cli13010009 - 2 Jan 2025
Cited by 1 | Viewed by 967
Abstract
Precambrian tropical glaciation is an enigma of Earth’s climate. Overlooking fundamental difference of land/sea icelines, it was equated with a global frozen ocean, which is at odds with the sedimentary evidence of an active hydrological cycle, and its genesis via the runaway ice–albedo [...] Read more.
Precambrian tropical glaciation is an enigma of Earth’s climate. Overlooking fundamental difference of land/sea icelines, it was equated with a global frozen ocean, which is at odds with the sedimentary evidence of an active hydrological cycle, and its genesis via the runaway ice–albedo feedback conflicts with the mostly ice-free Proterozoic when its trigger threshold was well exceeded by the dimmer sun. In view of these shortfalls, I put forth two key hypotheses of the tropical glaciation: first, if seeded by mountain glaciers, the land ice would advance on sea level to be halted by above-freezing summer temperature, which thus abuts an open cozonal ocean; second, a tropical supercontinent would block the brighter tropical sun to cause the required cooling. To test these hypotheses, I formulate a minimal tropical/polar box model to examine the temperature response to a varying tropical land area and show that tropical glaciation is indeed plausible when the landmass is concentrated in the tropics despite uncertain model parameters. In addition, given the chronology of paleogeography, the model may explain the observed deep time climate to provide a unified account of the faint young Sun paradox, Precambrian tropical glaciations, and Phanerozoic glacio-epochs, reinforcing, therefore, the uniformitarian principle. Full article
Show Figures

Figure 1

23 pages, 79143 KiB  
Article
Remote Sensing-Based Simulation of Snow Grain Size and Spatial–Temporal Variation Characteristics of Northeast China from 2001 to 2019
by Fan Zhang, Lijuan Zhang, Yanjiao Zheng, Shiwen Wang and Yutao Huang
Remote Sens. 2023, 15(20), 4970; https://doi.org/10.3390/rs15204970 - 15 Oct 2023
Cited by 2 | Viewed by 1821
Abstract
The size of snow grains is an important parameter in cryosphere studies. It is the main parameter affecting snow albedo and can have a feedback effect on regional climate change, the water cycle and ecological security. Larger snow grains increase the likelihood of [...] Read more.
The size of snow grains is an important parameter in cryosphere studies. It is the main parameter affecting snow albedo and can have a feedback effect on regional climate change, the water cycle and ecological security. Larger snow grains increase the likelihood of light absorption and are important for passive microwave remote sensing, snow physics and hydrological modelling. Snow models would benefit from more observations of surface grain size. This paper uses an asymptotic radiative transfer model (ART model) based on MOD09GA ground reflectance data. A simulation of snow grain size (SGS) in northeast China from 2001 to 2019 was carried out using a two-channel algorithm. We verified the accuracy of the inversion results by using ground-based observations to obtain stratified snow grain sizes at 48 collection sites in northeastern China. Furthermore, we analysed the spatial and temporal trends of snow grain size in Northeastern China. The results show that the ART model has good accuracy in inverting snow grain size, with an RMSD of 65 μm, which showed a non-significant increasing trend from 2001 to 2019 in northeast China. The annual average SGS distribution ranged from 430.83 to 452.38 μm in northeast China, 2001–2019. The mean value was 441.78 μm, with an annual increase of 0.26 μm/a, showing a non-significant increasing trend and a coefficient of variation of 0.014. The simulations show that there is also intermonth variation in SGS, with December having the largest snow grain size with a mean value of 453.92 μm, followed by January and February with 450.77 μm and 417.78 μm, respectively. The overall spatial distribution of SGS in the northeastern region shows the characteristics of being high in the north and low in the south, with values ranging from 380.248 μm to 497.141 μm. Overall, we clarified the size and distribution of snow grains over a long time series in the northeast. The results are key to an accurate evaluation of their effect on snow–ice albedo and their radiative forcing effect. Full article
(This article belongs to the Special Issue Monitoring Cold-Region Water Cycles Using Remote Sensing Big Data)
Show Figures

Figure 1

18 pages, 7307 KiB  
Article
Changes in the Antarctic’s Summer Surface Albedo, Observed by Satellite since 1982 and Associated with Sea Ice Anomalies
by Yuqi Sun, Yetang Wang, Zhaosheng Zhai and Min Zhou
Remote Sens. 2023, 15(20), 4940; https://doi.org/10.3390/rs15204940 - 12 Oct 2023
Cited by 1 | Viewed by 1989
Abstract
In polar regions, positive feedback of snow and ice albedo can intensify global warming. While recent significant decreases in Arctic surface ice albedo have drawn considerable attention, Antarctic surface albedo variability remains underexplored. Here, satellite albedo product CLARA-A2.1-SAL is first validated and then [...] Read more.
In polar regions, positive feedback of snow and ice albedo can intensify global warming. While recent significant decreases in Arctic surface ice albedo have drawn considerable attention, Antarctic surface albedo variability remains underexplored. Here, satellite albedo product CLARA-A2.1-SAL is first validated and then used to investigate spatial and temporal trends in the summer albedo over the Antarctic from 1982 to 2018, along with their association with Antarctic sea ice changes. The SAL product matches well surface albedo observations from eight stations, suggesting its robust performance in Antarctica. Summer surface albedo averaged over the entire ice sheet shows a downward trend since 1982, albeit not statistically significant. In contrast, a significant upward trend is observed in the sea ice region. Spatially, for ice sheet surface albedo, positive trends occur in the eastern Antarctica Peninsula and the margins of East Antarctica, whereas other regions exhibit negative trends, most prominently in the Ross and Ronne ice shelves. For sea ice albedo, positive trends are observed in the Ross Sea and the Weddell Sea, but negative trends are observed in the Bellingshausen and the Amundsen Seas. Between 2016 and 2018, an unusual decrease in the sea ice extent significantly affected both sea ice and Antarctic ice sheet (AIS) surface albedo changes. However, for the 1982–2015 period, while the effect of sea ice on its own albedo is significant, its impact on ice sheet albedo is less apparent. Air temperature and snow depth also contribute much to sea ice albedo changes. However, on ice sheet surface albedo, the influence of temperature and snow accumulation appears limited. Full article
(This article belongs to the Special Issue New Insights in Remote Sensing of Snow and Glaciers)
Show Figures

Graphical abstract

21 pages, 2402 KiB  
Article
A Theory of Orbital-Forced Glacial Cycles: Resolving Pleistocene Puzzles
by Hsien-Wang Ou
J. Mar. Sci. Eng. 2023, 11(3), 564; https://doi.org/10.3390/jmse11030564 - 6 Mar 2023
Cited by 4 | Viewed by 2907
Abstract
It is recognized that orbital forcing of the ice sheet is through the summer air temperature, which however covaries with the sea surface temperature and both precede the ice volume signal, suggesting the ocean as an intermediary of the glacial cycles. To elucidate [...] Read more.
It is recognized that orbital forcing of the ice sheet is through the summer air temperature, which however covaries with the sea surface temperature and both precede the ice volume signal, suggesting the ocean as an intermediary of the glacial cycles. To elucidate the ocean role, I present here a minimal box model, which entails two key physics overlooked by most climate models. First, I discern a robust ‘convective’ bound on the ocean cooling in a coupled ocean/atmosphere, and second, because of their inherent turbulence, I posit that the climate is a macroscopic manifestation of a nonequilibrium thermodynamic system. As their deductive outcome, the ocean entails bistable equilibria of maximum entropy production, which would translate to bistable ice states of polar cap and Laurentide ice sheet, enabling large ice-volume signal when subjected to modulated forcing. Since the bistable interval is lowered during Pleistocene cooling, I show that its interplay with the ice–albedo feedback may account for the mid-Pleistocene transition from 41-ky obliquity cycles to 100-ky ice-age cycles paced by eccentricity. Observational tests of the theory and its parsimony in resolving myriad glacial puzzles suggest that the theory has captured the governing physics of the Pleistocene glacial cycles. Full article
Show Figures

Graphical abstract

23 pages, 8885 KiB  
Article
Development of a New Analytical Method for the Characterization and Quantification of the Organic and Inorganic Carbonaceous Fractions in Snow Samples Using TOC and TOT Analysis
by Mattia Borelli, Andrea Bergomi, Valeria Comite, Vittoria Guglielmi, Chiara Andrea Lombardi, Stefania Gilardoni, Biagio Di Mauro, Marina Lasagni and Paola Fermo
Atmosphere 2023, 14(2), 371; https://doi.org/10.3390/atmos14020371 - 13 Feb 2023
Cited by 4 | Viewed by 2294
Abstract
Different Light-Absorbing Snow Impurities (LASI) can deposit on snow- and ice-covered surfaces. These particles are able to decrease snow and ice albedo and trigger positive albedo feedback. The aim of this work was to develop a new method to quantify the carbonaceous fractions [...] Read more.
Different Light-Absorbing Snow Impurities (LASI) can deposit on snow- and ice-covered surfaces. These particles are able to decrease snow and ice albedo and trigger positive albedo feedback. The aim of this work was to develop a new method to quantify the carbonaceous fractions that are present in snow and ice samples that contribute significantly to their darkening. Currently, in the literature, there is an absence of a unified and accepted method to perform these studies. To set up the method proposed here, snow samples were collected at two Italian locations, Claviere and Val di Pejo (Northern Italy). The samples were analyzed using two main techniques, Total Organic Carbon analysis (TOC analysis) and Thermal Optical analysis in Transmittance mode (TOT), which enabled the speciation of the carbonaceous fraction into organic (OC), inorganic (IC), and elemental carbon (EC), and further into the soluble and insoluble parts. The results highlighted a correlation between the nature of the sample (i.e., location, age, and exposure of the snow) and the experimental results, giving validity to the method. For example, the abundant presence of terrigenous constituents was reflected in high amounts of insoluble IC. Moreover, due to the trend between insoluble IC and Elemental Carbon (EC), the role of IC in TOT analysis was investigated. Indeed, IC turned out to be an interfering agent, suggesting that the two techniques (TOC analysis and TOT) are complementary and therefore need to be used in parallel when performing these studies. Finally, the results obtained indicate that the newly proposed method is suitable for studying the carbonaceous fractions in snow samples. Full article
(This article belongs to the Section Biosphere/Hydrosphere/Land–Atmosphere Interactions)
Show Figures

Figure 1

15 pages, 653 KiB  
Article
Physics of the Earth’s Glacial Cycle
by Boris M. Smirnov
Foundations 2022, 2(4), 1114-1128; https://doi.org/10.3390/foundations2040073 - 7 Dec 2022
Cited by 2 | Viewed by 2245
Abstract
The evolution of the atmospheric temperature in the past, resulted from the EPICA project (European Project for Ice Coring in Antarctica) for the analysis of air bubbles in ice deposits near three weather stations in Antarctica, includes several glacial cycles. According to these [...] Read more.
The evolution of the atmospheric temperature in the past, resulted from the EPICA project (European Project for Ice Coring in Antarctica) for the analysis of air bubbles in ice deposits near three weather stations in Antarctica, includes several glacial cycles. According to these studies, the glacial cycle consists of a slow cooling of the Earth’s surface at a rate of about 104C per year for almost the entire time of a single cycle (about 100 thousand years) and of a fast process of heating the planet, similar to a thermal explosion. The observed cooling of the planet follows from the imbalance of energy fluxes absorbed by the Earth and going into its surrounding space, and this imbalance is four orders of magnitude less than the accuracy of determination of the fluxes themselves. The inconsistency of the popular Milankovich theory is shown, according to which glacial cycles in the evolution of the Earth’s thermal state are associated with changes in the Earth’s orbit relative to the Sun. In considering the glacial cycle as the transition between the warm (contemporary) and cold thermal states of the Earth with a difference in their temperatures of 12 C according to measurements, we construct the energetic balance for each of Earth’s states. The fast transition between the Earth’s cold and warm states results from the change of the Earth’s albedo due to the different volcano activity in these states. There is the feedback between the aggregate state of water covering the Earth’s surface and volcanic eruptions, which become intense when ice covers approximately 40% of the Earth’s surface. Dust measurements in ice deposits within the framework of the EPICA project confirms roughly a heightened volcano eruption during the cold phase of the glacial cycle. Numerical parameters of processes related to the glacial cycle are analyzed. Full article
(This article belongs to the Special Issue Advances in Fundamental Physics II)
Show Figures

Figure 1

28 pages, 2936 KiB  
Review
Review of Land Surface Albedo: Variance Characteristics, Climate Effect and Management Strategy
by Xiaoning Zhang, Ziti Jiao, Changsen Zhao, Ying Qu, Qiang Liu, Hu Zhang, Yidong Tong, Chenxia Wang, Sijie Li, Jing Guo, Zidong Zhu, Siyang Yin and Lei Cui
Remote Sens. 2022, 14(6), 1382; https://doi.org/10.3390/rs14061382 - 12 Mar 2022
Cited by 45 | Viewed by 17219
Abstract
Surface albedo plays a controlling role in the surface energy budget, and albedo-induced radiative forcing has a significant impact on climate and environmental change (e.g., global warming, snow and ice melt, soil and vegetation degradation, and urban heat islands (UHIs)). Several existing review [...] Read more.
Surface albedo plays a controlling role in the surface energy budget, and albedo-induced radiative forcing has a significant impact on climate and environmental change (e.g., global warming, snow and ice melt, soil and vegetation degradation, and urban heat islands (UHIs)). Several existing review papers have summarized the algorithms and products of surface albedo as well as climate feedback at certain surfaces, while an overall understanding of various land types remains insufficient, especially with increasing studies on albedo management methods regarding mitigating global warming in recent years. In this paper, we present a comprehensive literature review on the variance pattern of surface albedo, the subsequent climate impact, and albedo management strategies. The results show that using the more specific term “surface albedo” is recommended instead of “albedo” to avoid confusion with similar terms (e.g., planetary albedo), and spatiotemporal changes in surface albedo can indicate subtle changes in the energy budget, land cover, and even the specific surface structure. In addition, the close relationships between surface albedo change and climate feedback emphasize the important role of albedo in climate simulation and forecasting, and many albedo management strategies (e.g., the use of retroreflective materials (RRMs)) have been demonstrated to be effective for climate mitigation by offsetting CO2 emissions. In future work, climate effects and management strategies regarding surface albedo at a multitude of spatiotemporal resolutions need to be systematically evaluated to promote its application in climate mitigation, where a life cycle assessment (LCA) method considering both climate benefits and side effects (e.g., thermal comfort) should be followed. Full article
Show Figures

Graphical abstract

15 pages, 6676 KiB  
Article
Delay in Arctic Sea Ice Freeze-Up Linked to Early Summer Sea Ice Loss: Evidence from Satellite Observations
by Lei Zheng, Xiao Cheng, Zhuoqi Chen and Qi Liang
Remote Sens. 2021, 13(11), 2162; https://doi.org/10.3390/rs13112162 - 31 May 2021
Cited by 16 | Viewed by 4616
Abstract
The past decades have witnessed a rapid loss of the Arctic sea ice and a significant lengthening of the melt season. The years with the lowest summertime sea ice minimum were found to be accompanied by the latest freeze-up onset on record. Here, [...] Read more.
The past decades have witnessed a rapid loss of the Arctic sea ice and a significant lengthening of the melt season. The years with the lowest summertime sea ice minimum were found to be accompanied by the latest freeze-up onset on record. Here, a synthetic approach is taken to examine the connections between sea ice melt timing and summer sea ice evolution from the remote sensing perspective. A 40-year (1979–2018) satellite-based time-series analysis shows that the date of autumn sea ice freeze-up is significantly correlated with the sea ice extent in early summer (r = −0.90, p < 0.01), while the spring melt onset is not a promising predictor of summer sea ice evolution. The delay in Arctic sea ice freeze-up (0.61 days year−1) in the Arctic was accompanied by a decline in surface albedo (absolute change of −0.13% year−1), an increase in net short-wave radiation (0.21 W m−2 year−1), and an increase in skin temperature (0.08 °C year−1) in summer. Sea ice loss would be the key reason for the delay in autumn freeze-up, especially in the Laptev, East-Siberian, Chukchi and Beaufort Seas, where sea ice has significantly declined throughout the summer, and strong correlations were found between the freeze-up onset and the solar radiation budget since early summer. This study highlights a connection between the summer sea ice melting and the autumn refreezing process through the ice-albedo feedback based on multisource satellite-based observations. Full article
(This article belongs to the Special Issue Polar Sea Ice: Detection, Monitoring and Modeling)
Show Figures

Graphical abstract

29 pages, 12001 KiB  
Article
Atmosphere Driven Mass-Balance Sensitivity of Halji Glacier, Himalayas
by Anselm Arndt, Dieter Scherer and Christoph Schneider
Atmosphere 2021, 12(4), 426; https://doi.org/10.3390/atmos12040426 - 26 Mar 2021
Cited by 18 | Viewed by 5364
Abstract
The COupled Snowpack and Ice surface energy and mass balance model in PYthon (COSIPY) was employed to investigate the relationship between the variability and sensitivity of the mass balance record of the Halji glacier, in the Himalayas, north-western Nepal, over a 40 year [...] Read more.
The COupled Snowpack and Ice surface energy and mass balance model in PYthon (COSIPY) was employed to investigate the relationship between the variability and sensitivity of the mass balance record of the Halji glacier, in the Himalayas, north-western Nepal, over a 40 year period since October 1981 to atmospheric drivers. COSIPY was forced with the atmospheric reanalysis dataset ERA5-Land that has been statistically downscaled to the location of an automatic weather station at the Halji glacier. Glacier mass balance simulations with air temperature and precipitation perturbations were executed and teleconnections investigated. For the mass-balance years 1982 to 2019, a mean annual glacier-wide climatic mass balance of −0.48 meters water equivalent per year (m w.e. a−1) with large interannual variability (standard deviation 0.71 m w.e. a−1) was simulated. This variability is dominated by temperature and precipitation patterns. The Halji glacier is mostly sensitive to summer temperature and monsoon-related precipitation perturbations, which is reflected in a strong correlation with albedo. According to the simulations, the climate sensitivity with respect to either positive or negative air temperature and precipitation changes is nonlinear: A mean temperature increase (decrease) of 1 K would result in a change of the glacier-wide climatic mass balance of −1.43 m w.e. a−1 (0.99 m w.e. a−1) while a precipitation increase (decrease) of 10% would cause a change of 0.45m w.e. a−1 (−0.59 m w.e. a−1). Out of 22 circulation and monsoon indexes, only the Webster and Yang Monsoon index and Polar/Eurasia index provide significant correlations with the glacier-wide climatic mass balance. Based on the strong dependency of the climatic mass balance from summer season conditions, we conclude that the snow–albedo feedback in summer is crucial for the Halji glacier. This finding is also reflected in the correlation of albedo with the Webster and Yang Monsoon index. Full article
(This article belongs to the Special Issue Interactions between the Cryosphere and Climate (Change))
Show Figures

Figure 1

18 pages, 4305 KiB  
Article
Geoengineering: Impact of Marine Cloud Brightening Control on the Extreme Temperature Change over East Asia
by Do-Hyun Kim, Ho-Jeong Shin and Il-Ung Chung
Atmosphere 2020, 11(12), 1345; https://doi.org/10.3390/atmos11121345 - 11 Dec 2020
Cited by 10 | Viewed by 4952
Abstract
We investigated the effect of artificial marine cloud brightening on extreme temperatures over East Asia. We used simulation data from five global climate models which have conducted the GeoMIP G4cdnc experiment. G4cdnc was designed to simulate an increase in the cloud droplet number [...] Read more.
We investigated the effect of artificial marine cloud brightening on extreme temperatures over East Asia. We used simulation data from five global climate models which have conducted the GeoMIP G4cdnc experiment. G4cdnc was designed to simulate an increase in the cloud droplet number concentration of the global marine lower clouds by 50% under the greenhouse gas forcing of the RCP4.5 scenario. G4cdnc decreased the net radiative forcing in the top of the atmosphere more over the ocean, alleviating the rise in mean temperature under RCP4.5 forcing. For extreme temperatures, G4cdnc reduced both the monthly minimum of daily minimum temperature (TNn) and monthly maximum of daily maximum temperature (TXx). The response of TNn was higher than that of TXx, especially in the winter, over the Sea of Okhotsk and the interior of the continent. This spatial heterogeneity and seasonality of the response were associated with sea ice–albedo and snow–albedo feedbacks. We also calculated the efficacy of warming mitigation as a measure of the relative effect of geoengineering. The efficacy for TXx was higher than that for TNn, opposite to the absolute effect. After the termination of geoengineering, both TNn and TXx tended to rapidly revert to their trend under the RCP4.5 forcing. Full article
(This article belongs to the Section Climatology)
Show Figures

Figure 1

27 pages, 4111 KiB  
Article
Global-Scale Synchronization in the Meteorological Data: A Vectorial Analysis That Includes Higher-Order Differences
by Kazuya Hayata
Climate 2020, 8(11), 128; https://doi.org/10.3390/cli8110128 - 4 Nov 2020
Cited by 4 | Viewed by 3108
Abstract
To examine the evidence of global warming, in recent years, there has been a growing interest in the statistical analysis of time-dependent meteorological data. In this paper, for 116 observational stations in the world, sequential variations of the monthly distributions of meteorological data [...] Read more.
To examine the evidence of global warming, in recent years, there has been a growing interest in the statistical analysis of time-dependent meteorological data. In this paper, for 116 observational stations in the world, sequential variations of the monthly distributions of meteorological data are analyzed vectorially. For specific monthly data, temperatures and precipitations are chosen, both of which are averaged over three decades. Climate change can be revealed through the intersecting angle between two 33-dimensional vectors being composed with monthly mean values. Subsequently, the angle data for the entire stations are analyzed statistically and compared between the former (1931–1980) and the latter (1951–2010) periods. Irrespective of the period and the hemisphere, the variation of the angles is found to show the exponential growth as a function of their latitudes. Furthermore, consistent with other studies, this trend is shown to become stronger in the latter period, indicating that the so-called snow/ice-albedo feedback occurs. In contrast to the temperatures, for the precipitations, no significant correlation is found between the angle and the latitude. To examine the albedo effect in more detail, a regional analysis for 75 stations in Japan is carried out as well. Numerical results show that the effect is significant even for the relatively narrow latitudinal range (19%) of the hemisphere. Finally, a synchronization of the monthly patterns of temperatures is given between the northern district of Japan and both North America and Eastern Europe. Full article
Show Figures

Figure 1

Back to TopTop