Projection of Cloud Vertical Structure and Radiative Effects Along the South Asian Region in CMIP6 Models
Abstract
1. Introduction
- (1)
- A quantitative assessment of the CMIP6-simulated cloud vertical structure, viz., water content (clw) and cloud ice content (cli) followed by the cloud-radiative effects (longwave and shortwave).
- (2)
- Clouds not only govern radiative energy balances, but also general atmospheric circulations are maintained by them. Thus, an assessment of cloud radiation interactions and their impact on the general atmospheric planetary circulations in the present and future climate scenarios is conducted.
- (3)
- The tropospheric temperature is the driving force behind the general atmospheric circulation, which in turn influences the climate, and the distribution of heat and moisture across the globe; hence, this study also evaluates the tropospheric temperature along the South Asian region.
2. Datasets Used
2.1. CMIP6 Datasets
2.2. Observations and Reanalysis
3. Results and Discussion
3.1. Cloud Vertical Structure and Radiation Effect (Longwave and Shortwave)
3.1.1. Historical Simulations in Cloud Water and Ice Content
3.1.2. Future Projections
3.2. Radiative Effects in Changing Climate
3.3. Representation of General Circulations in CMIP6 Models/Impact of General Circulations on Clouds
3.3.1. Hadley Circulations in Reanalysis and Historical Simulations
3.3.2. Historical and Future Projections
3.4. Effect of Tropospheric Temperature
3.4.1. Observational and Historical Assessment of the Tropospheric Temperature (TT)
3.4.2. Future Projections of Tropospheric Temperature
3.4.3. Statistical Representation of Tropospheric Temperature
4. Conclusions
- (1)
- The cloud water content increases in the lower troposphere (1000–700 hPa) across all future scenarios of CMIP6 MME. The upper troposphere (above 300 hPa) also shows an increase in cloud water, especially in the high-emission (ssp5–8.5) scenario.
- (2)
- The cloud ice content remains relatively stable in the upper troposphere but shows a slight increase in the 200–400 hPa pressure level under the CMIP6 high-emission scenario (SSP5–8.5) during the far-future period (2081–2100), compared to the low- (SSP1–2.6) and moderate-emission (SSP2–4.5) scenarios. This may be due to stronger convective activity, leading to enhanced ice-phase processes.
- (3)
- The increase in lower-tropospheric cloud water suggests more liquid-phase clouds, which impact shortwave reflectivity. The stronger LW warming (increasing LWCRE) and SW cooling (more negative SWCRE) indicate amplified cloud feedback in the future climate scenarios. SSP5–8.5 exhibits the strongest effect on longwaves (44.14 W/m2) and shortwaves (−73.45 W/m2) along the Indian region (65° E–95° E; 5° N–40° N), highlighting a greater cloud influence on the climate system in a high-emission world. Similarly, an increase CRE (LWCRE and SWCRE) in all scenarios can be viewed along the Arabian Sea and Bay of Bengal regions.
- (4)
- The poleward expansion of the Hadley cell in the future projections and changes in subsidence regions are linked to cloud–radiation feedback. The shift in high-pressure zones affects regional climate patterns, including monsoons. Also, according to this study, the subsidence (yellow region) just below the Equator suggests a shifting Hadley circulation in response to changes in Indian Ocean heating.
- (5)
- The increase in the tropospheric temperature (TT) in the high-emission scenario, (ssp5–8.5) may impact the rainfall pattern due to an increase in the temperature. Increased warming can strengthen deep convection and stronger monsoon variability, potentially leading to changes in rainfall patterns and regional climate shifts. Despite an overall increase in the tropospheric temperature (TT), the TT gradient (TTG) remains nearly unchanged in the future projections of CMIP6 MME, suggesting a uniform warming pattern across latitudes. This stability in TTG helps explain why large-scale circulation responses remain constrained within model projections.
- (6)
- Pattern correlation seems to be well represented in the MMEs of various scenarios (0.98) and historical simulations (0.95), which represents coherent/consistency in tropospheric warming despite the existence of various emission scenarios.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CMIP6 | Coupled Model Intercomparison Project Phase-6 |
SSP | Shared Socio-Economic Pathway |
TT | Tropospheric Temperature |
ISM | Indian Summer Monsoon |
GCM | General Circulation Model |
ISMR | Indian Summer Monsoon Rainfall |
ITCZ | Intertropical Convergence Zone |
WCRP | World Climate Research Programme |
Scenario MIP | Scenario Model Intercomparison Project |
ESM | Earth System Model |
cli | Cloud Ice Content |
clw | Cloud Water Content |
ECMWF | European Centre for Medium-Range Weather Forecasts |
CDS | Climate Data Store |
CERES-EBAF | Cloud and Earth’s Radiant Energy Systems—Energy balanced and Filled |
TOA | Top of the Atmosphere |
LW | Longwave |
SW | Shortwave |
LWCRE | Longwave Cloud Radiative Effect |
SWCRE | Shortwave Cloud Radiative Effect |
IWP | Ice Water Path |
IPCC AR4 | Inter-governmental Panel on Climate Change Assessment Report 4 |
TTG | Tropospheric Temperature Gradient |
MME | Multi-Model Ensemble Mean |
References
- Kripalani, R.H.; Kulkarni, A.; Sabade, S.S.; Khandekar, M.L. Indian monsoon variability in a global warming scenario. Nat. Hazards 2003, 29, 189–206. [Google Scholar] [CrossRef]
- Gadgil, S. The Indian monsoon and its variability. Annu. Rev. Earth Planet. Sci. 2003, 31, 429–467. [Google Scholar] [CrossRef]
- Lal, M.; Bengtsson, L.; Cubasch, U.; Esch, M.; Schlese, U. Synoptic scale disturbances of the Indian summer monsoon as simulated in a high resolution climate model. Clim. Res. 1995, 5, 243–258. [Google Scholar] [CrossRef]
- Kumar, S.; Hazra, A.; Goswami, B.N. Role of interaction between dynamics, thermodynamics and cloud microphysics on summer monsoon precipitating clouds over the Myanmar Coast and the Western Ghats. Clim. Dyn. 2014, 43, 911–924. [Google Scholar] [CrossRef]
- Baker, M.B. Cloud microphysics and climate. Science 1997, 276, 1072–1078. [Google Scholar] [CrossRef]
- Arakawa, A.; Schubert, W.H. Interaction of a cumulus cloud ensemble with the large-scale environment, Part I. J. Atmos. Sci. 1974, 31, 674–701. [Google Scholar] [CrossRef]
- Hazra, A.; Chaudhari, H.S.; Saha, S.K.; Pokhrel, S. Effect of cloud microphysics on Indian summer monsoon precipitating clouds: A coupled climate modeling study. J. Geophys. Res. Atmos. 2017, 122, 3786–3805. [Google Scholar] [CrossRef]
- Hazra, A.; Chaudhari, H.S.; Saha, S.K.; Pokhrel, S.; Goswami, B.N. Progress towards achieving the challenge of Indian summer monsoon climate simulation in a coupled ocean-atmosphere model. J. Adv. Model. Earth Syst. 2017, 9, 2268–2290. [Google Scholar] [CrossRef]
- Dutta, U.; Chaudhari, H.S.; Hazra, A.; Pokhrel, S.; Saha, S.K.; Veeranjaneyulu, C. Role of convective and microphysical processes on the simulation of monsoon intraseasonal oscillation. Clim. Dyn. 2020, 55, 2377–2403. [Google Scholar] [CrossRef]
- Rajeevan, M.; Rohini, P.; Kumar, K.N.; Srinivasan, J.; Unnikrishnan, C.K. A study of vertical cloud structure of the Indian summer monsoon using CloudSat data. Clim. Dyn. 2013, 40, 637–650. [Google Scholar] [CrossRef]
- Hazra, A.; Chaudhari, H.S.; Pokhrel, S. Improvement in convective and stratiform rain fractions over the Indian region with introduction of new ice nucleation parameterization in ECHAM5. Theor. Appl. Clim. 2015, 120, 173–182. [Google Scholar] [CrossRef]
- De, S.; Hazra, A.; Chaudhari, H.S. Does the modification in “critical relative humidity” of NCEP CFSv2 dictate Indian mean summer monsoon forecast? Evaluation through thermodynamical and dynamical aspects. Clim. Dyn. 2016, 46, 1197–1222. [Google Scholar] [CrossRef]
- De, S.; Agarwal, N.K.; Hazra, A.; Chaudhari, H.S.; Sahai, A.K. On unravelling mechanism of interplay between cloud and large scale circulation: A grey area in climate science. Clim. Dyn. 2019, 52, 1547–1568. [Google Scholar] [CrossRef]
- Chaudhari, H.S.; Hazra, A.; Saha, S.K.; Dhakate, A.; Pokhrel, S. Indian summer monsoon simulations with CFSv2: A microphysics perspective. Theor. Appl. Clim. 2016, 125, 253–269. [Google Scholar] [CrossRef]
- Liu, C.; Moncrieff, M.W. Sensitivity of cloud-resolving simulations of warm-season convection to cloud microphysics parameterizations. Mon. Weather. Rev. 2007, 135, 2854–2868. [Google Scholar] [CrossRef]
- Field, P.R.; Heymsfield, A.J. Importance of snow to global precipitation. Geophys. Res. Lett. 2015, 42, 9512–9520. [Google Scholar] [CrossRef]
- Rajeevan, M. Teleconnections of monsoon. In India Meteorological Department Monsoon Monograph; India Meteorological Department: New Delhi, India, 2012; Volume 2, pp. 78–128. [Google Scholar]
- Sherwood, S.C.; Webb, M.J.; Annan, J.D.; Armour, K.C.; Forster, P.M.; Hargreaves, J.C.; Hegerl, G.; Klein, S.A.; Marvel, K.D.; Rohling, E.J.; et al. An assessment of Earth’s climate sensitivity using multiple lines of evidence. Rev. Geophys. 2020, 58, e2019RG000678. [Google Scholar] [CrossRef]
- Benedict, J.J.; Medeiros, B.; Clement, A.C.; Olson, J.G. Investigating the role of cloud-radiation interactions in subseasonal tropical disturbances. Geophys. Res. Lett. 2020, 47, e2019GL086817. [Google Scholar] [CrossRef]
- Rädel, G.; Mauritsen, T.; Stevens, B.; Dommenget, D.; Matei, D.; Bellomo, K.; Clement, A. Amplification of El Niño by cloud longwave coupling to atmospheric circulation. Nat. Geosci. 2016, 9, 106–110. [Google Scholar] [CrossRef]
- Li, Y.; Thompson, D.W.J.; Huang, Y.; Zhang, M. Observed linkages between the northern annular mode/North Atlantic Oscillation, cloud incidence, and cloud radiative forcing. Geophys. Res. Lett. 2014, 41, 1681–1688. [Google Scholar] [CrossRef]
- Papavasileiou, G.; Voigt, A.; Knippertz, P. The role of observed cloud-radiative anomalies for the dynamics of the North Atlantic Oscillation on synoptic time-scales. Q. J. R. Meteorol. Soc. 2020, 146, 1822–1841. [Google Scholar] [CrossRef]
- Voigt, A.; Albern, N.; Papavasileiou, G. The atmospheric pathway of the cloud-radiative impact on the circulation response to global warming: Important and uncertain. J. Clim. 2019, 32, 3051–3067. [Google Scholar] [CrossRef]
- Ceppi, P.; Shepherd, T.G. Contributions of climate feedbacks to changes in atmospheric circulation. J. Clim. 2017, 30, 9097–9118. [Google Scholar] [CrossRef]
- Albern, N.; Voigt, A.; Pinto, J.G. Cloud-radiative impact on the regional responses of the midlatitude jet streams and storm tracks to global warming. J. Adv. Model. Earth Syst. 2019, 11, 1940–1958. [Google Scholar] [CrossRef]
- Voigt, A.; North, S.; Gasparini, B.; Ham, S.-H. Atmospheric cloud-radiative heating in CMIP6 and observations and its response to surface warming. Atmos. Meas. Tech. 2024, 24, 9749–9775. [Google Scholar] [CrossRef]
- Goswami, B.N.; Chakravorty, S. Dynamics of the Indian summer monsoon climate. In Oxford Research Encyclopedia of Climate Science; Oxford University Press: Oxford, UK, 2017. [Google Scholar]
- Eyring, V.; Bony, S.; Meehl, G.A.; Senior, C.A.; Stevens, B.; Stouffer, R.J.; Taylor, K.E. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 2016, 9, 1937–1958. [Google Scholar] [CrossRef]
- O’NEill, B.C.; Tebaldi, C.; van Vuuren, D.P.; Eyring, V.; Friedlingstein, P.; Hurtt, G.; Knutti, R.; Kriegler, E.; Lamarque, J.-F.; Lowe, J.; et al. The scenario model intercomparison project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 2016, 9, 3461–3482. [Google Scholar] [CrossRef]
- Riahi, K.; Van Vuuren, D.P.; Kriegler, E.; Edmonds, J.; O’Neill, B.C.; Fujimori, S.; Bauer, N.; Calvin, K.; Dellink, R.; Fricko, O.; et al. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Glob. Environ. Change 2017, 42, 153–168. [Google Scholar] [CrossRef]
- Dolinar, E.K.; Dong, X.; Xi, B.; Jiang, J.H.; Su, H. Evaluation of CMIP5 simulated clouds and TOA radiation budgets using NASA satellite observations. Clim. Dyn. 2015, 44, 2229–2247. [Google Scholar] [CrossRef]
- Jiang, J.H.; Su, H.; Zhai, C.; Perun, V.S.; Del Genio, A.; Nazarenko, L.S.; Donner, L.J.; Horowitz, L.; Seman, C.; Cole, J.; et al. Evaluation of cloud and water vapor simulations in CMIP5 climate models using NASA “A-Train” satellite observations. J. Geophys. Res. Atmos. 2012, 117, D14. [Google Scholar] [CrossRef]
- Gadgil, S.; Sajani, S. Monsoon precipitation in the AMIP runs. Clim. Dyn. 1998, 14, 659–689. [Google Scholar] [CrossRef]
- Wang, B.; Kang, I.S.; Shukla, J. Dynamic seasonal prediction and predictability of the monsoon. In The Asian Monsoon; Springer: Berlin/Heidelberg, Germany, 2006; pp. 585–612. [Google Scholar]
- Sperber, K.R.; Annamalai, H.; Kang, I.S.; Kitoh, A.; Moise, A.; Turner, A.; Wang, B.; Zhou, T. The Asian summer monsoon: An intercomparison of CMIP5 vs. CMIP3 simulations of the late 20th century. Clim. Dyn. 2013, 41, 2711–2744. [Google Scholar] [CrossRef]
- Meehl, G.A.; Senior, C.A.; Eyring, V.; Flato, G.; Lamarque, J.-F.; Stouffer, R.J.; Taylor, K.E.; Schlund, M. Context for interpreting equilibrium climate sensitivity and transient climate response from the CMIP6 Earth system models. Sci. Adv. 2020, 6, eaba1981. [Google Scholar] [CrossRef]
- Bock, L.; Lauer, A.; Schlund, M.; Barreiro, M.; Bellouin, N.; Jones, C.; Meehl, G.A.; Predoi, V.; Roberts, M.J.; Eyring, V. Quantifying progress across different CMIP phases with the ESMValTool. J. Geophys. Res. Atmos. 2020, 125, e2019JD032321. [Google Scholar] [CrossRef]
- Khardekar, P.; Dutta, U.; Chaudhari, H.S.; Bhawar, R.L.; Hazra, A.; Pokhrel, S. Increase in Indian summer monsoon precipitation as a response to doubled atmospheric CO2: CMIP6 simulations and projections. Theor. Appl. Clim. 2023, 154, 1233–1252. [Google Scholar] [CrossRef]
- Khardekar, P.; Bhawar, R.L.; Kumar, V.; Chaudhari, H.S. Future Projections of Clouds and Precipitation Patterns in South Asia: Insights from CMIP6 Multi-Model Ensemble Under SSP5 Scenarios. Climate 2025, 13, 36. [Google Scholar] [CrossRef]
- Cherchi, A.; Fogli, P.G.; Lovato, T.; Peano, D.; Iovino, D.; Gualdi, S.; Masina, S.; Scoccimarro, E.; Materia, S.; Bellucci, A.; et al. Global mean climate and main patterns of variability in the CMCC-CM2 coupled model. J. Adv. Modeling Earth Syst. 2019, 11, 185–209. [Google Scholar] [CrossRef]
- Li, L.; Yu, Y.; Tang, Y.; Lin, P.; Xie, J.; Song, M.; Dong, L.; Zhou, T.; Liu, L.; Wang, L.; et al. The flexible global ocean-atmosphere-land system model grid-point version 3 (FGOALS-g3): Description and evaluation. J. Adv. Model. Earth Syst. 2020, 12, e2019MS002012. [Google Scholar] [CrossRef]
- Tatebe, H.; Ogura, T.; Nitta, T.; Komuro, Y.; Ogochi, K.; Takemura, T.; Sudo, K.; Sekiguchi, M.; Abe, M.; Saito, F.; et al. Description and basic evaluation of simulated mean state, internal variability, and climate sensitivity in MIROC6. Geosci. Model Dev. 2019, 12, 2727–2765. [Google Scholar] [CrossRef]
- Müller, W.A.; Jungclaus, J.H.; Mauritsen, T.; Baehr, J.; Bittner, M.; Budich, R.; Bunzel, F.; Esch, M.; Ghosh, R.; Haak, H.; et al. A higher-resolution version of the max planck institute earth system model (MPI-ESM1. 2-HR). J. Adv. Model. Earth Syst. 2018, 10, 1383–1413. [Google Scholar] [CrossRef]
- Cao, J.; Wang, B.; Yang, Y.-M.; Ma, L.; Li, J.; Sun, B.; Bao, Y.; He, J.; Zhou, X.; Wu, L. The NUIST Earth System Model (NESM) version 3: Description and preliminary evaluation. Geosci. Model Dev. 2018, 11, 2975–2993. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J.; et al. The NCEP/NCAR 40-year reanalysis project. In Renewable Energy; Routledge: Oxfordshire, UK, 2018; pp. Vol1_146–Vol1_194. [Google Scholar]
- Arking, A. The radiative effects of clouds and their impact on climate. Bull. Am. Meteorol. Soc. 1991, 72, 795–814. [Google Scholar] [CrossRef]
- Wang, Y.; Su, H.; Jiang, J.H.; Xu, F.; Yung, Y.L. Impact of cloud ice particle size uncertainty in a climate model and implications for future satellite missions. J. Geophys. Res. Atmos. 2020, 125, e2019JD032119. [Google Scholar] [CrossRef]
- Randall, D.A. The role of clouds in the general circulation of the atmosphere. In Parameterisation of Subgrid Scale Physical Processes; ECMWF seminar proceedings; IGI Global: Hershey, PA, USA, 1994; pp. 5–9. [Google Scholar]
- Wang, B.; Ding, Q.; Fu, X.; Kang, I.; Jin, K.; Shukla, J.; Doblas-Reyes, F. Fundamental challenge in simulation and prediction of summer monsoon rainfall. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef]
- Emori, S.; Brown, S.J. Dynamic and thermodynamic changes in mean and extreme precipitation under changed climate. Geophys. Res. Lett. 2005, 32, L17706. [Google Scholar] [CrossRef]
- O’GOrman, P.A.; Schneider, T. The physical basis for increases in precipitation extremes in simulations of 21st-century climate change. Proc. Natl. Acad. Sci. USA 2009, 106, 14773–14777. [Google Scholar] [CrossRef] [PubMed]
- Vittal, H.; Ghosh, S.; Karmakar, S.; Pathak, A.; Murtugudde, R. Lack of dependence of Indian summer monsoon rainfall extremes on temperature: An observational evidence. Sci. Rep. 2016, 6, 31039. [Google Scholar] [CrossRef]
- Vecchi, G.A.; Soden, B.J. Global warming and the weakening of the tropical circulation. J. Clim. 2007, 20, 4316–4340. [Google Scholar] [CrossRef]
- Iga, S.-I.; Tomita, H.; Tsushima, Y.; Satoh, M. Sensitivity of Hadley circulation to physical parameters and resolution through changing upper-tropospheric ice clouds using a global cloud-system resolving model. J. Clim. 2011, 24, 2666–2679. [Google Scholar] [CrossRef]
- Lucas, C.; Timbal, B.; Nguyen, H. The expanding tropics: A critical assessment of the observational and modeling studies. Wiley Interdiscip. Rev. WIREs Clim. Change 2014, 5, 89–112. [Google Scholar] [CrossRef]
- Schmidt, D.F.; Grise, K.M. The response of local precipitation and sea level pressure to Hadley cell expansion. Geophys. Res. Lett. 2017, 44, 10–573. [Google Scholar] [CrossRef]
- Xavier, P.K.; Marzin, C.; Goswami, B.N. An objective definition of the Indian summer monsoon season and a new perspective on the ENSO–monsoon relationship. Q. J. R. Meteorol. Soc. A J. Atmos. Sci. Appl. Meteorol. Phys. Oceanogr. 2007, 133, 749–764. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, B.; Li, S.; Zhou, T. Understanding models’ global sea surface temperature bias in mean state: From CMIP5 to CMIP6. Geophys. Res. Lett. 2023, 50, e2022GL100888. [Google Scholar] [CrossRef]
- McKenna, S.; Santoso, A.; Gupta, A.S.; Taschetto, A.S. Understanding biases in Indian Ocean seasonal SST in CMIP6 models. J. Geophys. Res. Oceans 2024, 129, e2023JC020330. [Google Scholar] [CrossRef]
- Chaudhari, H.S.; Pokhrel, S.; Mohanty, S.; Saha, S.K. Seasonal prediction of Indian summer monsoon in NCEP coupled and uncoupled model. Theor. Appl. Climatol. 2013, 114, 459–477. [Google Scholar] [CrossRef]
- Zhang, M.H.; Lin, W.Y.; Klein, S.A.; Bacmeister, J.T.; Bony, S.; Cederwall, R.T.; Del Genio, A.D.; Hack, J.J.; Loeb, N.G.; Lohmann, U.; et al. Comparing clouds and their seasonal variations in 10 atmospheric general circulation models with satellite measurements. J. Geophys. Res. Atmos. 2005, 110, D15. [Google Scholar] [CrossRef]
- Su, W.; Bodas-Salcedo, A.; Xu, K.; Charlock, T.P. Comparison of the tropical radiative flux and cloud radiative effect profiles in a climate model with Clouds and the Earth’s Radiant Energy System (CERES) data. J. Geophys. Res. Atmos. 2010, 115, D01105. [Google Scholar] [CrossRef]
- Bodas-Salcedo, A.; Williams, K.D.; Ringer, M.A.; Beau, I.; Cole, J.N.S.; Dufresne, J.-L.; Koshiro, T.; Stevens, B.; Wang, Z.; Yokohata, T. Origins of the solar radiation biases over the Southern Ocean in CFMIP2 models. J. Clim. 2014, 27, 41–56. [Google Scholar] [CrossRef]
- Calisto, M.; Folini, D.; Wild, M.; Bengtsson, L. Cloud radiative forcing intercomparison between fully coupled CMIP5 models and CERES satellite data. In Annales Geophysicae; Copernicus Publications: Göttingen, Germany, 2014; Volume 32, pp. 793–807. [Google Scholar]
- Chen, T.; Rossow, W.B.; Zhang, Y. Radiative effects of cloud-type variations. J. Clim. 2000, 13, 264–286. [Google Scholar] [CrossRef]
- Gonçalves, L.J.; Coelho, S.; Kubota, P.Y.; Souza, D.C. Interaction between cloud–radiation, atmospheric dynamics and thermodynamics based on observational data from GoAmazon 2014/15 and a cloud-resolving model. Atmos. Chem. Phys. 2022, 22, 15509–15526. [Google Scholar] [CrossRef]
- Radley, C.; Fueglistaler, S.; Donner, L. Cloud and radiative balance changes in response to ENSO in observations and models. J. Clim. 2014, 27, 3100–3113. [Google Scholar] [CrossRef]
- Webster, P.J.; Magana, V.O.; Palmer, T.N.; Shukla, J.; Tomas, R.A.; Yanai, M.U.; Yasunari, T. Monsoons: Processes, predictability, and the prospects for prediction. J. Geophys. Res. Ocean. 1998, 103, 14451–14510. [Google Scholar] [CrossRef]
- Goswami, B.N.; Xavier, P.K. ENSO control on the south Asian monsoon through the length of the rainy season. Geophys. Res. Lett. Geophys. Res. Lett. 2005, 32, L18717. [Google Scholar] [CrossRef]
No. | CMIP6 Model Name | Country | Horizontal Resolution (in Degrees) | Key References |
---|---|---|---|---|
1 | CMCC-ESM2-0 | Italy | 0.9° × 0.9° | [40] |
2 | FGOALS-g3 | China | 2° × 2.3° | [41] |
3 | MIROC6 | Japan | 1.4° × 1.4° | [42] |
4 | MPI-ESM1-2-HR | Germany | 0.9° × 0.9° | [43] |
5 | NESM3 | China | 1.9° × 1.9° | [44] |
LWCRE (Watt/m2) | SWCRE (Watt/m2) | ||||||
---|---|---|---|---|---|---|---|
Arabian Sea | Bay of Bengal | Central India | Arabian Sea | Bay of Bengal | Central India | ||
CERES-EBAF | 46.7 | 70.45 | 66.06 | CERES-EBAF | −63.8 | −87.5 | −84.03 |
Hist | 47.18 | 61.14 | 37.45 | Hist | −80.9 | −89.9 | −61.9 |
ssp1–2.6 2021–2040 | 51.06 | 64.02 | 41.23 | ssp1–2.6 2021–2040 | −86.04 | −93.8 | −71.2 |
ssp1–2.6 2041–2060 | 51.58 | 63.9 | 41.26 | ssp1–2.6 2041–2060 | −91.6 | −97.4 | −70.8 |
ssp1–2.6 2081–2100 | 44.5 | 61.3 | 41.25 | ssp1–2.6 2081–2100 | −80.2 | −94.6 | −76.4 |
ssp2–4.5 2021–2040 | 48.28 | 63.16 | 39.75 | ssp2–4.5 2021–2040 | −83.79 | −93.62 | −65.74 |
ssp2–4.5 2041–2060 | 48.83 | 63.9 | 39.88 | ssp2–4.5 2041–2060 | −83.78 | −94.8 | −70.49 |
ssp2–4.5 2081–2100 | 53.71 | 61.63 | 41.28 | ssp2–4.5 2081–2100 | −89.89 | −93.93 | −71.78 |
ssp5–8.5 2021–2040 | 51.05 | 65.74 | 43.27 | ssp5–8.5 2021–2040 | −89.26 | −95.5 | −75.7 |
ssp5–8.5 2041–2060 | 57.5 | 63.02 | 43.02 | ssp5–8.5 2041–2060 | −97.04 | −95.08 | −71.2 |
ssp5–8.5 2081–2100 | 54.8 | 61.59 | 40.82 | ssp5–8.5 2081–2100 | −94.92 | −94.90 | −72.06 |
CMIP6 MME | Pattern Correlation Region (40° E–110° E, 20° S–40° N) |
---|---|
Historical | 0.9505 |
SSP126 2021–2040 | 0.9817 |
SSP126 2041–2060 | 0.9769 |
SSP126 2081–2100 | 0.9841 |
SSP245 2021–2040 | 0.9417 |
SSP245 2041–2060 | 0.9616 |
SSP245 2081–2100 | 0.9581 |
SSP585 2021–2040 | 0.9819 |
SSP585 2041–2060 | 0.9737 |
SSP585 2081–2100 | 0.9599 |
Model | TT ⟶ CLI (p < 0.05) | CLI ⟶ TT (p < 0.05) | Interpretation |
---|---|---|---|
CMCC | Yes (F = 16.4) | Yes (F = 36.8) | Bidirectional causality. Changes in both tropospheric temperature and cloud ice influence each other, pointing towards strong feedback mechanisms. |
MIROC6 | Yes (F = 29.1) | Yes (F = 11.4) | Two-way coupling, though the TT → CLI influence is stronger. This suggests that warming and convection may help in driving cloud ice changes, and cloud radiative effects feed back into TT. |
FGOALS | Yes (F = 45.1) | Yes (F = 79.9) | Very strong mutual causality. Both TT and CLI are strongly linked—typical of strong convection–cloud–radiation interactions. |
MPI-HR | Yes (F = 209.9) | Yes (F = 59.4) | Very strong bidirectional coupling. This suggests MPI-HR captures cloud–radiation–temperature feedback very strongly in this region. |
NESM3 | Yes (F = 109.4) | Yes (F = 15.3) | Strong TT → CLI influence, but weaker CLI → TT feedback. TT more likely drives cloud formation (perhaps via uplift or lapse rate effects), but clouds affect TT less strongly. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khardekar, P.; Chaudhari, H.S.; Kumar, V.; Bhawar, R.L. Projection of Cloud Vertical Structure and Radiative Effects Along the South Asian Region in CMIP6 Models. Atmosphere 2025, 16, 746. https://doi.org/10.3390/atmos16060746
Khardekar P, Chaudhari HS, Kumar V, Bhawar RL. Projection of Cloud Vertical Structure and Radiative Effects Along the South Asian Region in CMIP6 Models. Atmosphere. 2025; 16(6):746. https://doi.org/10.3390/atmos16060746
Chicago/Turabian StyleKhardekar, Praneta, Hemantkumar S. Chaudhari, Vinay Kumar, and Rohini Lakshman Bhawar. 2025. "Projection of Cloud Vertical Structure and Radiative Effects Along the South Asian Region in CMIP6 Models" Atmosphere 16, no. 6: 746. https://doi.org/10.3390/atmos16060746
APA StyleKhardekar, P., Chaudhari, H. S., Kumar, V., & Bhawar, R. L. (2025). Projection of Cloud Vertical Structure and Radiative Effects Along the South Asian Region in CMIP6 Models. Atmosphere, 16(6), 746. https://doi.org/10.3390/atmos16060746