Changes in the Antarctic’s Summer Surface Albedo, Observed by Satellite since 1982 and Associated with Sea Ice Anomalies
Abstract
:1. Introduction
2. Data and Methods
2.1. CLARA-A2.1-SAL Product
2.2. In Situ Surface Albedo Observations
2.3. Sea Ice Indexes
2.4. Surface Melting Days
2.5. ERA5
2.6. Snow Depth over the Antarctic Sea Ice
2.7. Validation and Trend Calculation
3. Results
3.1. Validation of the CLARA-2.1-SAL Product
3.2. Temporal and Spatial Trends of Surface Albedo over Antarctica
3.3. Impact of Sea Ice of the Different Southern Ocean Sectors on Albedo of Antarctic Sea Ice and Ice Sheet Surface
3.4. Factors Excluding Sea Ice Influencing Albedo of Antarctic Sea Ice and Ice Sheet Surface
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Key, J.R.; Wang, X.; Stoeve, J.C.; Fowler, C. Estimating the cloudy-sky albedo of sea ice and snow from space. J. Geophys. Res. Atmos. 2001, 106, 12489–12497. [Google Scholar] [CrossRef]
- Södergren, A.H.; McDonald, A.J.; Bodeker, G.E. An energy balance model exploration of the impacts of interactions between surface albedo, cloud cover and water vapor on polar amplification. Clim. Dyn. 2017, 51, 1639–1658. [Google Scholar] [CrossRef]
- Zhou, C.; Zhang, T.; Zheng, L. The Characteristics of Surface Albedo Change Trends over the Antarctic Sea Ice Region during Recent Decades. Remote Sens. 2019, 11, 821. [Google Scholar] [CrossRef]
- Helsen, M.M.; van de Wal, R.S.W.; Reerink, T.J.; Bintanja, R.; Madsen, M.S.; Yang, S.; Li, Q.; Zhang, Q. On the importance of the albedo parameterization for the mass balance of the Greenland ice sheet in EC-Earth. Cryosphere 2017, 11, 1949–1965. [Google Scholar] [CrossRef]
- Rignot, E.; Mouginot, J.; Scheuchl, B.; van den Broeke, M.; van Wessem, M.J.; Morlighem, M. Four decades of Antarctic Ice Sheet mass balance from 1979–2017. Proc. Natl. Acad. Sci. USA 2019, 116, 1095–1103. [Google Scholar] [CrossRef] [PubMed]
- Loth, B.; Graf, H.-F.; Oberhuber, J.M. Snow cover model for global climate simulations. J. Geophys. Res. Atmos. 1993, 98, 10451–10464. [Google Scholar] [CrossRef]
- Bøggild, C.E.; Brandt, R.E.; Brown, K.J.; Warren, S.G. The ablation zone in northeast Greenland: Ice types, albedos and impurities. J. Glaciol. 2017, 56, 101–113. [Google Scholar] [CrossRef]
- Wientjes, I.G.M.; Van de Wal, R.S.W.; Reichart, G.J.; Sluijs, A.; Oerlemans, J. Dust from the dark region in the western ablation zone of the Greenland ice sheet. Cryosphere 2011, 5, 589–601. [Google Scholar] [CrossRef]
- Laine, V. Antarctic ice sheet and sea ice regional albedo and temperature change, 1981–2000, from AVHRR Polar Pathfinder data. Remote Sens. Environ. 2008, 112, 646–667. [Google Scholar] [CrossRef]
- Weatherly, J.W. Sensitivity of Antarctic Precipitation to Sea Ice Concentrations in a General Circulation Model. J. Clim. 2004, 17, 3214–3223. [Google Scholar] [CrossRef]
- Krinner, G.; Magand, O.; Simmonds, I.; Genthon, C.; Dufresne, J.L. Simulated Antarctic precipitation and surface mass balance at the end of the twentieth and twenty-first centuries. Clim. Dyn. 2006, 28, 215–230. [Google Scholar] [CrossRef]
- Hobbs, W.R.; Massom, R.; Stammerjohn, S.; Reid, P.; Williams, G.; Meier, W. A review of recent changes in Southern Ocean sea ice, their drivers and forcings. Glob. Planet. Chang. 2016, 143, 228–250. [Google Scholar] [CrossRef]
- Parkinson, C.L.; Cavalieri, D.J. Antarctic sea ice variability and trends, 1979–2010. Cryosphere 2012, 6, 871–880. [Google Scholar] [CrossRef]
- Turner, J.; Hosking, J.S.; Bracegirdle, T.J.; Marshall, G.J.; Phillips, T. Recent changes in Antarctic Sea Ice. Philos. Trans. A Math. Phys. Eng. Sci. 2015, 373. [Google Scholar] [CrossRef] [PubMed]
- Comiso, J.C.; Gersten, R.A.; Stock, L.V.; Turner, J.; Perez, G.J.; Cho, K. Positive Trend in the Antarctic Sea Ice Cover and Associated Changes in Surface Temperature. J. Clim. 2017, 30, 2251–2267. [Google Scholar] [CrossRef] [PubMed]
- Comiso, J.C.; Nishio, F. Trends in the sea ice cover using enhanced and compatible AMSR-E, SSM/I, and SMMR data. J. Geophys. Res. 2008, 113. [Google Scholar] [CrossRef]
- Stroeve, J.C.; Serreze, M.C.; Holland, M.M.; Kay, J.E.; Malanik, J.; Barrett, A.P. The Arctic’s rapidly shrinking sea ice cover: A research synthesis. Clim. Chang. 2012, 110, 1005–1027. [Google Scholar] [CrossRef]
- Simmonds, I. Comparing and contrasting the behaviour of Arctic and Antarctic sea ice over the 35 year period 1979–2013. Ann. Glaciol. 2017, 56, 18–28. [Google Scholar] [CrossRef]
- Perovich, D.K.; Grenfell, T.C.; Richter-Menge, J.A.; Light, B.; Tucker Iii, W.B.; Eicken, H. Thin and thinner: Sea ice mass balance measurements during SHEBA. J. Geophys. Res. Ocean. 2003, 108. [Google Scholar] [CrossRef]
- Riihelä, A.; Bright, R.M.; Anttila, K. Recent strengthening of snow and ice albedo feedback driven by Antarctic sea-ice loss. Nat. Geosci. 2021, 14, 832–836. [Google Scholar] [CrossRef]
- Fetterer, F.; Knowles, K.; Meier, W.N.; Savoie, M.; Windnagel, A.K. Sea Ice Index, Version 3; National Snow and Ice Data Center: Boulder, CO, USA, 2017. [Google Scholar] [CrossRef]
- Zhang, Y.; Touzi, R.; Feng, W.; Hong, G.; Lantz, T.C.; Kokelj, S.V. Landscape-scale variations in near-surface soil temperature and active-layer thickness: Implications for high-resolution permafrost mapping. Permafr. Periglac. Process. 2021, 32, 627–640. [Google Scholar] [CrossRef]
- Culberg, R.; Schroeder, D.M. Firn Clutter Constraints on the Design and Performance of Orbital Radar Ice Sounders. IEEE Trans. Geosci. Remote Sens. 2020, 58, 6344–6361. [Google Scholar] [CrossRef]
- Muhuri, A.; Manickam, S.; Bhattacharya, A.; Snehmani. Snow Cover Mapping Using Polarization Fraction Variation With Temporal RADARSAT-2 C-Band Full-Polarimetric SAR Data Over the Indian Himalayas. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 2192–2209. [Google Scholar] [CrossRef]
- Tsai, Y.-L.S.; Dietz, A.; Oppelt, N.; Kuenzer, C. Remote Sensing of Snow Cover Using Spaceborne SAR: A Review. Remote Sens. 2019, 11, 1456. [Google Scholar] [CrossRef]
- Corbea-Pérez, A.; Calleja, J.F.; Recondo, C.; Fernández, S. Evaluation of the MODIS (C6) Daily Albedo Products for Livingston Island, Antarctic. Remote Sens. 2021, 13, 2357. [Google Scholar] [CrossRef]
- Calleja, J.F.; Corbea-Perez, A.; Fernandez, S.; Recondo, C.; Peon, J.; de Pablo, M.A. Snow Albedo Seasonality and Trend from MODIS Sensor and Ground Data at Johnsons Glacier, Livingston Island, Maritime Antarctica. Sensors 2019, 19, 3569. [Google Scholar] [CrossRef] [PubMed]
- Heidinger, A.K.; Straka, W.C.; Molling, C.C.; Sullivan, J.T.; Wu, X. Deriving an inter-sensor consistent calibration for the AVHRR solar reflectance data record. Int. J. Remote Sens. 2010, 31, 6493–6517. [Google Scholar] [CrossRef]
- Riihelä, A.; King, M.D.; Anttila, K. The surface albedo of the Greenland Ice Sheet between 1982 and 2015 from the CLARA-A2 dataset and its relationship to the ice sheet’s surface mass balance. Cryosphere 2019, 13, 2597–2614. [Google Scholar] [CrossRef]
- Seo, M.; Kim, H.C.; Huh, M.; Yeom, J.M.; Lee, C.; Lee, K.S.; Choi, S.; Han, K.S. Long-Term Variability of Surface Albedo and Its Correlation with Climatic Variables over Antarctica. Remote Sens. 2016, 8, 981. [Google Scholar] [CrossRef]
- Karlsson, K.G.; Anttila, K.; Trentmann, J.; Stengel, M.; Fokke Meirink, J.; Devasthale, A.; Hanschmann, T.; Kothe, S.; Jääskeläinen, E.; Sedlar, J.; et al. CLARA-A2: The second edition of the CM SAF cloud and radiation data record from 34 years of global AVHRR data. Atmos. Chem. Phys. 2017, 17, 5809–5828. [Google Scholar] [CrossRef]
- Karlsson, K.G.; Anttila, K.; Trentmann, J.; Stengel, M.; Solodovnik, I.; Meirink, J.F.; Devasthale, A.; Kothe, S.; Jääskeläinen, E.; Sedlar, J.; et al. CLARA-A2.1: CM SAF cLoud, Albedo and Surface RAdiation Dataset from AVHRR Data—Edition 2.1; Satellite Application Facility on Climate Monitoring: Offenbach, Germany, 2020. [Google Scholar] [CrossRef]
- Riihelä, A.; Manninen, T.; Laine, V.; Andersson, K.; Kaspar, F. CLARA-SAL: A global 28 yr timeseries of Earth’s black-sky surface albedo. Atmos. Chem. Phys. 2013, 13, 3743–3762. [Google Scholar] [CrossRef]
- Jin, Z.; Qiao, Y.; Wang, Y.; Fang, Y.; Yi, W. A new parameterization of spectral and broadband ocean surface albedo. Opt. Express 2011, 19, 26429–26443. [Google Scholar] [CrossRef] [PubMed]
- Xiong, X.; Stamnes, K.; Lubin, D. Surface Albedo over the Arctic Ocean Derived from AVHRR and Its Validation with SHEBA Data. J. Appl. Meteorol. 2002, 41, 413–425. [Google Scholar] [CrossRef]
- Liang, S. Narrowband to broadband conversions of land surface albedo I: Algorithms. Remote Sens. Environ. 2001, 76, 213–238. [Google Scholar] [CrossRef]
- Global Climate Observing System (GCOS). Systematic Observation Requirements for Satellite-Based Products for Climate, 2011 Update, Supplemental Details to the Satellite-Based Component of the Implementation Plan for the Global Observing System for Climate in Support of the UNFCCC (2011 Update). 2011. Available online: http://www.wmo.int/pages/prog/gcos/Publications/gcos-154.pdf (accessed on 19 July 2023).
- Jakobs, C.L.; Reijmer, C.H.; Kuipers Munneke, P.; König-Langlo, G.; van den Broeke, M.R. Quantifying the snowmelt–albedo feedback at Neumayer Station, East Antarctica. Cryosphere 2019, 13, 1473–1485. [Google Scholar] [CrossRef]
- Ohmura, A.; Dutton, E.G.; Forgan, B.; Fröhlich, C.; Gilgen, H.; Hegner, H.; Heimo, A.; König-Langlo, G.; McArthur, B.; Müller, G.; et al. Baseline Surface Radiation Network (BSRN/WCRP): New Precision Radiometry for Climate Research. Bull. Am. Meteorol. Soc. 1998, 79, 2115–2136. [Google Scholar] [CrossRef]
- Driemel, A.; Augustine, J.; Behrens, K.; Colle, S.; Cox, C.; Cuevas-Agulló, E.; Denn, F.M.; Duprat, T.; Fukuda, M.; Grobe, H.; et al. Baseline Surface Radiation Network (BSRN): Structure and data description (1992–2017). Earth Syst. Sci. Data 2018, 10, 1491–1501. [Google Scholar] [CrossRef]
- van den Broeke, M. Surface radiation balance in Antarctica as measured with automatic weather stations. J. Geophys. Res. 2004, 109. [Google Scholar] [CrossRef]
- Maturilli, M.; Herber, A.; König-Langlo, G. Climatology and time series of surface meteorology in Ny-Ålesund, Svalbard. Earth Syst. Sci. Data 2013, 5, 155–163. [Google Scholar] [CrossRef]
- Mcarthur, L.J.B. World Climate Research Programme—Baseline Surface Radiation Network (BSRN)—Operations Manual Version 2.1; Experimental Studies Division, Atmospheric Environment Service: Downsview, ON, Canada, 2005; Available online: https://epic.awi.de/id/eprint/30644/ (accessed on 19 July 2023).
- Yu, L.; Zhong, S.; Winkler, J.A.; Zhou, M.; Lenschow, D.H.; Li, B.; Wang, X.; Yang, Q. Possible connections of the opposite trends in Arctic and Antarctic sea-ice cover. Sci. Rep. 2017, 7, 45804. [Google Scholar] [CrossRef]
- Tareghian, R.; Rasmussen, P. Analysis of Arctic and Antarctic sea ice extent using quantile regression. Int. J. Climatol. 2013, 33, 1079–1086. [Google Scholar] [CrossRef]
- Cavalieri, D.J.; Parkinson, C.L. Arctic sea ice variability and trends, 1979–2010. Cryosphere 2012, 6, 881–889. [Google Scholar] [CrossRef]
- Meier, W.N.; Fetterer, F.; Windnagel, A.K.; Stewart, J.S. NOAA/NSIDC Climate Data Record of Passive Microwave Sea Ice Concentration; Version 4 [Data Set]; National Snow and Ice Data Center: Boulder, CO, USA, 2021. [Google Scholar] [CrossRef]
- Picard, G.; Fily, M. Surface melting observations in Antarctica by microwave radiometers: Correcting 26-year time series from changes in acquisition hours. Remote Sens. Environ. 2006, 104, 325–336. [Google Scholar] [CrossRef]
- Torinesi, O.; Fily, M.; Genthon, C. Variability and Trends of the Summer Melt Period of Antarctic Ice Margins since 1980 from Microwave Sensors. J. Clim. 2003, 16, 1047–1060. [Google Scholar] [CrossRef]
- Gloersen, P.; Francis, E.A. Nimbus-7 SMMR Antenna Temperatures, Version 1; NASA National Snow and Ice Data Center Distributed Active Archive Center: Boulder, CO, USA, 2003. [CrossRef]
- Meier, W.N.; Stewart, J.S.; Wilcox, H.; Scott, D.J.; Hardman, M.A. DMSP SSM/I-SSMIS Daily Polar Gridded Brightness Temperatures, Version 6; NASA National Snow and Ice Data Center Distributed Active Archive Center: Boulder, CO, USA, 2021. [CrossRef]
- Zheng, Y.; Golledge, N.R.; Gossart, A.; Picard, G.; Leduc-Leballeur, M. Estimating surface melt in Antarctica from 1979 to 2022, using a statistically parameterized positive degree-day model. Cryosphere Discuss. 2022, 2022, 1–38. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Biavati, G.; Horányi, A.; Muñoz Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Rozum, I.; et al. ERA5 Monthly Averaged Data on Single Levels from 1940 to Present; Copernicus Climate Change Service (C3S) Climate Data Store (CDS): Reading, UK, 2023. [Google Scholar] [CrossRef]
- Helsen, S.; Gossart, A.; Lenaerts, J.T.M.; Broucke, S.V.; van Lipzig, N.P.M.; Souverijns, N. An Evaluation of Surface Climatology in State-of-the-Art Reanalyses over the Antarctic Ice Sheet. J. Clim. 2019, 32, 6899–6915. [Google Scholar] [CrossRef]
- Wang, Y.; Ding, M.; Reijmer, C.H.; Smeets, P.C.J.P.; Hou, S.; Xiao, C. The AntSMB dataset: A comprehensive compilation of surface mass balance field observations over the Antarctic Ice Sheet. Earth Syst. Sci. Data 2021, 13, 3057–3074. [Google Scholar] [CrossRef]
- King, J.C.; Marshall, G.J.; Colwell, S.; Arndt, S.; Allen-Sader, C.; Phillips, T. The Performance of the ERA-Interim and ERA5 Atmospheric Reanalyses Over Weddell Sea Pack Ice. J. Geophys. Res. Ocean. 2022, 127, e2022JC018805. [Google Scholar] [CrossRef]
- Shen, X.; Ke, C.-Q.; Li, H. Snow depth product over Antarctic sea ice from 2002 to 2020 using multisource passive microwave radiometers. Earth Syst. Sci. Data 2022, 14, 619–636. [Google Scholar] [CrossRef]
- Brandt, R.E.; Warren, S.G.; Worby, A.P.; Grenfell, T.C. Surface Albedo of the Antarctic Sea Ice Zone. J. Clim. 2005, 18, 3606–3622. [Google Scholar] [CrossRef]
- Weiss, A.I.; King, J.C.; Lachlan-Cope, T.A.; Ladkin, R.S. Albedo of the ice covered Weddell and Bellingshausen Seas. Cryosphere 2012, 6, 479–491. [Google Scholar] [CrossRef]
- Scott, R.C.; Nicolas, J.P.; Bromwich, D.H.; Norris, J.R.; Lubin, D. Meteorological Drivers and Large-Scale Climate Forcing of West Antarctic Surface Melt. J. Clim. 2019, 32, 665–684. [Google Scholar] [CrossRef]
- Tedesco, M.; Fettweis, X.; van den Broeke, M.R.; van de Wal, R.S.W.; Smeets, C.J.P.P.; van de Berg, W.J.; Serreze, M.C.; Box, J.E. The role of albedo and accumulation in the 2010 melting record in Greenland. Environ. Res. Lett. 2011, 6, 014005. [Google Scholar] [CrossRef]
- Libois, Q.; Picard, G.; Arnaud, L.; Morin, S.; Brun, E. Modeling the impact of snow drift on the decameter-scale variability of snow properties on the Antarctic Plateau. J. Geophys. Res. Atmos. 2014, 119, 11662–11681. [Google Scholar] [CrossRef]
- Dybbroe, A.; Karlsson, K.G.; Thoss, A. NWCSAF AVHRR Cloud Detection and Analysis Using Dynamic Thresholds and Radiative Transfer Modeling. Part II: Tuning and Validation. J. Appl. Meteorol. 2005, 44, 55–71. [Google Scholar] [CrossRef]
- Shao, Z.D.; Ke, C.Q. Spring–summer albedo variations of Antarctic sea ice from 1982 to 2009. Environ. Res. Lett. 2015, 10, 064001. [Google Scholar] [CrossRef]
- Kromer, J.D.; Trusel, L.D. Identifying the impacts of sea ice variability on the climate and surface mass balance of West Antarctica. Geophys. Res. Lett. 2023, 50, e2023GL104436. [Google Scholar] [CrossRef]
- Pirazzini, R. Surface albedo measurements over Antarctic sites in summer. J. Geophys. Res. 2004, 109. [Google Scholar] [CrossRef]
- Brandt, R.E.; Grenfell, T.C.; Warren, S.G. Optical properties of snow. Antarc. J. US 1991, 26, 272–275. [Google Scholar]
- Zhang, T.; Zhou, C.; Zheng, L. Analysis of the temporal-spatial changes in surface radiation budget over the Antarctic sea ice region. Sci. Total Environ. 2019, 666, 1134–1150. [Google Scholar] [CrossRef]
Monthly | Pentad | |||||
---|---|---|---|---|---|---|
RMSE | MB | Valid Value (N) | RMSE | MB | Valid Value (N) | |
AWS04 | 0.091 | −0.086 | 14 | 0.111 | −0.096 | 68 |
AWS05 | 0.062 | −0.057 | 36 | 0.083 | −0.062 | 187 |
AWS06 | 0.066 | −0.062 | 24 | 0.079 | −0.068 | 161 |
AWS09 | 0.039 | −0.001 | 43 | 0.045 | −0.003 | 281 |
AWS10 | 0.095 | −0.095 | 4 | 0.158 | −0.125 | 30 |
AWS11 | 0.105 | −0.102 | 15 | 0.125 | −0.107 | 78 |
AWS12 | 0.025 | 0.021 | 26 | 0.031 | 0.021 | 144 |
AWS13 | 0.050 | 0.049 | 25 | 0.052 | 0.049 | 129 |
AWS14 | 0.100 | −0.095 | 12 | 0.117 | −0.110 | 64 |
AWS15 | 0.125 | −0.123 | 11 | 0.144 | −0.136 | 61 |
AWS16 | 0.031 | −0.022 | 15 | 0.044 | −0.028 | 89 |
AWS17 | 0.119 | −0.119 | 4 | 0.128 | −0.125 | 26 |
AWS18 | - | - | - | - | - | - |
AWS19 | 0.549 | 0.548 | 5 | 0.557 | 0.554 | 29 |
SYO | 0.075 | 0.054 | 58 | 0.099 | 0.055 | 343 |
SPO | 0.047 | 0.019 | 48 | 0.049 | 0.017 | 254 |
DOM | 0.437 | 0.432 | 17 | 0.450 | 0.431 | 97 |
GVN | 0.075 | −0.072 | 81 | 0.095 | −0.077 | 467 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Wang, Y.; Zhai, Z.; Zhou, M. Changes in the Antarctic’s Summer Surface Albedo, Observed by Satellite since 1982 and Associated with Sea Ice Anomalies. Remote Sens. 2023, 15, 4940. https://doi.org/10.3390/rs15204940
Sun Y, Wang Y, Zhai Z, Zhou M. Changes in the Antarctic’s Summer Surface Albedo, Observed by Satellite since 1982 and Associated with Sea Ice Anomalies. Remote Sensing. 2023; 15(20):4940. https://doi.org/10.3390/rs15204940
Chicago/Turabian StyleSun, Yuqi, Yetang Wang, Zhaosheng Zhai, and Min Zhou. 2023. "Changes in the Antarctic’s Summer Surface Albedo, Observed by Satellite since 1982 and Associated with Sea Ice Anomalies" Remote Sensing 15, no. 20: 4940. https://doi.org/10.3390/rs15204940
APA StyleSun, Y., Wang, Y., Zhai, Z., & Zhou, M. (2023). Changes in the Antarctic’s Summer Surface Albedo, Observed by Satellite since 1982 and Associated with Sea Ice Anomalies. Remote Sensing, 15(20), 4940. https://doi.org/10.3390/rs15204940