Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (43)

Search Parameters:
Keywords = hyperbranched polyesters

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3055 KB  
Article
High-Performance Thin Film Composite Nanofiltration (NF) Membrane Constructed on Modified Polyvinylidene Fluoride (PVDF) Substrate
by Junliang Dong, Qianzhi Sun, Xiaolin Feng and Ruijun Zhang
Membranes 2025, 15(7), 216; https://doi.org/10.3390/membranes15070216 - 20 Jul 2025
Cited by 2 | Viewed by 1453
Abstract
The inherent hydrophobic nature of PVDF material renders it challenging to establish a stable aqueous hydration layer, thereby limiting its suitability as a substrate for the preparation of nanofiltration (NF) membranes. In this study, we developed a novel modification approach that effectively enhances [...] Read more.
The inherent hydrophobic nature of PVDF material renders it challenging to establish a stable aqueous hydration layer, thereby limiting its suitability as a substrate for the preparation of nanofiltration (NF) membranes. In this study, we developed a novel modification approach that effectively enhances the hydrophilicity of PVDF substrates through the incorporation of sulfonic acid-doped polyaniline (SPANI) and hyperbranched polyester (HPE) into the PVDF casting solution, followed by cross-linking with trimesoyl chloride (TMC). The introduction of SPANI and HPE, which contain reactive polar amino and hydroxyl groups, improved the hydrophilicity of the substrate, while the subsequent cross-linking with TMC effectively anchored these components within the substrate through the covalent linking between TMC and the reactive sites. Additionally, the hydrolysis of TMC yielded non-reactive carboxyl groups, which further enhanced the hydrophilicity of the substrate. As a result, the modified PVDF substrate exhibited improved hydrophilicity, facilitating the construction of an intact polyamide layer. In addition, the fabricated TFC NF membrane demonstrated excellent performance in the advanced treatment of tap water, achieving a total dissolved solid removal rate of 57.9% and a total organic carbon removal rate of 85.3%. This work provides a facile and effective route to modify PVDF substrates for NF membrane fabrication. Full article
Show Figures

Graphical abstract

17 pages, 1503 KB  
Review
Evolution of Theranostic Nanoparticles Through the Lens of Patents
by Danielle Teixeira Freire, Júlio Abreu Miranda, Douglas Dourado and Éverton do Nascimento Alencar
J. Nanotheranostics 2025, 6(2), 11; https://doi.org/10.3390/jnt6020011 - 9 Apr 2025
Cited by 1 | Viewed by 3301
Abstract
Theranostic nanoparticles integrate diagnostic and therapeutic potential, representing a promising approach in precision medicine. Accordingly, numerous inventions have been patented to protect novel formulations and methods. This review examines the evolution of patented theranostic nanoparticles, focusing on organic nanosystems, particularly polymeric and lipid [...] Read more.
Theranostic nanoparticles integrate diagnostic and therapeutic potential, representing a promising approach in precision medicine. Accordingly, numerous inventions have been patented to protect novel formulations and methods. This review examines the evolution of patented theranostic nanoparticles, focusing on organic nanosystems, particularly polymeric and lipid nanoparticles, to assess their development, technological advances, and patentability. A scoping review approach was conducted following the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines in the World Intellectual Property Organization (WIPO) and European Patent Office (EPO) database. The search included patents filed within the last ten years (2014–2024) that specifically claimed organic and/or hybrid theranostic nanoparticles. Data extraction focused on nanoparticle composition, synthesis methods, functionalization strategies, and theranostic applications. The search identified 130 patents, of which 13 met the inclusion criteria. These patents were primarily filed by inventors from the United States, Canada, Great Britain, Italy, and China. Polymeric nanoparticles were frequently engineered for targeted drug delivery and imaging, utilizing hyperbranched polyesters, sulfated polymers, or chitosan-based formulations. Lipid nanoparticles were often hybridized with inorganic nanomaterials or magnetic nanostructures to enhance their theranostic potential. While most patents detailed synthesis methods and physicochemical characterizations, only a few provided comprehensive preclinical validation, limiting their demonstrated efficacy. The analysis of recent patents highlights significant advances in the design and application of theranostic nanoparticles. However, a notable gap remains in validating these nanosystems for clinical translation. Future efforts should emphasize robust preclinical data, including in vitro and in vivo assessments, to enhance patent quality and applicability to substantiate the claimed theranostic capabilities. Full article
Show Figures

Figure 1

14 pages, 3625 KB  
Article
Insight into the Morphology, Hydrophobicity and Swelling Behavior of TiO2-Reinforced Polyurethane
by Ivan S. Stefanović, Jasna V. Džunuzović, Enis S. Džunuzović, Danijela V. Randjelović, Vladimir B. Pavlović, Andrea Basagni and Carla Marega
Coatings 2025, 15(2), 231; https://doi.org/10.3390/coatings15020231 - 14 Feb 2025
Cited by 1 | Viewed by 3995
Abstract
In this research, the structure, morphology, hydrophobicity and swelling behavior of a polyurethane (PU) network and its composites (PUCs) were examined. PUCs were synthesized by the incorporation of different percentages (0.5, 1 and 2 wt.%) of unmodified or surface-modified TiO2 nanoparticles into [...] Read more.
In this research, the structure, morphology, hydrophobicity and swelling behavior of a polyurethane (PU) network and its composites (PUCs) were examined. PUCs were synthesized by the incorporation of different percentages (0.5, 1 and 2 wt.%) of unmodified or surface-modified TiO2 nanoparticles into a PU network based on polycaprolactone, aliphatic hyperbranched polyester and isophorone diisocyanate. In order to improve interfacial interactions, the surface of the TiO2 nanoparticles was chemically modified with lauryl gallate. The impact of the presence and content of unmodified or surface-modified TiO2 nanoparticles on the cross-sectional and surface morphology, swelling behavior and hydrophobicity of the PU network was assessed by different experiments. The obtained findings revealed that the incorporation of TiO2 nanoparticles brought a more pronounced irregular cross-sectional and rougher surface morphology, better microphase separation, higher values of the equilibrium swelling degree in tetrahydrofuran and toluene, and altered water contact angles compared to the neat PU. Based on the collected results, the practical applicability of the prepared PUCs may be in the area of protective coatings. Full article
Show Figures

Figure 1

17 pages, 4884 KB  
Article
Thermal, Crystallization, and Toughness Behavior of Polyamide 4/Long-Chain Hyperbranched Polymer Blends
by Linyi Shui, Xianxin Guo, Jinrong Li, Zimeng Li, Qinghua Zhao, Guohua Chen and Xiaomin Zhao
Polymers 2025, 17(3), 318; https://doi.org/10.3390/polym17030318 - 24 Jan 2025
Cited by 1 | Viewed by 1490
Abstract
Long-chain hyperbranched polyesters (LHBPx, x = 1, 2, 3) with varying lengths of branched chains were synthesized through a thiol-ene click reaction. Subsequently, LHBPx was incorporated into PA4 via the solution method to prepare a LHBPx/PA4 polymer blend, aiming to address the limitations [...] Read more.
Long-chain hyperbranched polyesters (LHBPx, x = 1, 2, 3) with varying lengths of branched chains were synthesized through a thiol-ene click reaction. Subsequently, LHBPx was incorporated into PA4 via the solution method to prepare a LHBPx/PA4 polymer blend, aiming to address the limitations of PA4, such as its narrow thermal processing window (△T = Td5−Tm) and high brittleness. The results demonstrated that the addition of LHBPx enhanced the △T of PA4 from 1.6 °C to 14.5 °C (LHBP3/PA4), increasing the rheological properties of LHBPx/PA4 polymer blends, thereby improving its thermal processability. Compared with PA4, the elongation at the break of the LHBP3/PA4 polymer blend was increased by 20.4%, and the brittle fracture was changed into a ductile fracture. The crystallinity of PA4 was greatly decreased, from 54.41% to 37.42%, owing to the incorporation of LHBPx, whereas Tm of PA4 had almost no change. It was explained that LHBPx hindered the crystal growth stage, whereas it promoted the nucleation stage of PA4, resulting in no significant change in crystal type. Moreover, the longer the branched chain of LHBPx was, the more pronounced the improvement in the thermal processability and toughness of PA4 became. Above all, this work was meaningful for the potential application of PA4 in industrial plastics. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Graphical abstract

31 pages, 10953 KB  
Article
Immobilization of Pb2+, CrO42−, Hg2+, and Cd2+ in Coal Fly Ash/PP-g-MHBP-Based Geopolymers
by Paola M. Fonseca Alfonso, Mercedes Díaz Lagos and Edwin A. Murillo
J. Compos. Sci. 2024, 8(12), 528; https://doi.org/10.3390/jcs8120528 - 14 Dec 2024
Cited by 1 | Viewed by 2126
Abstract
Contamination by heavy metals (HMs) such as Pb, Cd, Cr, and Hg poses significant risks to the environment and human health owing to their toxicity and persistence. Geopolymers (GPs) have emerged as promising materials for immobilizing HMs and reducing their mobility through physical [...] Read more.
Contamination by heavy metals (HMs) such as Pb, Cd, Cr, and Hg poses significant risks to the environment and human health owing to their toxicity and persistence. Geopolymers (GPs) have emerged as promising materials for immobilizing HMs and reducing their mobility through physical encapsulation and chemical stabilization. This study explored the novel use of isotactic polypropylene functionalized in the molten state with maleinized hyperbranched polyol polyester (PP-g-MHBP) as an additive in coal fly ash (CFA)-based GPs to enhance HM immobilization. Various characterization techniques were employed, including compressive strength tests, XRD, ATR-FTIR, SEM-EDX, XPS analyses, and TCLP leaching tests, to assess immobilization effectiveness. These results indicate that although the addition of PP-g-MHBP does not actively contribute to the chemical interactions with HM ions, it acts as an inert filler within the GP matrix. CFA/PP-g-MHBP-based GPs demonstrated significant potential for Cd2+ immobilization up to 3 wt% under acidic conditions, although the retention of Pb2+, CrO42−, and Hg2+ varied according to the specific chemistry of each metal, weight percentage of the added metal, matrix structure, and regulatory standards. Notably, high immobilization percentages were achieved for CrO42− and Hg2+, although the leaching concentrations exceeded US EPA limits. These findings highlight the potential of CFA/PP-g-MHBP-based GPs for environmental applications, emphasizing the importance of optimizing formulations to enhance HM immobilization under varying conditions. Full article
Show Figures

Figure 1

20 pages, 8247 KB  
Article
Fabrication of Polycaprolactone-Based Polyurethanes with Enhanced Thermal Stability
by Jasna V. Džunuzović, Ivan S. Stefanović, Enis S. Džunuzović, Tijana S. Kovač, Dušan P. Malenov, Andrea Basagni and Carla Marega
Polymers 2024, 16(13), 1812; https://doi.org/10.3390/polym16131812 - 26 Jun 2024
Cited by 7 | Viewed by 2992
Abstract
The benefit of being acquainted with thermal properties, especially the thermal stability of polyurethanes (PU), and simplified methods for their improvement is manifold. Considering this, the effect of embedding different amounts of unmodified and surface-modified TiO2 nanoparticles (NPs) within PU, based on [...] Read more.
The benefit of being acquainted with thermal properties, especially the thermal stability of polyurethanes (PU), and simplified methods for their improvement is manifold. Considering this, the effect of embedding different amounts of unmodified and surface-modified TiO2 nanoparticles (NPs) within PU, based on polycaprolactone (PCL) and Boltorn® aliphatic hyperbranched polyester, on PU properties was investigated. Results obtained via scanning electron microscopy, swelling measurements, mechanical tests and thermogravimetric analysis revealed that TiO2 NPs can be primarily applied to improve the thermal performance of PU. Through surface modification of TiO2 NPs with an amphiphilic gallic acid ester containing a C12 long alkyl chain (lauryl gallate), the impact on thermal stability of PU was greater due to the better dispersion of modified TiO2 NPs in the PU matrix compared to the unmodified ones. Also, the distinct shape of DTG peaks of the composite prepared using modified TiO2 NPs indicates that applied nano-filler is mostly embedded in soft segments of PU, leading to the delay in thermal degradation of PCL, simultaneously improving the overall thermal stability of PU. In order to further explore the thermal degradation process of the prepared composites and prove the dominant role of incorporated TiO2 NPs in the course of thermal stability of PU, various iso-conversional model-free methods were applied. The evaluated apparent activation energy of the thermal degradation reaction at different conversions clearly confirmed the positive impact of TiO2 NPs on the thermal stability and aging resistance of PU. Full article
(This article belongs to the Special Issue Polyurethane Materials for Multifunctional Applications)
Show Figures

Graphical abstract

18 pages, 5144 KB  
Article
A Hyperbranched Polyol Process for Designing and Manufacturing Nontoxic Cobalt Nanocomposite
by Anastasia Burmatova, Artur Khannanov, Alexander Gerasimov, Klara Ignateva, Elena Khaldeeva, Arina Gorovaia, Airat Kiiamov, Vladimir Evtugyn and Marianna Kutyreva
Polymers 2023, 15(15), 3248; https://doi.org/10.3390/polym15153248 - 30 Jul 2023
Cited by 5 | Viewed by 2140
Abstract
A method for the design and synthesis of a metallopolymer composite (CoNP) based on cobalt nanoparticles using the hyperbranched polyol process was developed. It was shown that hyperbranched polyester polyols in a melted state can be both a reducing agent and a stabilizer [...] Read more.
A method for the design and synthesis of a metallopolymer composite (CoNP) based on cobalt nanoparticles using the hyperbranched polyol process was developed. It was shown that hyperbranched polyester polyols in a melted state can be both a reducing agent and a stabilizer of metal nanoparticles at the same time. The mechanism of oxidation of hyperbranched polyol was studied using diffuse reflectance IR spectroscopy. The process of oxidation of OH groups in G4-OH started from 90 °C and finished with the oxidation of aldehyde groups. The composition and properties of nanomaterials were determined with FT-IR and UV-Vis spectroscopy, Nanoparticle Tracking Analysis (NTA), thermogravimetric analysis (TG), powder X-ray diffraction (XRD), NMR relaxation, and in vitro biological tests. The cobalt-containing nanocomposite (CoNP) had a high colloidal stability and contained spheroid polymer aggregates with a diameter of 35–50 nm with immobilized cobalt nanoparticles of 5–7 nm. The values of R2 and R1 according to the NMR relaxation method for CoNPs were 6.77 mM·ms−1 × 10−5 and 4.14 mM·ms−1 × 10−5 for, respectively. The ratio R2/R1 = 0.61 defines the cobalt-containing nanocomposite as a T1 contrast agent. The synthesized CoNPs were nonhemotoxic (HC50 > 8 g/mL) multifunctional reagents and exhibited the properties of synthetic modulators of the enzymatic activity of chymosin aspartic proteinase and exhibited antimycotic activity against Aspergillus fumigatus. The results of the study show the unique prospects of the developed two-component method of the hyperbranched polyol process for the creation of colloidal multifunctional metal–polymer nanocomposites for theranostics. Full article
(This article belongs to the Special Issue Research Progress of Branched Polymers)
Show Figures

Figure 1

16 pages, 3310 KB  
Article
Polyvinylidene Fluoride/Aromatic Hyperbranched Polyester of Third-Generation-Based Electrospun Nanofiber as a Self-Powered Triboelectric Nanogenerator for Wearable Energy Harvesting and Health Monitoring Applications
by Ramadasu Gunasekhar, Ponnan Sathiyanathan, Mohammad Shamim Reza, Gajula Prasad, Arun Anand Prabu and Hongdoo Kim
Polymers 2023, 15(10), 2375; https://doi.org/10.3390/polym15102375 - 19 May 2023
Cited by 20 | Viewed by 3187
Abstract
Flexible pressure sensors have played an increasingly important role in the Internet of Things and human–machine interaction systems. For a sensor device to be commercially viable, it is essential to fabricate a sensor with higher sensitivity and lower power consumption. Polyvinylidene fluoride (PVDF)-based [...] Read more.
Flexible pressure sensors have played an increasingly important role in the Internet of Things and human–machine interaction systems. For a sensor device to be commercially viable, it is essential to fabricate a sensor with higher sensitivity and lower power consumption. Polyvinylidene fluoride (PVDF)-based triboelectric nanogenerators (TENGs) prepared by electrospinning are widely used in self-powered electronics owing to their exceptional voltage generation performance and flexible nature. In the present study, aromatic hyperbranched polyester of the third generation (Ar.HBP-3) was added into PVDF as a filler (0, 10, 20, 30 and 40 wt.% w.r.t. PVDF content) to prepare nanofibers by electrospinning. The triboelectric performances (open-circuit voltage and short-circuit current) of PVDF-Ar.HBP-3/polyurethane (PU)-based TENG shows better performance than a PVDF/PU pair. Among the various wt.% of Ar.HBP-3, a 10 wt.% sample shows maximum output performances of 107 V which is almost 10 times that of neat PVDF (12 V); whereas, the current slightly increases from 0.5 μA to 1.3 μA. The self-powered TENG is also effective in measuring human motion. Overall, we have reported a simpler technique for producing high-performance TENG using morphological alteration of PVDF, which has the potential for use as mechanical energy harvesters and as effective power sources for wearable and portable electronic devices. Full article
(This article belongs to the Special Issue Polymer-Based Composites for Biomedical Applications)
Show Figures

Figure 1

16 pages, 4846 KB  
Article
Evaporation and Autoignition Characteristics of JP-10 Droplets with Hyperbranched Polyester as Additive
by Derui Jin, Ji Mi, Yongsheng Guo, Yitong Dai and Wenjun Fang
Energies 2023, 16(8), 3333; https://doi.org/10.3390/en16083333 - 9 Apr 2023
Cited by 6 | Viewed by 4187
Abstract
It was found in our previous work that hyperbranched polyester (HPE) can generate radicals and accelerate the chemical reactions of hydrocarbon fuels used as initiators. In this work, the evaporation and autoignition characteristics of JP-10 droplets with or without HPE were investigated using [...] Read more.
It was found in our previous work that hyperbranched polyester (HPE) can generate radicals and accelerate the chemical reactions of hydrocarbon fuels used as initiators. In this work, the evaporation and autoignition characteristics of JP-10 droplets with or without HPE were investigated using the high-speed backlight imaging technique in detail. The results indicate that the puffing and micro-explosion phenomena of HPE-blended JP-10 droplets can accelerate fuel evaporation and autoignition. When a 0.1% mass concentration of HPE was used, the droplet lifetime was reduced by 16.5% in evaporation at 850 K and 18.0% in autoignition at 900 K. A mechanism of HPE that promotes puffing and micro-explosions was proposed by analyzing droplet images of combustion and SEM images of combustion residues. Overall, this study provides a method for improving the evaporation and autoignition performance of JP-10. Full article
(This article belongs to the Special Issue Experiments and Simulations of Combustion Process II)
Show Figures

Figure 1

15 pages, 4109 KB  
Article
Synthesis of DOPO-Based Phosphorus-Nitrogen Containing Hyperbranched Flame Retardant and Its Effective Application for Poly(ethylene terephthalate) via Synergistic Effect
by Hossamaldin Ahmed Omer Abdalrhem, Yueyue Pan, Hongda Gu, Xiang Ao, Xiaohuan Ji, Xiaoze Jiang and Bin Sun
Polymers 2023, 15(3), 662; https://doi.org/10.3390/polym15030662 - 28 Jan 2023
Cited by 15 | Viewed by 5589
Abstract
To obtain industrialized poly(ethylene terephthalate) (PET) composites with highly efficient flame retardancy, a phosphorus-nitrogen (P-N) containing hyperbranched flame retardant additive was synthesized by 9,10-dihydro-9-oxa-10-phospho-phenanthrene-butyric acid (DDP) and tris(2-hydroxyethyl) isocyanurate (THEIC) through high temperature esterification known as hyperbranched DDP-THEIC (hbDT). The chemical structure of [...] Read more.
To obtain industrialized poly(ethylene terephthalate) (PET) composites with highly efficient flame retardancy, a phosphorus-nitrogen (P-N) containing hyperbranched flame retardant additive was synthesized by 9,10-dihydro-9-oxa-10-phospho-phenanthrene-butyric acid (DDP) and tris(2-hydroxyethyl) isocyanurate (THEIC) through high temperature esterification known as hyperbranched DDP-THEIC (hbDT). The chemical structure of the synthesized hbDT was determined by FTIR, 1H NMR, 13C NMR, and GPC, etc. Subsequently, hbDT/PET composites were prepared by co-blending, and the effects of hbDT on the thermal stability, flame retardancy, combustion performance, and thermal degradation behavior of PET were explored to deeply analyze its flame retardant mechanism. The test results showed that hbDT was successfully synthesized, and that hbDT maintained thermal stability well with the required processing conditions of PET as retardant additives. The flame retardant efficiency of PET was clearly improved by the addition of hbDT via the synergistic flame-retardant effect of P and N elements. When the mass fraction of flame retardant was 5%, the LOI of the hbDT/PET composite increased to 30.2%, and the vertical combustion grade reached UL-94 V-0. Compared with pure PET, great decreased total heat release (decreased by 16.3%) and peak heat release rate (decreased by 54.9%) were exhibited. Finally, the flame retardant mechanism of hbDT/PET was supposed, and it was confirmed that retardant effect happened in both the gas phase and condensed phase. This study is expected to provide a new idea for the development of low toxic, environment-friendly and highly efficient flame retardant additive for polyesters in an industry scale. Full article
(This article belongs to the Special Issue Flame-Retardant Polymer Composites)
Show Figures

Figure 1

12 pages, 1807 KB  
Article
Hyperbranched Polyester Polyfumaratomaleate Doped with Gd(III) and Dy(III) Ions: Synthesis, Structure and Properties
by Aleksei Maksimov, Alina Vagapova, Marianna Kutyreva and Gennadii Kutyrev
Polymers 2022, 14(23), 5298; https://doi.org/10.3390/polym14235298 - 4 Dec 2022
Cited by 7 | Viewed by 2073
Abstract
For the first time, metal–polymer complexes have been synthesized using hyperbranched polyester polyfumaratomaleate as a matrix, the structure of which has been established by 1H NMR, IR, electron spectroscopy, and elemental analysis methods. The formation of complexes with Gd(III) and Dy(III) ions [...] Read more.
For the first time, metal–polymer complexes have been synthesized using hyperbranched polyester polyfumaratomaleate as a matrix, the structure of which has been established by 1H NMR, IR, electron spectroscopy, and elemental analysis methods. The formation of complexes with Gd(III) and Dy(III) ions involving fumarate and maleate groups of the polyester was proved by IR and electron spectroscopy methods. It was established that the structure of the coordination units has the form of a square antiprism. The compositions and conditional logarithms of the stability constants of the complexes were determined. It was established that complexation with lanthanide ions promotes emission enhancement in the ligand. Full article
(This article belongs to the Special Issue Research Progress of Branched Polymers)
Show Figures

Figure 1

25 pages, 3300 KB  
Article
Macromolecules Absorbed from Influenza Infection-Based Sera Modulate the Cellular Uptake of Polymeric Nanoparticles
by Daniel Nierenberg, Orielyz Flores, David Fox, Yuen Yee Li Sip, Caroline M. Finn, Heba Ghozlan, Amanda Cox, Melanie Coathup, Karl Kai McKinstry, Lei Zhai and Annette R. Khaled
Biomimetics 2022, 7(4), 219; https://doi.org/10.3390/biomimetics7040219 - 30 Nov 2022
Cited by 2 | Viewed by 3337
Abstract
Optimizing the biological identity of nanoparticles (NPs) for efficient tumor uptake remains challenging. The controlled formation of a protein corona on NPs through protein absorption from biofluids could favor a biological identity that enables tumor accumulation. To increase the diversity of proteins absorbed [...] Read more.
Optimizing the biological identity of nanoparticles (NPs) for efficient tumor uptake remains challenging. The controlled formation of a protein corona on NPs through protein absorption from biofluids could favor a biological identity that enables tumor accumulation. To increase the diversity of proteins absorbed by NPs, sera derived from Influenza A virus (IAV)-infected mice were used to pre-coat NPs formed using a hyperbranched polyester polymer (HBPE-NPs). HBPE-NPs, encapsulating a tracking dye or cancer drug, were treated with sera from days 3–6 of IAV infection (VS3-6), and uptake of HBPE-NPs by breast cancer cells was examined. Cancer cells demonstrated better uptake of HBPE-NPs pre-treated with VS3-6 over polyethylene glycol (PEG)-HBPE-NPs, a standard NP surface modification. The uptake of VS5 pre-treated HBPE-NPs by monocytic cells (THP-1) was decreased over PEG-HBPE-NPs. VS5-treated HBPE-NPs delivered a cancer drug more efficiently and displayed better in vivo distribution over controls, remaining stable even after interacting with endothelial cells. Using a proteomics approach, proteins absorbed from sera-treated HBPE-NPs were identified, such as thrombospondin-1 (TSP-1), that could bind multiple cancer cell receptors. Our findings indicate that serum collected during an immune response to infection is a rich source of macromolecules that are absorbed by NPs and modulate their biological identity, achieving rationally designed uptake by targeted cell types. Full article
(This article belongs to the Section Biomimetics of Materials and Structures)
Show Figures

Figure 1

18 pages, 4366 KB  
Article
Effect of the Synthetic Approach on the Formation and Magnetic Properties of Iron-Based Nanophase in Branched Polyester Polyol Matrix
by Artur Khannanov, Anastasia Burmatova, Klara Ignatyeva, Farit Vagizov, Airat Kiiamov, Dmitrii Tayurskii, Mikhail Cherosov, Alexander Gerasimov, Evtugyn Vladimir and Marianna Kutyreva
Int. J. Mol. Sci. 2022, 23(23), 14764; https://doi.org/10.3390/ijms232314764 - 25 Nov 2022
Cited by 8 | Viewed by 2374
Abstract
This article shows the success of using the chemical reduction method, the polyol thermolytic process, the sonochemistry method, and the hybrid sonochemistry/polyol process method to design iron-based magnetically active composite nanomaterials in a hyperbranched polyester polyol matrix. Four samples were obtained and characterized [...] Read more.
This article shows the success of using the chemical reduction method, the polyol thermolytic process, the sonochemistry method, and the hybrid sonochemistry/polyol process method to design iron-based magnetically active composite nanomaterials in a hyperbranched polyester polyol matrix. Four samples were obtained and characterized by transmission and scanning electron microscopy, infrared spectroscopy and thermogravimetry. In all cases, the hyperbranched polymer is an excellent stabilizer of the iron and iron oxides nanophase. In addition, during the thermolytic process and hybrid method, the branched polyol exhibits the properties of a good reducing agent. The use of various approaches to the synthesis of iron nanoparticles in a branched polyester polyol matrix makes it possible to control the composition, geometry, dispersity, and size of the iron-based nanophase and to create new promising materials with colloidal stability, low hemolytic activity, and good magnetic properties. The NMR relaxation method proved the possibility of using the obtained composites as tomographic probes. Full article
Show Figures

Figure 1

27 pages, 7506 KB  
Article
Poly(Glycerol Succinate) as Coating Material for 1393 Bioactive Glass Porous Scaffolds for Tissue Engineering Applications
by Eirini A. Nakiou, Maria Lazaridou, Georgia K. Pouroutzidou, Anna Michopoulou, Ioannis Tsamesidis, Liliana Liverani, Marcela Arango-Ospina, Anastasia Beketova, Aldo R. Boccaccini, Eleana Kontonasaki and Dimitrios N. Bikiaris
Polymers 2022, 14(22), 5028; https://doi.org/10.3390/polym14225028 - 19 Nov 2022
Cited by 14 | Viewed by 6123
Abstract
Background: Aliphatic polyesters are widely used for biomedical, pharmaceutical and environmental applications due to their high biodegradability and cost-effective production. Recently, star and hyperbranched polyesters based on glycerol and ω-carboxy fatty diacids have gained considerable interest. Succinic acid and bio-based diacids similar to [...] Read more.
Background: Aliphatic polyesters are widely used for biomedical, pharmaceutical and environmental applications due to their high biodegradability and cost-effective production. Recently, star and hyperbranched polyesters based on glycerol and ω-carboxy fatty diacids have gained considerable interest. Succinic acid and bio-based diacids similar to glycerol are regarded as safe materials according to the US Food and Drug Administration (FDA). Bioactive glass scaffolds utilized in bone tissue engineering are relatively brittle materials. However, their mechanical properties can be improved by using polymer coatings that can further control their degradation rate, tailor their biocompatibility and enhance their performance. The purpose of this study is to explore a new biopolyester poly(glycerol succinate) (PGSuc) reinforced with mesoporous bioactive nanoparticles (MSNs) as a novel coating material to produce hybrid scaffolds for bone tissue engineering. Methods: Bioactive glass scaffolds were coated with neat PGSuc, PGSuc loaded with dexamethasone sodium phosphate (DexSP) and PGSuc loaded with DexSP-laden MSNs. The physicochemical, mechanical and biological properties of the scaffolds were also evaluated. Results: Preliminary data are provided showing that polymer coatings with and without MSNs improved the physicochemical properties of the 1393 bioactive glass scaffolds and increased the ALP activity and alizarin red staining, suggesting osteogenic differentiation potential when cultured with adipose-derived mesenchymal stem cells. Conclusions: PGSuc with incorporated MSNs coated onto 1393 bioactive glass scaffolds could be promising candidates in bone tissue engineering applications. Full article
(This article belongs to the Special Issue Thermomechanical Development of Bio-Based Polymer Materials)
Show Figures

Graphical abstract

19 pages, 2705 KB  
Article
Antibiotic-Loaded Hyperbranched Polyester Embedded into Peptide-Enriched Silk Fibroin for the Treatment of Orthopedic or Dental Infections
by Zili Sideratou, Marco Biagiotti, Dimitris Tsiourvas, Katerina N. Panagiotaki, Marta V. Zucca, Giuliano Freddi, Arianna B. Lovati and Marta Bottagisio
Nanomaterials 2022, 12(18), 3182; https://doi.org/10.3390/nano12183182 - 13 Sep 2022
Cited by 6 | Viewed by 3033
Abstract
The development of innovative osteoconductive matrices, which are enriched with antibiotic delivery nanosystems, has the invaluable potential to achieve both local contaminant eradication and the osseointegration of implanted devices. With the aim of producing safe, bioactive materials that have osteoconductive and antibacterial properties, [...] Read more.
The development of innovative osteoconductive matrices, which are enriched with antibiotic delivery nanosystems, has the invaluable potential to achieve both local contaminant eradication and the osseointegration of implanted devices. With the aim of producing safe, bioactive materials that have osteoconductive and antibacterial properties, novel, antibiotic-loaded, functionalized nanoparticles (AFN)—based on carboxylic acid functionalized hyperbranched aliphatic polyester (CHAP) that can be integrated into peptide-enriched silk fibroin (PSF) matrices with osteoconductive properties—were successfully synthesized. The obtained AFNPSF sponges were first physico-chemically characterized and then tested in vitro against eukaryotic cells and bacteria involved in orthopedic or oral infections. The biocompatibility and microbiological tests confirmed the promising characteristics of the AFN-PSF products for both orthopedic and dental applications. These preliminary results encourage the establishment of AFN-PSF-based preventative strategies in the fight against implant-related infections. Full article
Show Figures

Graphical abstract

Back to TopTop