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Abstract: Flexible pressure sensors have played an increasingly important role in the Internet of
Things and human–machine interaction systems. For a sensor device to be commercially viable, it is
essential to fabricate a sensor with higher sensitivity and lower power consumption. Polyvinylidene
fluoride (PVDF)-based triboelectric nanogenerators (TENGs) prepared by electrospinning are widely
used in self-powered electronics owing to their exceptional voltage generation performance and
flexible nature. In the present study, aromatic hyperbranched polyester of the third generation
(Ar.HBP-3) was added into PVDF as a filler (0, 10, 20, 30 and 40 wt.% w.r.t. PVDF content) to
prepare nanofibers by electrospinning. The triboelectric performances (open-circuit voltage and
short-circuit current) of PVDF-Ar.HBP-3/polyurethane (PU)-based TENG shows better performance
than a PVDF/PU pair. Among the various wt.% of Ar.HBP-3, a 10 wt.% sample shows maximum
output performances of 107 V which is almost 10 times that of neat PVDF (12 V); whereas, the current
slightly increases from 0.5 µA to 1.3 µA. The self-powered TENG is also effective in measuring human
motion. Overall, we have reported a simpler technique for producing high-performance TENG using
morphological alteration of PVDF, which has the potential for use as mechanical energy harvesters
and as effective power sources for wearable and portable electronic devices.

Keywords: electrospinning; triboelectric nanogenerator; PVDF; hyperbranched polyester

1. Introduction

Recently, the need for human interaction applications including synthetic e-skin and
health management (temperature, blood pressure, pulse rate, respiration and heartbeat)
robots has increased due to the development of self-powered adaptable wearables [1–14].
Human-generated, low-frequency mechanical energy (body movements) can be trans-
formed into electrical energy in wearable devices, which can effectively be used as energy
harvesters [15,16]. Specifically, flexible pressure sensors have considerable potential for
disease diagnostics, since they can transform external force stimuli into electrical impulses
to track human biomedical parameters [17–20]. Most strain sensors are powered by backup
batteries, which makes the sensor bulky. In addition, batteries must be recharged or
replaced, which does not meet the needs of wearable electronics [7,21].

An example of such a technique is the nanogenerator, which transforms mechani-
cal energy into electricity, and is the final outcome of a minor physical change [6]. They
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have several virtues, such as being compact, affordable, stable, etc. They are also most
suitable for use in self-powered devices [6,18,22–27]. Electrostatic induction and contact
electrification are the operating mechanisms of the nanogenerator [28]. Sensitive technolo-
gies such as those that are self-powered are desired in order to tackle the aforementioned
challenges. Initiated by Wang’s group, and depending on the effects of contact electrifi-
cation and electrostatic induction, triboelectric nanogenerators (TENGs) can transform
an implied mechanical force into an electrical signal [29]. TENGs have already been ex-
plored extensively as well as being applied in self-powered sensors due to their flexible
device structural system, maximum output energy, high energy-conversion efficiency, and
wide range of available materials [11,30–33]. To examine human activity, the TENG strain
sensor’s sensitivity should be further increased [6,34–37].

TENGs can operate in a variety of ways, but the majority of them have been observed
to operate in contact separation, which occurs when two surfaces with two electron affinities
encounter each other [6,38]. The quantity of the transferred charge resulting from contact
electrification is determined by the number of electrons lost or gained on the frictional
surface [11]. Thus, it can raise the charges just on triboelectric surfaces to enhance the
polarity distinction between the two contacting layers, thereby improving output triboelec-
tric efficiency [39]. Different materials have been tested during the past few years, and a
triboelectric series has been suggested [40–42]. It has been proven successful to increase
charge density in recent attempts to modify the chemical properties of polymer surfaces by
adding moieties with various electron affinities [39,43]. Through adding suitable layers on
top of the triboelectric layer to increase the polarity difference between the two contacting
layers, it provides a distinct method for improving the performance of a self-powered
triboelectric sensor [44].

In TENG, there is always a pair of triboelectric materials with different charge affinities
that are employed to generate charges. To generate more charges or obtain a higher output
from the TENG, a significant difference in the charge affinities of the two materials is
preferred. However, in practice, the two materials with the highest difference in charge
affinity are not selected. The reason is that the triboelectrification between two materials
is based not only on their chemical compositions but also on other physical features such
as their elasticity, friction and topographical structure. The triboelectric effect and level of
contact electrification performance are based on materials that come into contact. In this
case, contact electrification is caused by the surface transfer of electrons or ions between
these two materials. Each material has its own ability to lose or gain electrons during the
contact electrification process. This ability can be found in a list of materials (triboelectric
series), where the polarity and amount of charge for each material are described as shown in
Figure S1 (see in Supplementary Materials). For example, a material with fluorine functional
groups can attract as many electrons as possible from its counterparts. Polyvinylidene
fluoride (PVDF) is a material that tends to gain electrons during electrification. On the
other hand, PU is positively charged during electrification. Both materials lie far enough
apart in the triboelectric series, and this distance indicates their high triboelectric potential
on contact.

Additionally, the technique used for fabrication is crucial in developing high-performance
nanogenerators. Due to its adaptability in applications including chemical and physical
sensors, healthcare diagnostics, sensitive robotics and wearable technology, fiber-based
electronic devices are becoming more and more popular these days [20,29]. In the case
of PVDF, it is one of the most studied materials as a nanogenerator; its electrospinning
combines mechanical stretching as well as electric poling into a single process for obtaining
PVDF in the electroactive β-phase. It is claimed that, in comparison with its as-cast film,
PVDF nanofibers produced by the electrospinning technique exhibit a greater coefficient
of piezoelectricity and higher energy conversion efficiency [5,6,45–51]. Some of the pos-
itive outcomes of obtaining electrospun fibers are higher surface area-to-volume ratio,
availability of diversified polymeric materials, combination of the materials’ flexibilities,
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comparatively lesser manufacturing expenses and ease in depositing fibers on various
types of substrates [52–58].

Electrospun PVDF nanofibers offer a lot of prospects for applications such as en-
ergy harvesters [6,54,59–61] and sensor applications [17,62–65]. The selection of tribo-
electric material in nanogenerator fabrication is as important as the fabrication technique
used [5,6,54,66]. To ensure excellent electrical output, several types of materials such as
organic, inorganic, polymeric, piezoelectric, triboelectric and dielectric materials were in-
vestigated [6,54,67–69]. Amongst the most adaptable polymers, PVDF is applied in a wide
range of applications including nanogenerators, lithium-ion batteries, semiconductors,
medical and healthcare devices [47,48,50,62,70–73]. Furthermore, when mechanical force
is applied, the pristine PVDF-based TENG provides relatively minimal electrical output.
Because of the all-trans (TTTT) conformation, it shows five distinct crystal phases (α, β, γ, δ
and ε) [74–76]. PVDF’s β-crystalline phase has the maximum dielectric and piezoelectric
response compared to its other polymorphic phases [72,77]. As a result, PVDF with an
improved β-phase fraction may provide the required electrical efficiency in nanogenerators.
As a polymer with multiple functions, PVDF also has excellent ferroelectric, piezoelectric,
pyroelectric, and dielectric characteristics [6,54,68,71]. To generate substantial electrical
properties suitable for achieving a commercially viable nanogenerator, higher β-phase
content in PVDF is required, and this is achieved by mechanical stretching, annealing,
electrical polling, and by adding diverse additives such as ZnO, RGO: Fe, ALO/RGO,
aromatic hyperbranched polyesters (Ar.HBP), etc. The main criteria are the rearrangements
of C–F groups to achieve a favorable enhancement in PVDF’s β-phase, which in turn can
boost the device conductivity of nanogenerators [70,73,78–96]. Due to their extremely
compatible and less expensive characteristics, electrospun fibers are preferentially used in
many health-monitoring applications [6,54].

In this study, we fabricated a TENG using electrospun nanofiber based on PVDF-
Ar.HBP of the third generation (P-Ar.HBP-3) blend mixture and non-woven PU film,
and used it for harvesting energy under diverse conditions. Electrospun P-Ar.HBP-3
nanofiber and non-woven PU film operate as the corresponding negative and positive
triboelectric layers. FTIR, XRD, FESEM and EDS techniques were used to analyze and
correlate the structural and morphological characteristics of the blend with its triboelectric
behavior. Triboelectric performance of the TENG device was assessed using open-circuit
voltage (VOC) and short circuit current (ISC) parameters. We have demonstrated that
the triboelectric property of PVDF can be significantly enhanced through the addition of
Ar.HBP of the third generation (Ar.HBP-3) and aided by electrospinning. Hence, a high-
performance P-Ar.HBP-3 (10 wt.%) TENG has been successfully developed based on this
negative triboelectric material. Detailed investigation revealed that the modulation of PVDF
composition using Ar.HBP-3 and nanofiber structure fabricated through electrospinning
significantly contributed to the triboelectric performance enhancement of P-Ar.HBP-3
nanofiber. Draft comparison for the above-mentioned voltage obtained by P-Ar.HBP-
3 (10 wt.%) in comparison with earlier reported materials is given in Table S1 (see in
Supplementary Materials). Eventually, TENG was demonstrated to harvest mechanical
energy suitable for LED lighting and wearable applications for monitoring healthcare.

2. Materials and Methods
2.1. Materials

PVDF, dimethyl formamide (DMF) and acetone were purchased from Sigma-Aldrich,
Seoul, Republic of Korea. Synthesis and characterization of aromatic hyperbranched
polyester of third generation (Ar.HBP-3) is reported in our earlier study [69]. All the
chemicals and reagents were utilized without any additional purification or processing.

2.2. Preparation of P-Ar.HBP-3 Electrospun Nanofibers

P-Ar.HBP-3 with varying Ar.HBP-3 content (10 to 40 wt.%) was dispersed in DMF/acetone
(3:2, v/v) solvent mixture (16 wt.%) under steady magnetic stirring at 350 rpm speed for 4 to
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5 h at 50 ◦C, and the resultant homogenous solution is further used for the electrospinning
process. Along with that, comparative studies were carried out using a neat PVDF solution.
Custom-designed electrospinning equipment was used to conduct the electrospinning
process. A 10 mL syringe was adapted for filling the prepared solution and transferred
through a needle having a diameter of 23 G with a flow rate of 1.2 mL/h by a pumped
syringe. The distance between the electrospinning needle tip and the film collector wrapped
on a roller was 15 cm, and the electrospinning applied voltage was set at 20 kV. For
about 6 h, collection of all the fibers was performed with 60 rpm roller speed. During
the electrospinning process, fast evaporation of the solvents takes place. We also took
additional care to remove the traces of residual solvents, if any, in the as-spun fibers by
keeping the samples in vacuum oven for 5 h at 50 ◦C to remove any traces of residual
solvent. Further, we preserved the samples in a desiccator under closed vacuum for a week
before proceeding to electrical measurements.

2.3. Nanogenerator Fabrication

For the TENG fabrication, P-Ar.HBP-3 (10 to 40 wt.%) electrospun mat and non-woven
polyurethane (PU) film were cut into the specified sizes (effective working area: 2 × 2 cm2).
Across both sides of the mat, two Ni–Cu conductive electrodes were placed as the top
and bottom electrodes. Electrodes were then soldered with Cu and finally, two flexible
PET substrates of a larger size compared to the size of the fiber mat were fixed on both
sides of the electrodes. To construct a compressed device and resolve the gap among
materials, the layered structure was finally subjected to proper pressure. This was to
prevent the triboelectric effect and to shield the nanogenerator from environmental damage.
In addition, this will not allow direct contact of the sensor with the skin and is safe for the
user performing the measurements. Figure S2 (see in Supplementary Materials) depicts the
device’s optical view.

2.4. Characterization

Polymer structure was confirmed using Fourier-transform infrared (FTIR, Thermo
Nicolet iS50, Thermo Fisher Scientific, Waltham, MA, USA) spectroscopy. Morphology of
the fibers was examined using a field emission-scanning electron microscope (FE-SEM,
Thermo Fisher FEI QUANTA 250 FEG). The nanofiber’s X-ray diffraction (XRD) patterns
were measured using an X-ray diffractometer (Bruker D8 Advance, Mannheim, Germany)
with a Cu Kα radiation source. An external pushing force was generated by an electrical
pushing machine. VOC and ISC electrical output parameters were evaluated using a digital
phosphor oscilloscope (DPO4104, Tektronix, Beaverton, OR, USA) with an input impedance
of 40 MΩ. Furthermore, an oscilloscope was coupled to a low-noise current preamplifier
(SR570, Stanford Research Systems, Stanford, CA, USA) for ISC measurement. Sensitivity of
the TENG was measured using a BIOPAC System, Inc., Goleta, CA, USA MP150 connected
to a measurement expertise Piezo Film Lab Amplifier (conditions: Rin of 100 MΩ and gain
of 0 dB). These measurements were carried out for healthcare monitoring applications.

3. Results and Discussion

The schematic representation for the production of electrospun nanofibers and TENG
for applications in energy harvesting and health monitoring is shown in Figure 1a.
Figure 1a(i,ii) demonstrate the preparation of a precursor polymeric solution. In the be-
ginning, PVDF and Ar.HBP-3 (0 to 40 wt.%) were dissolved in DMF: acetone solvent
mixture (3:2 v/v). Afterwards, the polymeric solution was electrospun onto the substrate
(Figure 1a(iii)), peeled off, and further TENG fabrication was performed using the nanoweb.
Figure 1a(iv) illustrates the FE-SEM imaging of the produced electrospun fibers. Further-
more, the fabricated triboelectric nanofibers based on P-Ar.HBP-3 and PU, as shown in
Figure 1a(v), were cut to the desired size (2 × 2 cm2) and adhered along with the Ni–Cu
electrode and PET substrate, respectively. These devices could be used in a variety of
healthcare-monitoring applications.
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Figure 1. (a). Schematic explanation of preparation and electrospinning of P-Ar.HBP-3 solution
followed by TENG fabrication: (i). preparation of P-Ar.HBP-3 blend solution, (ii). solution blending
by constant magnetic stirring, (iii). electrospinning process, (iv). SEM image of electrospun nanofiber
and (v). fabricated TENG device. (b). Schematic illustration of triboelectric mechanism.

3.1. Working Principle

Mechanical damage to the sensor setup is a big challenge, preventing TENGs’ practical
applications. TENGs have four working modes, i.e., single-electrode, contact-separation,
lateral-sliding. and free-standing triboelectric layer modes. For single-electrode and
contact-separation modes, TENGs are subjected to constant external tapping, bending, and
stretching, which will cause mechanical damage such as cracks, leading to rupture of the
sensor structure. In the case of lateral-sliding and free-standing triboelectric modes, TENGs
suffer from significant friction, wear, and adhesion of material during sliding. For example,
the triboelectric surface of TENGs is prone to being worn out by frictional forces. The
worn particles are transferred to the surface of the opposite material, resulting in output
degradation and a loss in sensor longevity. Our main focus in this study is the enhancement
of the PVDF β-phase by blending with Ar.HBP-3 so as to increase the output voltage of the
sensor. Hence, we did not perform any mechanical studies for the sensor.

As shown in Figure 1b, we considered P-Ar.HBP-3/PU composition based on a contact-
separation mechanism to describe the TENG device working mechanism for the developed
sensor. In this case, the P-Ar.HBP-3 nanofiber mat serves as a tribo-negative film, whereas
the PVDF nanofiber mat serves as a tribo-positive film. As demonstrated in step (i), both
the layers are isolated from one another and show no charges prior to applying external
pressure. When an external force is applied, the upper layer (P-Ar.HBP-3) contacts with the
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bottom PU layer. Depending on respective electron affinities, equal and opposite charges
were formed on contact layers according to the triboelectric principle. PU has a greater
tendency to shed electrons than P-Ar.HBP-3. As a result, it becomes positively charged
while the adjacent P-Ar.HBP-3 film becomes negatively charged. Electrical balance prevents
flow of current in step (ii) because the films gradually separate from one another as you
begin to release the external load, which causes a potential difference to develop across the
electrodes. In order to equalize the potential differences in step (iii), electrons will migrate
from the top to the bottom electrode, and this is repeated until as indicated in step (iv). The
electrodes and associated triboelectric films acquire the same amount of contrary charge
due to electrostatic induction. As depicted in step (v), if there is an increase in external force,
the electrostatic induction balancing becomes disrupted, causing the electrons to flow from
bottom to top in the opposite direction. As depicted in Figure 1b(i–v), alternating current is
consistently produced by this repetitive cyclical contact and separation mechanism.

Due to their higher triboelectric sensitivity, PVDF fibers with a significant proportion
of β-phase are more desirable. Therefore, the effect of Ar.HBP-3 upon PVDF crystalline
forms was investigated using XRD and FTIR measurements. XRD patterns of electrospun
PVDF and P-Ar.HBP-3 (0 to 40 wt.%) fibers are shown in Figure 2a. XRD patterns of neat
PVDF can be seen to have two distinct α-phase crystallization peaks at 18.3◦ and 19.8◦,
which correspond to (020) and (110) reflections, respectively. This outcome demonstrates
that the α-phase predominates in neat PVDF samples. In the case of P-Ar.HBP-3 (10 wt.%)
fiber, unique crystallization peaks corresponding to (020) and (110) reflections of β-phase is
observed at 20.6◦, thereby demonstrating the coexistence of both α- and β-phases in the
blend case. Electrospinning’s simultaneous stretching and poling assists in the PVDF’s
transformation from the α- to β-phase.

Polymers 2023, 15, x FOR PEER REVIEW 7 of 16 
 

 

dipoles and the surrounding local electric field aided the significantly increased β-phase 
in PVDF. However, decreasing β-phase content with Ar.HBP-3 content beyond 10 wt.% 
may be attributed to increasing coagulation as observed during sample preparation. 

The anticipated mechanism for β-phase formation on the P-Ar.HBP-3 surface is 
shown in Figure 2d. Ar.HBP-3 has a significant role to play towards improving the 
β-phase in PVDF. Similarly, the interfacial interactions of Ar.HBP-3 can pull PVDF link 
chains to form crystals on the surface in an all-trans form, thereby enabling the conver-
sion of localized non-polar α-phase to polar β-phase. Ar.HBP-3 serves as a nucleating 
agent in this circumstance, offering basic units for the creation of PVDF crystalline 
polymerization and inciting the creation of PVDF’s β-phase fragment through potent in-
teraction at the interface [28,56]. In contrast, the interfacial interactions and polarity of –
CH2/–CF2 dipoles differ. As shown in Figure 2d, owing to the strong interaction of hy-
drogen bonds between F atoms of PVDF and H atoms in hydroxyl groups on the 
Ar.HBP-3 surface, dipoles of -CH2/–CF2 in PVDF tend to align their F atoms towards the 
Ar.HBP-3 at the P-Ar.HBP-3 interface [58]. The mobility and architecture of –CH2/–CF2 
dipoles are affected by these cross-surface links and the dipolar interaction between 
PVDF and DMF (polar) solvent, thereby causing the formation of the β-phase [30,58]. 
Additionally, during localized poling operations, the conducting Ar.HBP-3 can reinforce 
the Coulombic force by generating inductive charges and increasing the local electric 
field. This attracts PVDF chain links to form the β-phase at the P-Ar.HBP-3 interface. As a 
result, when compared to pure PVDF nanofibers, the electrospun P-Ar.HBP-3 nanofiber 
contains more β-phase. Furthermore, it is also observed that when Ar.HBP-3 content is 
raised further, the β-phase proportion is lowered. Increasing the amount of Ar.HBP-3 
over 10 wt.% induces agglomeration as well as inhibiting the mobility of PVDF chain 
links, which may help explain this phenomenon [57]. As a result of Ar.HBP-3 aggregation 
at the interface, induced charges migrate longitudinally and eventually neutralize the 
charges in the fiber, which lowers the polarizability of PVDF nanofibers. 

 
Figure 2. (a). XRD pattern and (b). FTIR spectra of PVDF fibers as well as P-Ar.HBP-3 (0 to 40 wt.%) 
blended nanofibers. (c). Computed β-phase content variability in P-Ar.HBP-3 (0 to 40 wt.%) 
blended nanofibers, and (d). Mechanism of β-phase formation in P-Ar.HBP-3 nanofiber. 
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Additional analysis on the crystalline phase changes in P-Ar.HBP-3 (0 to 40 wt.%)
was performed using FTIR analyses [91] as shown in Figure 2b. The non-polar α-phase
is represented by the vibrational bands at 763 and 976 cm−1, whereas the electroactive
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β-phase is represented by the distinctive peaks at 841 cm−1 and 1276 cm−1. The minimal
peak intensity of the γ-phase at 1234 cm−1 indicates the majority presence of β- and α-
phases in their composition. The prominent PVDF fiber’s α-phase peaks sharply reduce
when compared to the P-Ar.HBP-3 fiber, indicating that the electrospinning is an effective
way to generate and/or improve the polar β-phase. This trend is also a confirmation of
the effect of Ar.HBP-3 in improving the β-phase content in PVDF. Under the condition that
the infrared transmittance corresponds with the Lambert–Beer law, the β-phase’s relative
content in electrospun fibers is determined using the equation:

F(β) =
Aβ

1.26Aα + Aβ
× 100 (1)

where 841 cm−1 and 763 cm−1 absorbance are denoted as Aβ and Aα, respectively. Figure 2c
depicts how the β-phase fractions in electrospun nanofiber have varied. β-phase % rises
with an increase in Ar.HBP-3 content, reaching a peak value of 93.8 % for the nanofiber,
i.e., electrospun PVDF with 10 wt.% Ar.HBP-3 exhibits higher β-crystalline phase content
than neat PVDF fibers as shown in Figure 2c. The greater interaction between P-Ar.HBP-3
dipoles and the surrounding local electric field aided the significantly increased β-phase in
PVDF. However, decreasing β-phase content with Ar.HBP-3 content beyond 10 wt.% may
be attributed to increasing coagulation as observed during sample preparation.

The anticipated mechanism for β-phase formation on the P-Ar.HBP-3 surface is shown
in Figure 2d. Ar.HBP-3 has a significant role to play towards improving the β-phase in PVDF.
Similarly, the interfacial interactions of Ar.HBP-3 can pull PVDF link chains to form crystals
on the surface in an all-trans form, thereby enabling the conversion of localized non-polar α-
phase to polar β-phase. Ar.HBP-3 serves as a nucleating agent in this circumstance, offering
basic units for the creation of PVDF crystalline polymerization and inciting the creation of
PVDF’s β-phase fragment through potent interaction at the interface [28,56]. In contrast, the
interfacial interactions and polarity of –CH2/–CF2 dipoles differ. As shown in Figure 2d,
owing to the strong interaction of hydrogen bonds between F atoms of PVDF and H atoms
in hydroxyl groups on the Ar.HBP-3 surface, dipoles of –CH2/–CF2 in PVDF tend to align
their F atoms towards the Ar.HBP-3 at the P-Ar.HBP-3 interface [58]. The mobility and
architecture of –CH2/–CF2 dipoles are affected by these cross-surface links and the dipolar
interaction between PVDF and DMF (polar) solvent, thereby causing the formation of the
β-phase [30,58]. Additionally, during localized poling operations, the conducting Ar.HBP-3
can reinforce the Coulombic force by generating inductive charges and increasing the local
electric field. This attracts PVDF chain links to form the β-phase at the P-Ar.HBP-3 interface.
As a result, when compared to pure PVDF nanofibers, the electrospun P-Ar.HBP-3 nanofiber
contains more β-phase. Furthermore, it is also observed that when Ar.HBP-3 content is
raised further, the β-phase proportion is lowered. Increasing the amount of Ar.HBP-3 over
10 wt.% induces agglomeration as well as inhibiting the mobility of PVDF chain links,
which may help explain this phenomenon [57]. As a result of Ar.HBP-3 aggregation at the
interface, induced charges migrate longitudinally and eventually neutralize the charges in
the fiber, which lowers the polarizability of PVDF nanofibers.

Fiber orientation is one of the important factors when processing electrospun fibers, as
they are collected on a rotating collector. The two main fiber orientations obtained during
electrospinning are ‘aligned’ and ‘random’. While random fibers are randomly oriented at
different angles throughout the collected sample, aligned fibers are typically oriented in the
same direction. Flat plate and roll-to-roll collectors are the most commonly used collector
tools for electrospun nanofibers. The most efficient, and increasingly common method of
collecting aligned fibers is by using a rotating drum collector. The degree of fiber alignment
is determined by the linear speed of the rotating collector. As linear speed increases, fibers
become more aligned. Linear speed on a rotating collector is calculated by υ = r ×ω, and is
typically represented in revolutions per minute (rpm), where υ = linear velocity, r = radius
of drum collector, andω = angular velocity. In our study using the drum collector, we did
not observe any oriented fibers, and instead saw aligned fibers.
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SEM images of electrospun PVDF and P-Ar.HBP-3 (10 wt.%) nanofibers are shown
in Figure 3a–d, respectively. Furthermore, they display the statistical distributions of the
relevant fiber diameters. It is clear that the fibers of both neat PVDF and P-Ar.HBP-3
(10 wt.%) are properly aligned, and neither beads nor non-volatilized solvents can be
observed. Ar.HBP-3 (10 wt.%) plays the role of an additive, and showed good structural
stability after diffusing into the PVDF fiber. Due to the addition of Ar.HBP-3, the electrospun
nanofibers exhibit a smaller diameter than that observed in pure PVDF fibers, which in
turn, could improve the electrospinning solution’s electrical conductivity. Under high
voltage, the conductive Ar.HBP-3 is easily charged, but as a consequence of the increased
Coulombic and electrostatic forces on the Taylor cone, the fiber diameter decreases [71,92].
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Figure 3. (a,a′). Surface morphologies of neat PVDF (16 wt.%), (b,b′). Surface morphologies of
P/HBP-3 (10 wt.%) nanofibers, respectively. (c,d). EDS and elemental mapping of P-Ar.HBP-3
(10 wt.%) nanofiber, respectively. (e). Map spectrum of elements in P-Ar.HBP-3 (10 wt.%) nanofiber
and (f–h). Energy-dispersive spectral images of carbon, fluorine and oxygen elements, respectively.

The elemental mapping images of P-Ar.HBP-3 (10 wt.%) film are shown in Figure 3c–e.
Figure 3f–h shows energy-dispersive spectral images of carbon, fluorine, and oxygen ele-
ments, respectively. From the SEM data, we were able to study the influence of morphology
on the triboelectric properties of the nanofibers.

3.2. Electrical Measurements

TENG devices were fabricated using the prepared P-Ar.HBP-3 nanofibers with various
Ar.HBP-3 concentrations (0, 10, 20, 30, and 40 wt.%) along with readily available non-woven
PU fabric. By applying a constant frequency and force of 1 Hz & 10 N, respectively, the
output electrical efficiency of the fabricated TENGs were evaluated. Figure 4a–d depicts the
output voltage and current of the PVDF/PU and P-Ar.HBP-3/PU based TENGs. P-Ar.HBP-
3 (10 wt.%)/PU-based TENG showed a maximum output voltage and current of 107 V and
1.33 µA, respectively when compared to PVDF/PU which is 12 V and 0.50 µA, respectively.
The enhanced β-phase and dielectric constant of 10 wt.% P-Ar.HBP-3/PU-based TENG
was responsible for the enhanced electrical performance.



Polymers 2023, 15, 2375 9 of 16

Polymers 2023, 15, x FOR PEER REVIEW 9 of 16 
 

 

3.2. Electrical Measurements 
TENG devices were fabricated using the prepared P-Ar.HBP-3 nanofibers with 

various Ar.HBP-3 concentrations (0, 10, 20, 30, and 40 wt.%) along with readily available 
non-woven PU fabric. By applying a constant frequency and force of 1 Hz & 10 N, re-
spectively, the output electrical efficiency of the fabricated TENGs were evaluated. Figure 
4a–d depicts the output voltage and current of the PVDF/PU and P-Ar.HBP-3/PU based 
TENGs. P-Ar.HBP-3 (10 wt.%)/PU-based TENG showed a maximum output voltage and 
current of 107 V and 1.33 µA, respectively when compared to PVDF/PU which is 12 V 
and 0.50 µA, respectively. The enhanced β-phase and dielectric constant of 10 wt.% 
P-Ar.HBP-3/PU-based TENG was responsible for the enhanced electrical performance. 

 
Figure 4. (a–d). Time-dependent VOC and ISC graphs of PVDF and P-Ar.HBP-3/PU (10 wt.%)-based 
TENG under constant frequency of 1 Hz and load of 10 N, respectively. (e,f). Output performances 
(VOC and ISC) of P/PU and P-Ar.HBP-3/PU (10 wt.%)-based TENG device as a function of load 5–10 
N). (g). Rectified voltage of P-Ar.HBP-3/PU (10 wt.%)-based TENG (h). P-Ar.HBP-3/PU (10 
wt.%)-based TENG device energy storage with various capacitors (2.2–22 µF) with charging cycles. 
(i). Circuit diagram for LED application. (j,k). Images of 12 LEDs before and after connecting 
P-Ar.HBP-3/PU (10 wt.%)-based TENG. 

Defects surrounding Ar.HBP-3-filled PVDF were eliminated as observed from the 
cross-sectional FE-SEM images. This results in increasing the PVDF’s β-phase and die-
lectric properties along with a corresponding improvement in the TENG’s electrical 
output [93]. The electrical response of P-Ar.HBP-3/PU-based TENG under different ex-

Figure 4. (a–d). Time-dependent VOC and ISC graphs of PVDF and P-Ar.HBP-3/PU (10 wt.%)-based
TENG under constant frequency of 1 Hz and load of 10 N, respectively. (e,f). Output performances
(VOC and ISC) of P/PU and P-Ar.HBP-3/PU (10 wt.%)-based TENG device as a function of load
5–10 N). (g). Rectified voltage of P-Ar.HBP-3/PU (10 wt.%)-based TENG (h). P-Ar.HBP-3/PU
(10 wt.%)-based TENG device energy storage with various capacitors (2.2–22 µF) with charging
cycles. (i). Circuit diagram for LED application. (j,k). Images of 12 LEDs before and after connecting
P-Ar.HBP-3/PU (10 wt.%)-based TENG.

Defects surrounding Ar.HBP-3-filled PVDF were eliminated as observed from the
cross-sectional FE-SEM images. This results in increasing the PVDF’s β-phase and dielectric
properties along with a corresponding improvement in the TENG’s electrical output [93].
The electrical response of P-Ar.HBP-3/PU-based TENG under different external mechanical
forces at constant frequency is important for its practical and commercial applications.
Therefore, the TENG electrical response observed under various applied mechanical forces
from 10 to 5 N when the frequency was maintained at 1 Hz exhibited voltages of 35, 49
and 107 V and current of 0.55, 1.14, and 1.33 µA, respectively. The electrical efficiency
of the TENG is depicted in Figure 4e,f. It was observed that the TENG’s output voltage
and current decreased when the applied force decreased from 10 N to 5 N. From the
above observations, P-Ar.HBP-3 (10 wt.%)/PU based TENG was further considered as an
optimized device.

3.3. Energy Harvesting Applications

To demonstrate the viability of P-Ar.HBP-3/PU-based TENG in real-time applications,
the fabricated TENG is able to power 12 LEDs without using a capacitor or rectifier when
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operating under a load and frequency of 10 N at 1 Hz (Figure 4j,k and Video S1, see in
Supplementary Materials). The circuit diagram for application studies is shown in Figure 4i.
This device generated voltage in a peculiar waveform that could not be used to directly
power portable electronics. Therefore, the equivalent voltage produced by the devices was
transformed into direct voltage by the use of a full-bridge rectifier circuit while connected
to an electronic device that is portable. Furthermore, the rectified voltage was held using a
capacitor before connecting any portable electronics. At an operating load of 10 N and a
frequency of 1 Hz, the P-Ar.HBP-3/PU-based TENG’s rectified voltage is 46 V, as shown
in Figure 4g. For approximately 130 s, the rectified voltage was retained in a variety of
capacitors with capacitance values of 2.2, 4.7, 10, and 22 µF storing maximum voltages of
1.4, 1.3, 0.9, and 0.6 V, respectively as shown in Figure 4h.

3.4. Wearable Applications

In the ambient environment, mechanical energy is abundant, and the majority is spent
in our daily activities. This example illustrates how to use TENGs to collect human motion
data. Initially, the sensor is attached to the piezo-amplifier during the measurement, and its
output is attached to the Biopac 150 system. This can wirelessly communicate the data to the
computer or mobile phone, which uses acknowledgment software during the measurement.
The schematic representation of the general circuit used for human health monitoring
measurements with Biopac MP150 is shown in Figure S3 (see in Supplementary Materials).
P-Ar.HBP-3/PU-based TENG sensor can detect a variety of human body motions including
those from wrist, elbow, finger, pocket, mouth and shoe insole. Prior to evaluating a
real-time wearable application, the enhanced P-Ar.HBP-3/PU-based TENG (2 × 2 cm2)
sensitivity is determined (Figure 5a). The sensor is capable of precisely detecting finger
tapping, twisting, bending and folding. The sensor produces 3 V at most when it is tapped,
6 V when twisted, 3 V when it is bent, and 2 V when folded.

These results indicate that the TENG responds well enough to twisting compared to
other activities as demonstrated in Video S2 (see in Supplementary Materials). When the
sensor is employed as a finger ring with a bending inclination of 45◦, it generated 13 V
(Figure 5b). As shown in Figure 5c, once the sensor is punched, it exhibits a significant
increase in voltage, i.e., 11.8 V. Similar results were seen for the elbow flexion sensed by
the TENG’s detecting voltage of 2.5 V, as depicted in Figure 5d. Whenever the sensor is
attached to the circular chair, and a person periodically sits on the chair, 16.5 V is displayed
(Figure 5e). Additionally, if the sensor is affixed to the exterior of the mask to detect the
pattern of coughing, this will vary its signal as depicted in Figure 5f which is 3.4 V and 4.9 V
for slow and fast coughing, respectively. As illustrated in Figure 5g–i and in Supplementary
Videos S3 and S4, the sensor can differentiate among various human activities including
walking, leg movement, and jumping when it is positioned on the pocket, knee flexion and
shoe sole. Video S3 (see in Supplementary Materials) shows the real-time measurement for
the aforementioned pocket sensor.

As demonstrated in Video S3 (see in Supplementary Materials), a P-Ar.HBP-3/PU-
based TENG sensor can operate as a smart pocket. When the sensor is attached to the
pocket and the person in the video puts their hand inside their pocket, it produced voltages
of 6.8 V and 5.4 V during walking and hand movements, respectively. In contrast, if the
sensor was put on the knee, it produced a voltage of 8.8 V during walking. The sensor
first responds well to twisting and folding instead of tapping, and the shoe insole case
acts as a tapping mechanism, whereas the other two are bending or folding. Still, the shoe
insole generates reduced voltages during walking (2.3 V) and jumping (5.8 V). This implies
that the sensor can be used for continuously monitoring the behavior of vehicle drivers
and people with paralysis. It is obvious from the results that the P-Ar.HBP-3-based TENG
sensors have applications in continuously identifying and distinguishing various physical
activities of humans. The above results demonstrate the prepared TENG’s potential for
extracting biomechanical energy from the environment of daily living.
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under various physical deformations of the sensor (tapping, twisting, bending, and folding), (b). Sen-
sor’s performance when used as a finger ring, (c). Detection of punching intensity, (d). Sensitivity of
the joint-bending when the sensor is placed at elbow flexion, (e). Smart chair health care, (f). Detecting
and differentiating the intensities of slow and fast coughing pattern while the sensor is used on
mouth mask, (g–i). Motion detection and differentiation (hand moment, leg moment, walk and
jump) when the sensor is placed on pocket, knee and shoe insole, respectively for human health
motion applications.

4. Conclusions

In conclusion, by employing the synergistic enhancing impact of Ar.HBP-3 on the
triboelectric efficiency of electrospun PVDF nanofibers, we were able to successfully fab-
ricate flexible and high voltage output TENGs. The polar β-phase of PVDF is effectively
enhanced using electrospinning technique, aided by the influence of dipole interaction
between the functional groups present in PVDF and Ar.HBP-G3. Triboelectric performance
of the TENGs is significantly improved in the P-Ar.HBP-3 case compared to neat PVDF.
Under the mechanical strain of 10 N at 1 Hz for TENG with 10 wt.% Ar.HBP-3, we could
achieve a maximum VOC of 107 V and ISC of 1.3 µW. Further, to power electronics and
charge capacitors, the mechanical energy transformed from triboelectric energy was used.
In healthcare monitoring applications, the fabricated TENG exhibited high voltage output
stability. In addition, 12 LEDs were directly lit from the maximum VOC of 107 V. Addi-
tionally, the specified TENG was used to harvest mechanical energy and power portable
electronics. In order to track and monitor the patient’s physical conditions, the TENG
was also integrated with a variety of health monitoring systems. Due to their low cost,
ease of fabrication, and excellent output, the flexible nanofiber TENGs developed in the
present study are very promising for powering portable electronics and for healthcare
monitoring applications.
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Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/polym15102375/s1, Figure S1: Triboelectric materials in
series following a tendency to easily lose electrons (+) and to easily gain electrons (−), Figure S2:
Optical view of the TENG device, Figure S3: Schematic representation and general circuit for hu-
man health monitoring using TENG device, Table S1: Draft comparison of triboelectric voltage
from the literature data, Video S1: Demonstration of lighting 12 LEDs by VOC of fabricated TENG,
Video S2: Demonstration of the sensitivity efficiency under various physical deformations of the
sensor (tapping, twisting, bending and folding), Video S3: real-time measurement for the TENG
pocket sensor, Video S4: Demonstration of the TENG performance including walking and jumping
when it is positioned on the shoe sole.
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