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Abstract: The size of snow grains is an important parameter in cryosphere studies. It is the main
parameter affecting snow albedo and can have a feedback effect on regional climate change, the water
cycle and ecological security. Larger snow grains increase the likelihood of light absorption and are
important for passive microwave remote sensing, snow physics and hydrological modelling. Snow
models would benefit from more observations of surface grain size. This paper uses an asymptotic
radiative transfer model (ART model) based on MOD09GA ground reflectance data. A simulation
of snow grain size (SGS) in northeast China from 2001 to 2019 was carried out using a two-channel
algorithm. We verified the accuracy of the inversion results by using ground-based observations
to obtain stratified snow grain sizes at 48 collection sites in northeastern China. Furthermore, we
analysed the spatial and temporal trends of snow grain size in Northeastern China. The results show
that the ART model has good accuracy in inverting snow grain size, with an RMSD of 65 µm, which
showed a non-significant increasing trend from 2001 to 2019 in northeast China. The annual average
SGS distribution ranged from 430.83 to 452.38 µm in northeast China, 2001–2019. The mean value
was 441.78 µm, with an annual increase of 0.26 µm/a, showing a non-significant increasing trend and
a coefficient of variation of 0.014. The simulations show that there is also intermonth variation in
SGS, with December having the largest snow grain size with a mean value of 453.92 µm, followed by
January and February with 450.77 µm and 417.78 µm, respectively. The overall spatial distribution
of SGS in the northeastern region shows the characteristics of being high in the north and low in
the south, with values ranging from 380.248 µm to 497.141 µm. Overall, we clarified the size and
distribution of snow grains over a long time series in the northeast. The results are key to an accurate
evaluation of their effect on snow–ice albedo and their radiative forcing effect.

Keywords: snow grain size; ART model; MODIS; northeast China

1. Introduction

Snow cover is a widespread type of surface coverage on the Earth and has a significant
impact on the global energy balance through its high albedo [1]. Snow grain size, density,
snow surface impurities and snow moisture content are the main factors affecting snow
reflectivity, of which SGS is an important parameter causing changes in snow reflectivity,
and SGS has an important influence on the reflectivity characteristics of snow in the near-
infrared band [2–6]. Changes in SGS can cause changes in the absorption of solar radiation
by snow cover, which in turn can have a feedback effect on regional climate change, the
hydrological cycle and ecological security [7–9]. The sixth IPCC’s Assessment Report notes
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that the northern hemisphere snowpack has been shrinking since the mid-20th century,
with shorter snow cover periods and significantly earlier snowmelt, particularly in the
mid- and high-latitude regions [10]. Variations in SGS play a key role in regulating the
reflectance of snow in the visible band, which in turn affects the duration of seasonal snow
accumulation [11–13]. In addition, SGS is important for passive microwave remote sensing,
radar and laser altimetry, as well as the physical and hydrological modelling of snow
cover [14,15]. The spatial–temporal variation in SGS production in urban areas, which
are areas subject to greater anthropogenic disturbance, has attracted widespread scholarly
attention in the context of climate change.

At present, the observation of SGS at home and abroad is mainly based on manual
sampling and observation in the field, which, due to the geographical environment and
the limitations of the observation instruments, has not formed a periodic observation [16].
In addition, due to the diversity and complexity of snow grain shapes in snow cover, SGS
is ambiguous and difficult to determine from field observations [15,17]. The macroscopic,
rapid, all-day, all-weather periodicity of remote sensing provides the best way to obtain SGS
parameters [18–20]. Establishing a relationship between snow grain size and its spectrum
is at the heart of snow grain size inversion, which has been studied by scientists since the
1980s [21]. A large number of SGS inversion models have been developed over the last
30 years, and as remote sensing techniques have evolved, the algorithms and techniques
for inversion have become increasingly fast, efficient and accurate [22–24]. The retrievals of
SGS from spaceborne multispectral observations usually rely on snow radiative transfer
models [25]. In the early period, Wiscombe et al. (1980) used the Wiscombe–Warren model
and NOAA-6 Very High Resolution Radiometer (AVHRR) data to derive the potential for
using remote sensing data to estimate snow grain size [26]. Nolin et al. (1993) developed a
new SGS inversion algorithm (Nolin–Dozier model) based on Airborne Visible Infrared
Imaging Spectrometer (AVIRIS) data, and subsequently some scholars used Hyperion data
combined with a Discrete Radiative Transfer Model (DISORT) to invert SGS with good
results [27]. Subsequently, some scholars have used TM remote sensing data to invert
the snow grain size, but the accuracy of the inversion is not very high due to the small
number of wavelengths of satellite sensors and their lack of sensitivity to snow grain
size [28–30]. With the advent of hyperspectral imagery and improvements in radiometric
asymptotic models, more accurate snow grain size inversion models have emerged [31–35].
Based on the WW and DISORT models, many improved models and algorithms have been
derived, such as the single-channel inversion algorithm, the scaling band algorithm and
the MODSCAG model [36,37].

However, both the WW and DISORT models treat snow grain sizes as equivalent
spheres and use the Mie scattering theory to calculate the scattering characteristics of
individual snow grains. In reality, the snow grains are irregular, and this simulation differs
from the actual snow field [38–40]. Therefore, the development of a radiative transfer
model for non-spherical SGS and, therefore, the development of an inversion algorithm
for non-spherical SGS have arisen [41–43]. Kokhanovsky and Zege (2004) developed the
Asymptotic Radiative Transfer (ART) model, which takes into account both snow grain
shape and snow contamination, to address the weak absorption properties of a snow
layer [44]. They see a snow layer as a multiple scattering dense medium made up of
irregularly shaped non-uniform grains. The inversion based on non-spherical grains has
proven to be highly accurate [45].

In summary, the existing remote sensing inversion studies of SGS are mainly focused
on the polar regions, the Qinghai–Tibetan plateau and the northern border of China [46,47];
these natural areas are less disturbed by anthropogenic activities, and all the comparison
results show that the order of magnitude is basically the same. The northeast is the second-
largest stable snow area in China, with a large and long-lasting snow cover [48]. In addition,
the northeast is a heavy industrial base in China, with a high population density and a
high impact from coal-fired heating in winter, making it one of the more polluted areas
in winter and spring. Therefore, this paper focuses on urban areas that are disturbed by
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human activities and attempts to invert the large-scale snow grain size distribution based
on remote sensing information. In this paper, we simulate and analyse the spatial and
temporal distribution of SGS and its variation in northeast China by using the progressive
radiative transfer model (ART model), remote sensing image data, ArcGIS and other spatial
analysis methods. This acts as a basis for the study of early snowmelt and increased spring
drought in the northeast, especially in the Sanjiang and Songneng plains.

2. Materials and Methods
2.1. Study Area

The study area includes the provinces of Heilongjiang, Jilin and Liaoning and is located
in northeastern China (excluding the four cities of Mengdong), between 37 and 53◦N and
115 and 135◦E (Figure 1). It has a temperate monsoon climate, but due to its high latitude,
its winters are cold and long, snow falls in winter, evaporation is low and the climate is
humid. The northeast is the second largest stable snow area in China, with the largest
range of stable snow areas and average snow depths, with snow periods ranging from 30 to
190 d from south to north. The annual accumulated snow depth in the northeast is 498 cm,
distinguishing it from other snow areas by its large average annual snow storage capacity
and the most pronounced interannual variability [49]. The north-eastern part of the region
is dominated by forests and grasslands, with the Daxinganling in the northwestern part of
Heilongjiang, the Xiaoxinganling in the north, the Changbai Mountains in the northwestern
part of Heilongjiang, Jilin and Liaoning, and the fertile Songnun Plain, the Sanjiang Plain
and the Liaohe Plain in the middle, which are important food-producing areas in China [50].
It is an important grain-producing region in China. In addition, the northeast is one of
the most polluted regions in China in winter, as it is a heavy industrial base and densely
populated [51].

Figure 1. Study area.

2.2. Remote Sensing Data

MODIS is an important sensor on board the Terra and Aqua satellites, providing
36 channels of observations from the visible (0.4 µm) to the thermal infrared (14.4 µm)
band. The MODIS data used in this study include the MOD09GA Day-By-Day Surface
Reflectance product data. The MOD09GA (L2G Collection6) Terra Global Day-by-Day
Surface Reflectance product is provided by NASA (https://search.earthdata.nasa.gov,
accessed on 9 July 2022) [52]. The time frame used is from January 2001 to December 2019
(1 October–31 March of each year). The track numbers are h25v03, h26v03, h26v04, h27v04
and h27v05. The data format is the HDF.Cloud-based geospatial data processing platform,
and the data are uniformly projected from the sinusoidal projection to the WGS84 projec-
tion. The MOD09GA (V6) data pre-processing process includes data format conversion,

https://search.earthdata.nasa.gov
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resampling, reprojection, stitching and cropping. The dataset was corrected by atmospheric
bidirectional reflection and solar altitude angle.

2.3. Field Measurement Data

The ground validation data are mainly field observations of snow grain size (Figures 2
and 3). To validate the model, three field fixations were conducted in January 2014 and
December and February 2018, with a total of 48 sampling points, including 28 points in 2014
and 20 points in 2018. The average depth of snow observed in the field was 165 cm, and
the average density was 243 g/cm3. Clean shovels were used to collect snow samples (5 cm
depth) from the snow surface. In addition, attention was paid to not collect debris such as
leaves when sampling. Due to the aging nature of the snowpack, there are obvious differences
in the SGS between different snow layers, and we carried out stratified sampling based on
the natural stratification boundary between old and new snow in the snowpack profile. The
physical characteristics of each layer of snow, such as its depth and density, were also recorded.
Snow grain size increases with depth and decreases with density. The snow grain size was
determined using a high-power photographic microscope (Anyty, Tianjin, China) and a snow
grain size plate (manufactured by the Institute of Cold and Drought, Chinese Academy of
Sciences). The measurement accuracy was 0.1 mm. After the observation, the index values
were recorded.

Figure 2. Field observation of snow grain size. Field observation sites and photographs of snow
grain size observation equipment and field observations.
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Figure 3. Field measured snow grain size.

2.4. Snow Image Element Discrimination

This paper calculates the normalised difference snow index NDSI based on MODIS
ground albedo data and uses the SNOWMAP method to extract the snow image elements
from the MODIS data. Snow has high reflectance in the visible and near-infrared bands,
with reflectance above 80% at around 0.2 µm, while the reflectance of other features is
generally below 30%, so it is relatively easy to distinguish snow from most features. Clouds
have similar spectral characteristics to snow in the visible band, while in the near-infrared
band they are more different. The normalised difference snow index (NDSI), based on
reflectance characteristics, is the best technique for extracting snow information because it is
universally applicable and has the advantages of high accuracy and reasonable classification.
The NDSI is similar to the NDVI in that it is insensitive to a wide range of light conditions,
locally normalised to atmospheric effects and does not depend on a single channel. Hall
et al. give a complete definition of the NDSI applied to MODIS to identify snow [53], which
is calculated as shown in Equation (1):

NDSI =
R(b4)− R(b6)
R(b4) + R(b6)

(1)

where NDSI is the normalised difference snow accumulation index, R(b4) and R(b6) rep-
resent the ground reflectance in the 4th band (0.545–0.565 µm visible band) and 6th band
(1.628–1.652 µm near-infrared band) of the MODIS data, respectively.

Hao et al. (2008) analysed the NDSI threshold and found that the larger the snow
area the closer the NDSI threshold was to 0.4. Since the study area chosen for this study
is the northeast China region [54], which has a more stable snow-covered area, the NDSI
threshold is chosen here to be 0.4. If the conditions of NDSI = 0.4 and MODIS band 2
(0.841–0.876 µm) = 0.11 are also met, then the image elements in the region are judged
to be snow-covered. This threshold discrimination method prevents areas of clear water,
dense vegetation, shadows and low-light conditions from being misclassified as snow. The
principle is that clear water has an NDSI greater than 0.4, but it only reflects radiant energy
in the visible band and absorbs radiant energy in other bands, so the MODIS band 2 value
can be used to distinguish between snow and clear water. Snow in MODIS band 2 has a
value of =0.11, but water absorbs radiant energy in this band and its value in band 2 will
not be greater than 0.11.

Vegetation distribution and possible topographic features have an important influence
on the inversion of SGS. Tree cover and low-level vegetation protrusions in snowpacks can
significantly alter surface reflectance in all optical bands, and thus can complicate remote
sensing-based estimates of snowpack optical and physical properties. For dense vegetation,
shadows and low-light condition areas (referred to as dark targets), their reflectance of
visible light is very low; MODIS band 4 is the visible band, so the value of dark targets in
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this band is much less than 0.1, the denominator of the NDSI formula is very small and
if the value of band 4 increases slightly, the value of NDSI will be much greater than 0.4
and these dark targets will be misjudged as snow. However, the value of the dark target
in band 4 is much less than 0.1 and does not satisfy the discrimination condition, so it
will not be misclassified as snow. We combined the MCD12C1 surface-cover-type data
(Figure 4) to mask the dark targets, such as forests, in northeast China, and also mask the
water bodies to maximize the removal of feature targets that affect the albedo of snow to
ensure the accuracy of the inversion. The SNCIAR model was used to simulate continuous
spectral albedo for several sets of different conditions, which was compared with the SGS
inverted from MODIS data. The MODIS data used are geometrically, radiometrically and
atmospherically corrected.

Figure 4. Characteristics of vegetation cover in northeast China.

For MODIS data, the NIR band used in the SNOWMAP algorithm to remove the
effects of water bodies is band 2, and the snow accumulation image element discriminant
formula is as follows: 

NDSI ≥ 0.4
b2 ≥ 0.1
b4 ≥ 0.1

(2)

2.5. ART Model Algorithm and Parameters

The ART model is a simplified radiative transfer model developed by Kokhanovsky
and Zege [55], driven by data mainly on visible and near-infrared ground reflectance,
solar zenith angle, observed zenith angle and relative azimuth [40]. The model enables an
estimation of snowpack properties on regional and global scales, i.e., effective snowpack
grain size. Kokhanovsky and Zege have performed several validations and parameter
corrections through the ART model and have successfully applied it on point and regional
scales such as the Arctic, Greenland, the Alps, Japan, the Himalayas, and the Chinese region.
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The model is concise, efficient and flexible as it uses geometric optical equations to calculate
the optical characteristics of individual grains and then uses an asymptotic analysis to
obtain an asymptotic analytical solution to the radiative transfer model. For each grid, the
ART model utilises a two-channel (channel 1, 0.443 µm; channel 2, 0.865 µm) algorithm to
simultaneously calculate the daily values of c in mm and ng/g using the formula.

R1 = R0 exp

[
−4 f (µ, µ0, ϕ)√

3(1 − g)

√
2
3

Bαs,1cαe f

]
(3)

R2 = R0 exp

[
−4 f (µ, µ0, ϕ)√

3(1 − g)

√
αi,2βKαe f +

2
3

Bαs,2cαe f

]
(4)

The significance and units of the parameters in Equations (3) to (4) are shown in
Table 1. R is snow reflectivity in channel 2 semi-infinite space.

Table 1. Parameter list used in ART.

Parameters Significance Unit

R1 Snow reflectivity in channel 1 semi-infinite space -
R2 Snow reflectivity in channel 2 semi-infinite space -
R0 Semi-infinite space snow layer reflectivity function -

f (µ, µ0, ϕ)
Determined by escape function and semi-infinite

space snow
layer reflectivity function

-

g Asymmetry factor 0.76
B Constants 0.84

αs,i Absorption coefficient of BC -
c Relative concentrations of BC ng/g

αe f Snow grain size mm
αi,2 Absorption coefficient of ice -
β Photon absorption probability of ice crystals 0.47
K Constants 2.63
ϑ0 Solar zenith angle degree
ϑ Observation of the zenith angle degree
ϕ Relative azimuth degree

(1) Semi-infinite space snow layer reflectivity function

R0(µ, µ0, φ) is the snow reflectance factor of a weakly absorbing surface, which can
be calculated from the Fourier component of the visible band assuming that its single
scattering albedo is equal to 1 and that the snow grains are second-generation Koch fractal
grains (Table 2). The approximate analytical formula given analytically by Kokhanovsky
et al., is as follows:

R0(µ, µ0 , ϕ) =
A + B(µ + µ0) + Cµµ0 + p(θ)

4(µ + µ0)
(5)

Table 2. Parameter list used in the temperature function, R0.

Parameters Significance Value

A Constants 1.247
B Constants 1.186
C Constants 5.157
µ Observation of the zenith angle cosine [-]
µ0 Cosine of the solar zenith angle [-]

P(θ) Phase functions [-]
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Of these, the phase function, P(θ), determines the semi-infinite weakly absorbing
snow layer reflectivity, which is strongly influenced by the single scattering, especially
at oblique incidence (solar zenith angles greater than 70◦). The phase function, in turn,
strongly depends on the grain shape. In the framework of geometrical optics, when the
grain is much larger than the wavelength, the phase function is completely bounded
by the grain shape and the real part of the refractive index. Since the real part of the ice
refractive index has a weak spectral dependence in the visible and near-infrared spectra, the
spectral variation in the phase function and its resulting spectral variation in the function
R0(µ, µ0, φ) is negligible, i.e., the phase function does not depend on the wavelength and
therefore the function R0(µ, µ0, φ) is the same over the entire spectral range. The phase
function P(θ) is calculated as follows:

P(θ) = 11.1 exp(−0.087θ) + 1.1 exp(−0.014θ) (6)

where θ is defined as

θ = a cos(−µµ0 + ss0 cos ϕ), s = sin(ϑ), s0 = sin(ϑ0).µ0 = COS(ϑ0), µ = COS(ϑ).

(2) Parameter f (µ, µ0, ϕ) of the calculation

The parameter f is determined by both the escape function and the semi-infinite space
snow reflectivity function, which is calculated as follows:

f (µ, µ0, ϕ) =
u(µ0)u(µ)

R0(µ, µ0, ϕ)
(7)

u(µ0) is called the escape function in the radiative transfer model and represents the
angular distribution of light escaping from non-absorbing matter in semi-infinite space in
the framework of the Milne problem. The asymptotic radiative transfer model is solved
according to the following empirical formula:

u(µ0) =
3
7
(1 + 2µ0), u(µ) =

3
7
(1 + 2µ). (8)

(3) Absorption coefficients of ice crystals

Kokhanovsky and Zege et al., suggest that light absorption by the snow layer in the
visible band (i.e., channel 1) is mainly due to light absorption by pollutants (mainly black
carbon); in the near-infrared band (i.e., channel 2), light absorption by the snow layer is
mainly due to light absorption by ice crystal snow grains and black carbon [53].

The expression for the light absorption coefficient, αi,2, of an ice crystal is

αice,2 = 4 ∏ χice(λ)/λ (9)

where χice(λ) is the imaginary part of the complex refraction index of ice as a function of
wavelength; here, we use measurements by Warren et al., (Warren, 1984).

(4) Asymmetry factor

The asymmetry factor is the average cosine of the phase function of the medium
with a value range of [−1,1], which depends on the grain shape. For very strong forward
scattering, the asymmetry factor is close to +1. The asymmetry factor does not depend on
the imaginary part of the SGS and refractive index but on the real part of its shape and
refractive index. For dry snow, the effect of wavelength on the asymmetry parameter is very
small, so that g is considered to be independent of wavelength by Zege et al. Kokhanovsky
found that the assumption of the shape of non-spherical snow grains (columnar, fractal,
Koch) does not have a significant effect on the snow layer reflectivity simulations, so that
the asymmetry factor can be viewed as a single value for all non-spherical snow grains. In
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the ART model, the asymmetry parameter g (g = 0.76) for fractal grains in the visible region
was used as a constant in the calculations.

2.6. Spatial Interpolation Analysis Method

Through the ArcGIS 10.8 (Environmental Systems Research Institute, Inc., Esri, San
Francisco, CA, USA) grid module and spatial analyst module, the spatial distribution char-
acteristics of BC in study area were statistically calculated. In this paper, we used the kriging
interpolation method to analyse the spatial distribution. Kriging is a regression algorithm
for the spatial modelling and prediction (interpolation) of random processes/random fields
based on covariance functions.

Z(x0) = ∑ n
i=0λiZ(xi) (10)

where Z(x0) is the unknown sample point value, Z(xi) is the known sample point value
around the unknown sample point, λi is the weight of the ith known sample point on the
unknown sample point, and n is the number of known sample points. Kriging is based
on the data of several known sample points in a finite proximity to the sample point to be
estimated and takes into account the size, shape and spatial location of the sample points,
as well as the structural information provided by the variation function, making maximum
use of the information provided by spatial sampling. It is therefore more accurate and
realistic than other methods.

3. Result
3.1. Model Verification

We verified the accuracy of the simulated values by comparing the simulated SGSs
with the measured values. Since the measured value had an uncertain range, as long as the
simulated value was distributed within the range of the measured value, we could consider
the simulation result credible. The modelled snow grain sizes were 430.83–452.384 µm,
while the range of the snow grain sizes obtained from in situ measurements in the field was
105–560 µm. The snow grain size inversion results were, on average, 26 µm larger than the
in situ measurements. The deviation of the analogue value from the measured value was
less than 10%. Depending on the year, the measurements and simulations showed a linear
correlation between Pearson’s correlation (r) between 0.65 and 0.77 (Table 3). We further
added a portion of secondary data for model validation. Xin W et al. (2020) modelled the
snow grain size (SGS) of the snowpack in northern China, and the results of the study
showed that the mean value of the SGS in the whole northern region was 241.38 µm, and
the maximum value was 381.2 µm. In this paper, the average value of simulated snow
particle size is in the same order of magnitude, and the difference is not significant, so the
simulation results are considered to be credible.

Table 3. Comparison of modelled and observed SGS.

Year Mean Different (µm) RMSD (µm)
Pearson’s

Correlation
Coefficient (r)

Days (N)

January 2014 28 62 0.77 21
December 2018 31 78 0.71 26
February 2019 19 53 0.65 19

all 26 65 0.69 66

3.2. Temporal Distribution and Variation Characteristics of SGS in Northeastern China

The MODIS second and third band ground reflectance and solar zenith angle data
were input into the ART model to calculate the snow grain size in northeast China from 2001
to 2019 (Figure 5). The SGS here is the optically effective grain size. The 2001–2019 annual
mean SGS distribution in northeast China fluctuated up and down between 430.830 µm
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and 452.384 µm, with a mean value of 441.783 and an annual increase of 0.405 µm, showing
a non-significant increasing trend, indicating that the annual mean SGS in northeast China
did not change significantly. The maximum value occurred in 2003, and the minimum
value occurred in 2007. The coefficient of variation of the annual mean SGS in northeast
China from 2001 to 2019 was 0.014, indicating that the overall SGS in northeast China is
relatively stable.

Figure 5. Interannual variation in SGS in northeast China, 2001−2019.

3.3. Characteristics of Changes in the Spatial Distribution of SGS in Northeast China from 2001
to 2019
3.3.1. General Characteristics of the Spatial Distribution of SGS

The annual mean SGS distribution in the northeast snowpack from 2001–2019 shows
significant spatial variability (Figure 6). The overall spatial distribution is high in the north
and low in the south, with values ranging from 380 to 497 µm. The mean SGS in the
Liaoning, Jilin and Heilongjiang provinces were 417.552 µm, 428.713 µm and 439.941 µm,
respectively. The southern part of Heihe, the northern part of Qiqihar and Suihua, and the
eastern part of the Sanjiang Plain in Northeast China are areas with high values of SGS.
Among them, the industrial corridor, consisting of Daqing, Qiqihar and Heihe, and the coal
industrial region, consisting of Hegang, Jiamusi and Shuangyashan, are the areas with the
largest SGS in northeast China, with an SGS above 450 µm. Snow grain size is relatively
low in the Xiaoxinganling and Changbai Mountain areas and most of Liaoning Province,
averaging below 430 µm.

The annual averages of SGS in northeast China from 2001 to 2008 and 2009 to 2019
were averaged over 8 years, respectively (Figure 7). The results show that high values
occur in the eastern and western Heilongjiang Province. Overall, the northeastern SGS
from 2001 to 2019 showed an overall trend of increasing range in the high-value zone,
decreasing range in the medium-value zone and increasing size in the low-value zone. In
comparison, the spatial distribution of SGS in the last 8 years shows a decrease in SGS in the
Songnen Plain. The range of the secondary high-value centres (440 µm–450 µm interval) in
Harbin, Suihua, Daqing and Songyuan shrinks sharply, and the snow grain size increases
in the Daxinganling region, the Xiaoxinganling region, the Changbai Mountain region and
southeastern and southwestern Liaoning Province.
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Figure 6. Spatial distribution of SGS in northeast China from 2001 to 2019.

Figure 7. Average SGS in northeast China 2001–2019 (a), average value of 2009–2019 (b) spatial distribution.
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3.3.2. Spatial Distribution of Interannual Variation of SGS

The trend of the rate of change in northeast SGS from 2001 to 2019 is shown in
Figure 8, with both increasing and decreasing trends in northeast SGS. Overall, 49.98% of
the northeastern area has an increasing trend and 50.02% has a decreasing trend, i.e., the
area of increasing and decreasing SGS is equally divided. Among them, the SGS increase
area is mainly concentrated in the two intervals of 0–1 µm and 1–2.5 µm, accounting for
31.95% and 14.16% of the whole northeast area, respectively. This indicates that the overall
increase in SGS in northeast China from 2001 to 2019 was not significant, mainly in Heihe,
northern Qiqihar, northern Suihua, Yichun, eastern Harbin, Jilin, Mudanjiang, Siping,
Liaoyuan, Tonghua and Tieling. The greatest increase in SGS is found in the Daxinganling
region, eastern Heihe, Yichun, northern and eastern Harbin, western Mudanjiang, Yanbian
Korean Autonomous Prefecture, Baishan, southeastern Tonghua, Fuxin, Chaoyang and
Huludao, where the rate of increase ranges from 2.5 to 9 µm/a. The northeast SGS reduction
areas are mainly concentrated in the −1–0 µm and −2–−1 µm intervals, accounting for
37.21% and 9.95% of the total northeast area, respectively. This indicates that the overall
decrease in snow grain size in northeast China from 2001 to 2019 is not significant and
is concentrated in the Songneng Plain, Sanjiang Plain, central Mudanjiang and eastern
Yanbian Korean Autonomous Prefecture in northeast China. The greatest reduction in SGS
was observed in Baicheng, Songyuan, Chaoyang, Fuxin and northwestern Jinzhou cities,
with reductions ranging from −8 to −2 µm/a.

Figure 8. Spatial distribution of SGS tendency rate in northeast China from 2001 to 2019.

The spatial distribution of sig values of SGS in northeast China from 2001 to 2019 is
shown in Figure 9. Only 4.49% of the whole of northeast China area passed the probability
test at a 0.05 significance level. The change was significant. Among which, the area with
significantly increasing SGS accounted for 3.76% of the northeast China area, and the
area with significantly decreasing SGS was smaller, only 0.74% of the northeast China
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area. The significantly increasing areas were mainly located in the Daxinganling region,
Heihe, Yichun, northern and southern Harbin, western and northeastern Mudanjiang,
central Jilin, western Yanbian Korean Autonomous Prefecture and Baishan City. The signif-
icantly decreasing areas were sporadically distributed in Baicheng, Songyuan, northeastern
Mudanjiang, Yanbian Korean Autonomous Prefecture, northern Chaoyang, Fuxin and
northern Jinzhou.

Figure 9. Spatial distribution of sig value of SGS in Northeast China from 2001 to 2019.

The spatial distribution of northeast SGS in 2019 is subtracted from the spatial distri-
bution of northeast SGS in 2001 to obtain the spatial distribution of the amount of northeast
SGS change from 2001 to 2019 (Figure 10). The spatial distribution of SGS variation from
2001 to 2019 is more obvious; the decreasing area and increasing area of SGS annual vari-
ation are distributed in the whole northeast; the increasing area and decreasing area are
71.75% and 28.25% of the northeast area, respectively, the largest area is 2.540 times the
decreasing area. All cities in the northeast are represented. The annual SGS reduction areas
are mainly located in the Daxinganling region, northern Qihehe, Yichun, eastern Jiamusi,
Shuangyashan, Qitaihe, Mudanjiang, Yanbian Korean Autonomous Prefecture, Baicheng,
Chaoyang, Huludao, Jinzhou, Panjin, Dandong, southern Anshan and Dalian. The amount
of change in SGS in northeast China from 2001 to 2019 was mainly concentrated in the
intervals of −20 to 0 µm and 0 to 20 µm, accounting for 23.27% and 49.41% of the entire
northeast China area, respectively, for a total of 72.68%. The area of SGS change that
increased by more than 40 µm and decreased by less than 40 µm only accounted for 9.87%
of the entire northeast area, indicating that the overall SGS change in the northeast from
2001 to 2019 was not significant.
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Figure 10. Spatial distribution of SGS difference of snow cover in northeast China from 2001 to 2019.

3.3.3. Spatial Distribution of Intraannual Variation of SGS

Considering December of the previous year and January and February of this year
as snow seasons, the spatial distribution of the average monthly SGS in December is
subtracted from the spatial distribution of the average monthly SGS in February from
2001 to 2019 to obtain the spatial distribution of SGS variation within a snow season
(Figure 11). The results show that the spatial distribution of SGS variation during the
snow season from 2001 to 2019 varies significantly, with both decreasing and increasing
SGS areas distributed, with increasing and decreasing areas accounting for 0.86% and
99.14% of the total northeastern area. It can be seen that the area of the SGS reduction
region is 115.48 times larger than the area of the increase region, with the vast majority of
the northeast being the reduction region. The increasing areas are mainly in the cities of
Mudanjiang, Baicheng, Songyuan and Yanbian Korean Autonomous Prefecture, with the
remainder being decreasing areas. The snow grain size reduction during the 2001 to 2019
snow season was mainly concentrated in the intervals of 0 µm to −25 µm and −40 µm to
−25 µm, accounting for 29.007% and 51.933% of the entire northeastern area, respectively,
for a total of 80.94%. The areas with the greatest reduction in SGS (−107 to −40 µm) are
concentrated in the Daxinganling region, northern and eastern Heihe, Yichun, eastern
Jiamusi, western Baicheng, Huludao, Jinzhou, Panjin, Anshan, Yingkou and Dandong.
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Figure 11. Spatial distribution of SGS change in Northeast China from 2001 to 2019.

3.4. Analysis of Monthly Variation of Snow Grain Size in Northeast China
3.4.1. Analysis of Temporal Variation in SGS by Month

The daily values of SGS for each month (December, January and February) of winter in
northeast China from 2001 to 2019 were summed and then averaged to obtain the monthly
average values of SGS in December, January and February for 19 years in northeast China
(Figure 12). The results show that inter-monthly snow grain size varies greatly in the
Northeast. The largest SGS was 453.923 µm in December, decreasing in January and
February to 450.768 µm and 417.777 µm, respectively. The interannual variation in SGS
by month in the northeast from 2001 to 2019 is shown in Figure 9. The result shows an
increasing trend in SGS in December and January in the northeast from 2001 to 2019, with
annual increases of 0.488 µm/a and 0.481 µm/a, respectively. Snow grain size tends to
decrease in February, with an annual decrease of 0.193µm/a. There was no significant
trend of increasing or decreasing SGS in any of the three months. This indicates that there
was no significant change in snow grain size from 2001 to 2019 in the northeast by month.
The coefficients of variation for each month were 0.022 (December), 0.028 (January) and
0.025 (February). The coefficient of variation was smallest in December, indicating that
snow grain size was generally more stable in December.

3.4.2. Analysis of Spatial Variation in SGS by Month

The spatial distribution of SGS in December, January and February of each year from
2000 to 2019 was superimposed and averaged to obtain the spatial distribution of SGS in
northeast China in December, January and February from 2001 to 2019 (Figure 13). The
spatial distribution of SGS in December, January and February in northeast China from
2001 to 2019 is characterised by being high in the north and low in the south, with three
high centres of SGS in each month of winter in northeast China, namely the Daxinganling
region, the northern part of Qiqihar, the southern part of Heihe and the Hegang and Jiamusi
regions. All three high-value centres were present in December and January, with an SGS
above 455 µm in the high-value centres. The range of the SGS sub-maximum centres
(440–455 µm) in the areas of Songyuan, Changchun and Siping was extended in January.
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By February, there was an overall reduction in SGS. The range of high-value centres in
the northern Qiqihar and southern Heihe regions continues to shrink in the north, and
the range of high-value areas in the Daxinganling region is sharply reduced to a scattered
distribution. Yichun, Baishan, Tonghua, Fushun, Benxi, Dandong, Huludao, Chaoyang,
Fuxin and Dalian are always low-value areas, with a SGS always below 430 µm.

Figure 12. Interannual variation in snow grain size in the snow in northeast China from 2001 to 2019.

Figure 13. Cont.
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Figure 13. Monthly mean value of snow grain size in each month of northeast China from 2001
to 2019.

The trends in SGS variation by month in the northeast from 2001 to 2019 showed
significant variability (Figure 14). The north, central and southeast of the northeast showed
an increasing trend in December and January and a decreasing trend in February. The
eastern Three Rivers Plain region shows a significant increasing trend in December and
a decreasing trend in January and February. There is an increasing trend in all months in
southern Suihua. There is an increasing trend in December and January in the southwest,
showing a sporadic increasing trend in January.

The percentage of the area of increasing and decreasing snow grain size as a percentage
of the northeast area from 2001 to December 2019 was 87.73% and 12.28%, respectively.
The increasing area is 7.15 times larger than the decreasing area, indicating an absolute
dominance of the increasing SGS area in December 2001 to 2019 in the northeast. Among
them, the Daxinganling region, Chaoyang city, Yingkou city, Anshan city and Dalian city
have the largest increase in SGS, above 39 µm/a; the Daxinganling region, Heihe city,
Yichun city, northern Suihua, eastern Jiamusi, eastern and southern Shuangyashan, eastern
Harbin city, southeastern Jilin city and western Yanbian are areas of significant increase,
accounting for 5.21% of the whole northeast area. The significantly reduced areas are
mainly located in the northwestern part of Jinzhou City and the southeastern part of Fuxin
City, accounting for 0.17% of the total northeastern area. The percentage of the area of
increasing and decreasing snow grain size as a percentage of the northeast area from 2001
to January 2019 was 82.93% and 17.07%, respectively. The enlarged area is 4.86 times larger
than the reduced area, suggesting an overwhelming dominance of areas of increasing snow
grain size in January in the northeast from 2001 to 2019. Among them, the northern part
of the Daxinganling region, Heihe city, northern Qiqihar, northern and southern Suihua,
Yichun city, eastern Harbin, Mudanjiang city and Yanbian Korean Autonomous Prefecture
are significantly increased areas, and amount to 14.69% of the total northeast area. The
decreasing areas are all non-significantly decreasing, concentrated in Hegang, Jiamusi,
Shuangyashan and eastern Jixi, with a scattered distribution in the central and western
Liaoning Province. The percentage of the area of increasing and decreasing snow grain
size as a percentage of the northeast area from 2001 to February 2019 was 14.52% and
85.48%, respectively. The decreasing area is 5.89 times larger than the increasing area,
suggesting an absolute dominance of areas of decreasing snow grain size in the northeast
from February 2001 to 2019. The area of the significantly largest area is relatively small,
accounting for only 0.03% of the northeast area, distributed in eastern Heihe and western
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Yanbian, southern Suihua, eastern Songyuan and Fuxin in areas with the largest snow grain
size. The area of significantly reduced snow grain size was relatively large in February,
accounting for 11.12% of the northeast area and mainly in northern Daxinganling, northern
Heihe, eastern Hegang, Jiamusi, Shuangyashan, eastern Jixi, southeastern Mudanjiang,
Changchun, Siping and northeastern Yanbian.

Figure 14. Monthly snow grain size tendency rate of snow in each month of northeast China from
2001 to 2019.

4. Discussion

The diameter of snow grains on the snow surface affects the energy uptake at the
snow surface, which in turn affects snow melt [56]. In this study, the ART model combined
with remote sensing data were used to simulate SGS in northeast China. We obtain a
long-term sequence of SGS in the northeast, as well as the spatial distribution and year-to-
year variation in SGS at high spatial resolution through simulations. Since the penetration
of laser and radar signals in science depends on the grain size of the snow, ultimately,
multilayer snow models are often combined with climate models to simulate surface
meltwater and meltwater infiltration and runoff. These models require snow grain size
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as a boundary condition. Thus, snow models would benefit from more observations of
surface grain size. The research results have important implications for snow albedo
modelling studies, improving the accuracy of regional climate model simulations and snow
pollution prevention.

The feasibility of the ART radiative transfer theory and the inversion of the snow grain
size optimisation method has been verified in several literature studies [57]. The results of
the study are basically consistent with this paper, indicating that the ART algorithm inverts
the snow grain size with good accuracy. In this paper, we validate SGS values inverted by
the ART algorithm using ground observations in the northeast region. The ART model takes
into account the snow shape as a parameter, and both R and the RMSE are optimal and have
the best accuracy when the snow is a non-spherical parameter. The RMSE and MAE of the
measured and inverse snow size values were 72.89 µm and 58.34 µm, respectively, with an
R2 of 0.81. It can be seen that the snow grain size obtained by the ART inversion correlates
well with the observed values. However, due to the small number of actual observations
and the 500 m spatial resolution of the MODIS data, the inversion results are still biased.
Overall, the ART algorithm has high inversion accuracy. The comparisons between the
ART inversion SGS and the measured snow grain size show some underestimation in both
simulations, 23, 42, 165 and 236 µm lower from the surface downwards, respectively. In
this paper, we obtain long time series of SGS data in Northeast China through snow surface
SGS inversion, and analyse the characteristics of spatial and temporal distribution.

Among the optical properties of snow, the SGS directly affects the snow albedo and
the amount of solar energy absorbed [58–60]. The larger grains increase the length of the
incident light path within the ice crystal, making it more light absorbing [61,62]. As the
SGS increases, the snow albedo gradually decreases [63,64]. This is mainly due to the fact
that the increase in the SGS causes solar radiation to be scattered to the lower layers of
the snow. The snow albedo decreases as the SGS increases [65]. Shi et al., (2022) showed
that the albedo of non-spherical snow grains was 2% to 30% lower than that of spherical
snow grains [66]. This study summarises the results of the SGS measurements and the
corresponding albedo measurements to obtain a simple equation. Again, the results show
an increase in the SGS and a decrease in the albedo. This article provides only a cursory
analysis in this regard. Further in-depth research is needed to verify this.

The inversion process starts with the identification of the pure snow image elements,
and how to extract them is the limitation of the study. Due to the complex surface type
and the heterogeneity of snowfall, it is unlikely that the MODIS data will be completely
snow-covered within the 500 m resolution, resulting in a single point inversion that is
not representative of the regional average. In addition, the inversion results are only the
instantaneous snow grain size at the MODIS transit under pure snow image conditions
and are not representative of the daily average over the study period. In addition, the
inversion results are influenced by factors such as snow layer temperature, snow density
and snow water equivalent, all of which can affect the accuracy of the SGS inversion results.
We divided the snow profile into four layers according to the natural stratification during
the actual measurement and obtained data on snow depth, temperature, density and other
characteristics. We then compared the modelled data for SGS with the field measurements.
The results of the study confirm that the snowpack gradually increases in density and
temperature from top to bottom, the SGS decreases, and the correlation coefficient between
the modelled and observed values decreases from 0.81 to 0.39. We will further analyse the
accuracy of the inversion of SGS for different snow depths and densities by tracking the
variation of snow properties in time and space.

The inversion results of snow grain size are generally larger than the measured results,
which may be due to the collection of snow samples, different observation instruments or
other light-absorbing impurities in the snow samples, resulting in large inversion results.
The bias in snow grain size is influenced by factors such as snow grain geometric optical
properties and shape factor. Once, the ground measurements of the SGS have been con-
ducted through a microscope, electronic backscattering and/or snow pit measurements are
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recorded, not at a single depth but throughout the pack at each layer. Then, they should
be introduced in snow modelling studies. The extinction coefficients for different snow
classes can be simulated using the grain size and backscattering temperature bands at 18 or
35 GHz (AMRS-E bands). The measured snow parameters are introduced into the selected
model. The data assimilation scheme is followed to minimize the RMSE by comparing
the differences between the model runs and ground measurements. In general, the ART
algorithm has a high inversion accuracy, but due to the small number of actual observations
and the non-uniform nature of snow, there are still mixed image elements in the pure snow
image elements, resulting in errors. Therefore, future research will improve the accuracy of
the SGS inversion results by considering the factors of SGS variation.

5. Conclusions

The average annual SGS distribution in the northeast from 2001 to 2019 varied up
and down between 430.830 and 452.384 µm. The mean value was 440.823 µm, with an
annual increase of 0.259 µm/a, showing a non-significant increasing trend and a coefficient of
variation of 0.014. There are also differences in the SGS between winter months. The results
of the 19-year simulation show that the SGS is largest in December, with a mean value of
453.923 µm, followed by January and February with 450.768 µm and 417.777 µm, respectively.
The snow grain size in the Heilongjiang, Jilin and Liaoning provinces showed a non-significant
increasing trend with rates of 0.312 µm/a, 0.198 µm/a and 0.201 µm/a, respectively.

The overall spatial distribution of SGS in the northeast is high in the north and low
in the south, with values ranging from 380.248 µm to 497.141 µm. The mean SGS in the
Liaoning, Jilin and Heilongjiang provinces was 418.201 µm, 429.193 µmg and 440.437 µm,
respectively. The high-value SGS areas are located in Suihua, Qiqihar, Hehe and other areas,
and in Hegang, Jiamusi, Shuangyashan and other areas, the SGSs are above 448.550 µm.
The Xiaoxingan Mountains, Changbai Mountains, and eastern and western hilly areas of
Liaoning Province are areas of relatively low SGS, with average values below 416 µm.

Overall, 49.98% of the northeast showed an increasing trend in SGS from 2001 to 2019.
This increase is concentrated in the northern and central parts of Heilongjiang Province,
the central-eastern part of Jilin Province and most of Liaoning Province. The regions with
the largest increases are distributed in the Daxinganling region, eastern Heihe, Yichun,
Yanbian Korean Autonomous Prefecture, Baishan, Huludao, southern Anshan, south-
central Yingkou and Dalian, with growth rates ranging from 2.206 µm/a to 9.223 µm/a.
The significantly increasing areas accounted for 4.49% of the total area, mainly in the
northeastern part of the Daxinganling Region, eastern Heihe City, central and northern
Mudanjiang. The northeast SGS reduction area accounted for 50.02% of the total area,
concentrated in the eastern, central and western parts of northeast China. The largest
reduction is distributed in Jixi City, Baicheng City, Songyuan City, Fuxin City and other
areas between −1 µm/a and −8.232 µm/a. The significantly reduced areas were mainly in
western Harbin, southern Baicheng, northern Jinzhou and central Fuxin.
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