Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (72)

Search Parameters:
Keywords = hygromycin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 2857 KB  
Article
Further Evidence for the Immunosuppressive Activity of Transmembrane Envelope Protein p15E of Porcine Endogenous Retrovirus
by Joachim Denner, Reinhard Schwinzer, Claudia Pokoyski, Benedikt B. Kaufer, Björn Dierkes, Jinzhao Ban and Lovlesh Lovlesh
Int. J. Mol. Sci. 2026, 27(2), 1094; https://doi.org/10.3390/ijms27021094 - 22 Jan 2026
Viewed by 48
Abstract
Retroviruses are immunosuppressive, and there is evidence that a highly conserved immunosuppressive domain (isu domain) in their transmembrane envelope protein contributes to this activity. Studies have shown that inactivated retroviruses, their purified transmembrane envelope proteins, and synthetic peptides corresponding to the isu domain [...] Read more.
Retroviruses are immunosuppressive, and there is evidence that a highly conserved immunosuppressive domain (isu domain) in their transmembrane envelope protein contributes to this activity. Studies have shown that inactivated retroviruses, their purified transmembrane envelope proteins, and synthetic peptides corresponding to the isu domain inhibit mitogen-triggered proliferation of peripheral blood mononuclear cells (PBMCs) and modulate their cytokine and gene expression. This has been demonstrated for human immunodeficiency virus type 1 (HIV-1), as well as for beta- and gammaretroviruses and for both exogenous and endogenous retroviruses, including syncytins. In the case of HIV-1, homopolymers of its isu peptide stimulated an increased release of IL-10, IL-6, and other cytokines from human PBMCs. Up-regulated genes included IL-6, IL-8, and IL-10, as well as MMP-1, TREM-1, and IL-1β. In vivo, in a mouse tumor model, tumor cells that were unable to induce tumors in immunocompetent animals gained the ability to do so when expressing the transmembrane envelope protein or the isu domain of various retroviruses on their surface. Here, we demonstrate that the transmembrane envelope protein p15E of PERV can modulate cytokine expression in human PBMCs. Human 293 cells were transfected with four constructs that express a portion of p15E, including the isu domain, and were cultured in the presence of a selection medium containing hygromycin. The p15E-expressing cells were co-cultured with human PBMCs, leading to the release of IL-6 and IL-10 protein and the modulation of multiple cytokines and other markers, including IL-6, IL-10, IFN-α, TNF-α, MMP1, and SEPP1. Similar, but more pronounced, effects were observed when PERV-producing 293 and pig cells were used in parallel; both expressed higher levels of p15E. Additionally, p15E expression reduced MHC class I expression, and preliminary data indicate that p15E expression could have a protective effect against cellular cytotoxicity. This finding underscores the need for further research to elucidate the dynamics of p15E expression and its immunosuppressive activity. It also contributes to the understanding of the immunosuppressive properties of pathogenic retroviruses. Furthermore, expressing the immunosuppressive p15E of PERV on the surface of a pig xenotransplant may reduce the need for pharmaceutical immunosuppressants. Full article
Show Figures

Figure 1

18 pages, 3261 KB  
Article
In Vitro Leaf-Based Method for Agrobacterium-Mediated Genetic Transformation of Sugar Beet
by Dmitry N. Miroshnichenko, Anna Klementyeva, Lilia Mourenets, Alexander S. Pushin, Aleksey P. Firsov and Sergey V. Dolgov
Crops 2026, 6(1), 12; https://doi.org/10.3390/crops6010012 - 13 Jan 2026
Viewed by 197
Abstract
Sugar beet, one of the most important natural sources of sugars in the world, is well known as a recalcitrant crop for genetic transformation. In the present study, several key components of Agrobacterium-mediated transformation of sugar beet have been studied. The correct [...] Read more.
Sugar beet, one of the most important natural sources of sugars in the world, is well known as a recalcitrant crop for genetic transformation. In the present study, several key components of Agrobacterium-mediated transformation of sugar beet have been studied. The correct choice of explant and plant regeneration potential of domestic breeding lines was evaluated; however, most attention was paid to the search for the most efficient selectable marker gene and selection agents. To produce transgenic plants, we applied a method based on the agrobacterial inoculation of wounded morphogenic structures previously initiated on in vitro cultivated leaves. Four selective marker genes conferring antibiotic or herbicide resistance were evaluated. In the case of selection using kanamycin or G418 (nptII gene controlled by the nos promoter), no transgenic plants were obtained, while the addition of the aminoglycoside antibiotic hygromycin (hpt gene, driven by the nos promoter) to the medium ensured the successful production of transgenic plants from three breeding lines with a frequency ranging from 1.5 to 5.1%. The selection of transgenic tissues using herbicides such as phosphinothricin and glyphosate after transformation with the bar and cp4-epsps genes (both controlled by the CaMV 35S promoter) also ensured the obtaining of transgenic plants, but the transformation efficiency was significantly low, reaching only 1.0 and 0.4%, respectively. Primary transgenic sugar beet plants grown in the greenhouse demonstrated enhanced resistance to herbicides in dosages commonly used in the field. In addition, after self-pollination of the primary T0 transgenic lines, homozygous T2 offspring were successfully selected, which demonstrated stable resistance to glyphosate due to the constitutive expression of the introduced cp4-epsps gene. Full article
(This article belongs to the Topic Genetic Engineering in Agriculture, 2nd Edition)
Show Figures

Figure 1

17 pages, 7056 KB  
Article
An Efficient and Streamlined System for In Vitro Regeneration and Genetic Transformation of Paper Mulberry (Broussonetia papyrifera)
by Fangyu Ye, Tong Ke, Shuiqing Deng, Lan Pan, Ming Tang and Wentao Hu
Life 2026, 16(1), 78; https://doi.org/10.3390/life16010078 - 4 Jan 2026
Viewed by 343
Abstract
In the present study, we developed an efficient and reproducible protocol for in vitro regeneration and Agrobacterium tumefaciens-mediated genetic transformation of Broussonetia papyrifera (L.) L’Hér. ex Vent. (paper mulberry) using leaf explants from a hybrid genotype. First, we optimized surface sterilization of [...] Read more.
In the present study, we developed an efficient and reproducible protocol for in vitro regeneration and Agrobacterium tumefaciens-mediated genetic transformation of Broussonetia papyrifera (L.) L’Hér. ex Vent. (paper mulberry) using leaf explants from a hybrid genotype. First, we optimized surface sterilization of leaf explants. Treatment with 0.6% (w/v) sodium hypochlorite for 8 min, followed by three rinses with sterile water and blotting on sterile filter paper, yielded a 33.60% explant survival rate and reduced contamination to 35.84%. Second, we refined the co-cultivation step for transformation using A. tumefaciens strain EHA105 carrying pCAMBIA1300-35S-eGFP. Leaf discs were infected for 20 min and co-cultured for 2 days on co-cultivation medium overlaid with sterile filter paper, which limited the overgrowth of A. tumefaciens. After co-cultivation, explants were transferred sequentially to callus induction, shoot induction, shoot multiplication, and rooting media supplemented with 250 mg·L−1 cefotaxime and 200 mg·L−1 Timentin, as well as 5.0 mg·L−1 hygromycin at a concentration that completely suppressed regeneration of non-transformed explants. Meanwhile, after transfer to the callus induction medium, eGFP fluorescence was detected in resistant calli as an initial screening for transformants. The integration and expression of the transgene were further confirmed by PCR and quantitative reverse transcription PCR (qRT-PCR) after the resistant calli developed into plantlets. Collectively, this streamlined protocol provides a practical platform for functional genomics and genetic improvement of B. papyrifera. Full article
(This article belongs to the Section Plant Science)
Show Figures

Figure 1

15 pages, 1712 KB  
Article
Screening of Monokaryotic Strains of Ganoderma sichuanense for Gene Editing Using CRISPR/Cas9
by Le Li, Yuxuan Liu, Jianzhong Wu, Nuan Wen, Yang Song, Xue Wang, Zhuang Li, Huiying Sun and Yongping Fu
J. Fungi 2026, 12(1), 25; https://doi.org/10.3390/jof12010025 - 28 Dec 2025
Viewed by 416
Abstract
Ganoderma sichuanense is a widely used medicinal and edible fungus. Genomic studies have revealed substantial genetic variation among its different strains, indicating that a genetic transformation system optimized for one genotype may not be effective in others. However, no study has systematically evaluated [...] Read more.
Ganoderma sichuanense is a widely used medicinal and edible fungus. Genomic studies have revealed substantial genetic variation among its different strains, indicating that a genetic transformation system optimized for one genotype may not be effective in others. However, no study has systematically evaluated the efficiency of a genetic transformation system across diverse genotypes, which has potentially limited functional genetic studies in this species. In this study, we first evaluated eight wild and cultivated monokaryotic strains with different genotypes based on their hygromycin B resistance and green fluorescent protein (GFP) expression efficiency. Three strains (CCMJ1500101, CCMJ1509001, and CCMJ1507802) were identified as capable of stable foreign gene expression, achieving transformation efficiencies of 20.0–66.7% via PEG-mediated protoplast transformation. Subsequently, a CRISPR/Cas9 system incorporating seven key elements to enhance editing efficiency was constructed and applied to these three strains using the ura3 gene as a test target. Gene editing efficiencies varied significantly among genotypes, ranging from 14.3% to 75.0%, confirming the system’s high efficacy and genotype dependence. Importantly, to rigorously assess the robustness and versatility of the established transformation platform, we further validated its broad applicability in the best-performing strain, CCMJ1500101, by successfully editing five functional genes involved in growth, development, and metabolism. Notably, gene inversion events were detected for the first time in edited transformants of Ganoderma, providing new clues for understanding non-homologous end joining (NHEJ) repair in this species. This study establishes a robust dual-sgRNA CRISPR/Cas9 platform for G. sichuanense and provides valuable strain resources to facilitate future gene functional studies and genetic improvement. Full article
(This article belongs to the Special Issue Fungal Metabolomics and Genomics, 2nd Edition)
Show Figures

Figure 1

15 pages, 1316 KB  
Article
Porcine Cytomegalovirus/Porcine Roseolovirus, Previously Transmitted During Xenotransplantation, Does Not Infect Human 293T and Mouse Cells with Impaired Antiviral Defense
by Hina Jhelum, Reinhold Schäfer, Benedikt B. Kaufer and Joachim Denner
Viruses 2026, 18(1), 21; https://doi.org/10.3390/v18010021 - 23 Dec 2025
Viewed by 503
Abstract
Porcine cytomegalovirus, more accurately classified as porcine roseolovirus (PCMV/PRV), was shown to be pathogenic in the context of xenotransplantation. Transmission of PCMV/PRV to non-human primates receiving hearts or kidneys from virus-positive pigs significantly reduced the survival time of the recipients. PCMV/PRV was also [...] Read more.
Porcine cytomegalovirus, more accurately classified as porcine roseolovirus (PCMV/PRV), was shown to be pathogenic in the context of xenotransplantation. Transmission of PCMV/PRV to non-human primates receiving hearts or kidneys from virus-positive pigs significantly reduced the survival time of the recipients. PCMV/PRV was also transmitted to the first human recipient of a pig heart transplant and contributed to the patient’s death. Although PCMV/PRV is highly prevalent in all pig breeds and wild boars, including slaughterhouse pigs, no infections or diseases have been reported in healthy, ill, or immunocompromised humans, suggesting that this virus is not zoonotic and should therefore be classified as xenozoonotic. This indicates that this virus is not zoonotic and must be classified as xenozoonotic. Moreover, it remains unclear whether PCMV/PRV is capable of infecting human cells in vitro. To address this question, human 293T cells resistant to hygromycin were co-cultured with porcine fallopian tube (PFT) cells producing PCMV/PRV. After hygromycin selection, the remaining human cells showed no evidence of infection. Because herpesviruses are generally considered to be species-specific—a notion that has been shown to be not entirely correct—it was also investigated whether PCMV/PRV can infect mouse cells using the same approach. Similarly, no infection was observed. Since the target cells employed in both assays had a reduced capacity to resist viral infection, the findings strongly suggest that PCMV/PRV is unable to infect human or mouse cells, which are equipped with functional antiviral mechanisms. This is supported by findings from the patient who received the first pig heart transplantation. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

11 pages, 2333 KB  
Article
An Agrobacterium-Mediated Transformation for Zingeria biebersteiniana
by Ryan Koeth, Shahzad Hussain Shah, Calvin Juel Rigney and Changbin Chen
Int. J. Plant Biol. 2025, 16(4), 140; https://doi.org/10.3390/ijpb16040140 - 8 Dec 2025
Viewed by 378
Abstract
Zingeria biebersteiniana, a grass species with the lowest known chromosome number among angiosperms (2n = 2x = 4), offers a distinctive platform for cytogenetic and grass research. Despite its unique karyotype and potential for molecular and educational applications, no transformation [...] Read more.
Zingeria biebersteiniana, a grass species with the lowest known chromosome number among angiosperms (2n = 2x = 4), offers a distinctive platform for cytogenetic and grass research. Despite its unique karyotype and potential for molecular and educational applications, no transformation system has previously been reported for this species. Here, we establish a reproducible Agrobacterium tumefaciens-mediated transformation protocol for Z. biebersteiniana, optimized through comparative evaluation of three tissue culture media. A modified Khromov medium with Plant Preservative Mixture supported robust callus induction and plant regeneration, enabling the successful introduction of a GFP–mouse talin1 fusion construct driven by the rice Actin-1 promoter. Transgenic lines were validated via PCR amplification of the hygromycin resistance gene, and GFP signals were observed in transformed individuals. However, the expression pattern was less specific than previously reported in rice, potentially due to species-specific differences in mouse Talin1 protein localization. Although actin filament visualization in mature pollen remained unspecific, the protocol provides a foundational tool for future molecular and functional genomics and genetics studies. This work represents the first documented genetic transformation of Z. biebersteiniana, expanding its utility as a model system in plant biology and genomics. Full article
(This article belongs to the Section Plant Biochemistry and Genetics)
Show Figures

Figure 1

11 pages, 3859 KB  
Article
Establishment of Genetic Transformation System of Non-Embryogenic Callus in Rosa rugosa
by Xinyun Liu, Xiyang Zhu, Yating Yang, Guo Wei, Liguo Feng and Mengjuan Bai
Curr. Issues Mol. Biol. 2025, 47(11), 894; https://doi.org/10.3390/cimb47110894 - 28 Oct 2025
Viewed by 613
Abstract
Rosa rugosa (R. rugosa) is a commercially important ornamental species within the genus Rosa, highly valued in the horticultural market. With the increasing availability and improved annotation of Rosa genomes, establishing an efficient genetic transformation system has become essential for validating [...] Read more.
Rosa rugosa (R. rugosa) is a commercially important ornamental species within the genus Rosa, highly valued in the horticultural market. With the increasing availability and improved annotation of Rosa genomes, establishing an efficient genetic transformation system has become essential for validating candidate gene functions. As a common intermediate tissue in plant regeneration, callus has been successfully used to establish genetic transformation systems in numerous species. In this study, we characterized the morphological and physiological differences between embryogenic and non-embryogenic calli in R. rugosa. The embryogenic callus exhibited significantly higher catalase (CAT) activity and proline (PRO) content than the non-embryogenic callus. However, its growth rate was markedly slower. Antibiotic sensitivity assays identified the optimal selection concentrations for non-embryogenic callus as 35 mg/L for kanamycin and 13 mg/L for hygromycin. We subsequently introduced the phytoene synthase (RrPSY1) gene into non-embryogenic callus, with positive transformants identified using GFP fluorescence detection and PCR analysis. The overexpression of RrPSY1 significantly increased the yellow pigment substances in the callus, confirming the establishment of an effective genetic transformation system for non-embryogenic calli in R. rugosa. This system provides a useful technical platform for the manipulation of metabolic products and the verification of related gene functions in rose. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

19 pages, 5382 KB  
Article
The Transformation and Protein Expression of the Edible Mushroom Stropharia rugosoannulata Protoplasts by Agrobacterium-tumefaciens-Mediated Transformation
by Dongjie Yin and Hairong Xiong
J. Fungi 2025, 11(9), 674; https://doi.org/10.3390/jof11090674 - 12 Sep 2025
Cited by 1 | Viewed by 1073
Abstract
Stropharia rugosoannulata is a cultivated edible mushroom characterized by its nutritional composition and efficient cellulolytic enzymatic systems. However, the lack of genetic tools has significantly impeded the investigation of its molecular mechanisms, severely constraining the study of functional genomic and precision breeding in [...] Read more.
Stropharia rugosoannulata is a cultivated edible mushroom characterized by its nutritional composition and efficient cellulolytic enzymatic systems. However, the lack of genetic tools has significantly impeded the investigation of its molecular mechanisms, severely constraining the study of functional genomic and precision breeding in S. rugosoannulata. It was demonstrated in this study that the Agrobacterium-tumefaciens-mediated genetic transformation (ATMT) system is applicable for the transformation of S. rugosoannulata protoplasts. Through this proposal, we successfully achieved the expression of exogenous genes (mCherry gene encoding red fluorescent protein, hph gene encoding hygromycin B phosphotransferase, and GUS gene encoding β-glucuronidase) and the endogenous mutant gene SDI encoding the iron-sulfur protein subunit of succinate dehydrogenase in S. rugosoannulata. Furthermore, this study employed endogenous promoters of GPD encoding glyceraldehyde-3-phosphate dehydrogenase and SDI to enhance transformation efficiency and drive target gene expression. This study establishes the feasibility of ATMT in S. rugosoannulata systems, while achieving stable expression of a panel of selectable marker genes and reporter genes critical for genetic research in S. rugosoannulata. Full article
(This article belongs to the Section Fungal Genomics, Genetics and Molecular Biology)
Show Figures

Figure 1

19 pages, 11989 KB  
Article
PEG-Mediated Protoplast Transformation of Penicillium sclerotiorum (scaumcx01): Metabolomic Shifts and Root Colonization Dynamics
by Israt Jahan, Qilin Yang, Zijun Guan, Yihan Wang, Ping Li and Yan Jian
J. Fungi 2025, 11(5), 386; https://doi.org/10.3390/jof11050386 - 17 May 2025
Cited by 1 | Viewed by 2624
Abstract
Protoplast-based transformation is a vital tool for genetic studies in fungi, yet no protoplast method existed for P. sclerotiorum-scaumcx01 before this study. Here, we optimized protoplast isolation, regeneration, and transformation efficiency. The highest protoplast yield (6.72 × 106 cells/mL) was obtained [...] Read more.
Protoplast-based transformation is a vital tool for genetic studies in fungi, yet no protoplast method existed for P. sclerotiorum-scaumcx01 before this study. Here, we optimized protoplast isolation, regeneration, and transformation efficiency. The highest protoplast yield (6.72 × 106 cells/mL) was obtained from liquid mycelium after 12 h of enzymatic digestion at 28 °C using Lysing Enzymes, Yatalase, cellulase, and pectinase. Among osmotic stabilizers, 1 M MgSO4 yielded the most viable protoplasts. Regeneration occurred via direct mycelial outgrowth and new protoplast formation, with a 1.02% regeneration rate. PEG-mediated transformation with a hygromycin resistance gene and GFP tagging resulted in stable GFP expression in fungal spores and mycelium over five generations. LC/MS-based metabolomic analysis revealed significant changes in glycerophospholipid metabolism, indicating lipid-related dynamics influenced by GFP tagging. Microscopy confirmed successful colonization of tomato roots by GFP-tagged scaumcx01, with GFP fluorescence observed in cortical tissues. Enzymatic (cellulase) seed pretreatment enhanced fungal colonization by modifying root surface properties, promoting plant–fungal interaction. This study establishes an efficient protoplast transformation system, reveals the metabolic impacts of genetic modifications, and demonstrates the potential of enzymatic seed treatment for enhancing plant–fungal interactions. Full article
(This article belongs to the Section Fungal Cell Biology, Metabolism and Physiology)
Show Figures

Figure 1

17 pages, 1893 KB  
Article
Preliminary Establishment of an Efficient Regeneration and Genetic Transformation System for Hemerocallis middendorffii Trautv. & C. A. Mey.
by Jinxue Du, Jingbo Shi, Nan Zhang, Yingzhu Liu and Wei Liu
Horticulturae 2025, 11(4), 417; https://doi.org/10.3390/horticulturae11040417 - 14 Apr 2025
Cited by 1 | Viewed by 1023 | Correction
Abstract
Hemerocallis middendorffii is widely used in the landscaping of Northern China for its exceptional ornamental and ecological attributes. It is also the focus of a substantial body of germplasm development and stress tolerance research. However, the absence of an efficient regeneration and genetic [...] Read more.
Hemerocallis middendorffii is widely used in the landscaping of Northern China for its exceptional ornamental and ecological attributes. It is also the focus of a substantial body of germplasm development and stress tolerance research. However, the absence of an efficient regeneration and genetic transformation system has been a critical barrier to conducting gene function studies on this species. In this research, the aerial parts of seed-derived H. middendorffii plantlets were used as explants, and the callus induction, proliferation, subculture, differentiation, and rooting conditions in the in vitro regeneration process were optimized. A callus induction rate of 95.6% was achieved, with a regeneration rate of 84.4%. Based on this procedure, a simple and effective Agrobacterium-mediated genetic transformation system was preliminarily developed using a hygromycin-based selection system. The system comprised an Agrobacterium tumefaciens culture solution optical density at 600 nm (OD600) of 0.6, an acetosyringone concentration of 100 μmol·L−1 in both the A. tumefaciens infection solution and the co-cultivation medium, a sterilization culture with Timentin at 300 mg·L−1, and a selection culture with hygromycin at 9 mg·L−1. Transgenic H. middendorffii T0 rooted plants were produced within a 5-month period, with a transformation rate of 11.9% and positive rate of 32.8%. The regeneration and genetic transformation system established in this study should help advance functional gene research and genetic improvement in H. middendorffii. However, the genetic transformation was only validated in the T0 plants. To confirm stable integration and long-term transgene stability, future research on the phenotypic and molecular characterization of T1 progeny, including segregation analysis and Southern blot verification, will be conducted. Full article
(This article belongs to the Section Propagation and Seeds)
Show Figures

Figure 1

14 pages, 3688 KB  
Article
Construction of Overexpression Vector with TYR7523 Gene and Its Effect on Browning in Macrocybe gigantea
by Jinyun Gao, Shuqing Song, Xinqian Liu, Zhuanlin Mo and Meihua Mo
J. Fungi 2025, 11(3), 216; https://doi.org/10.3390/jof11030216 - 12 Mar 2025
Viewed by 1134
Abstract
Macrocybe gigantea is a rare high-temperature edible fungus known for its resistance to browning. Previous studies suggested that the anti-browning property of the SCAU4 strain might be associated with low expression levels of the TYR7523 gene. In this study, an overexpression vector for [...] Read more.
Macrocybe gigantea is a rare high-temperature edible fungus known for its resistance to browning. Previous studies suggested that the anti-browning property of the SCAU4 strain might be associated with low expression levels of the TYR7523 gene. In this study, an overexpression vector for the TYR7523 gene was constructed and introduced into SCAU4 mycelium using an Agrobacterium-mediated transformation method. After three rounds of hygromycin resistance screening, successful transformants were identified through PCR amplification and validated by qRT-PCR analysis, confirming a 3.47-fold upregulation of TYR7523 expression. The overexpression strain OE7523 was compared with the wild-type SCAU4 strain in terms of growth rate, browning degree, and tyrosinase activity. Although there was no significant difference in growth rate on the mother culture medium, OE7523 showed faster growth on the stock culture and mycelium culture medium. In the late storage period, OE7523 exhibited a higher browning degree and tyrosinase activity than SCAU4, suggesting a potential role of TYR7523 in fruiting body browning. Physiological analyses indicated that low TYR7523 expression may contribute to storage tolerance, while high expression influenced postharvest browning and preservation duration. The results provide data support for further study on the function of TYR7523 gene of Macrocybe gigantea. Full article
Show Figures

Figure 1

18 pages, 1948 KB  
Article
An Improved Method for Agrobacterium-Mediated Genetic Transformation of Three Types of Lettuce
by Meghan C. Roche, Wusheng Liu and Ricardo Hernández
Plants 2025, 14(4), 620; https://doi.org/10.3390/plants14040620 - 18 Feb 2025
Cited by 5 | Viewed by 2951
Abstract
Lettuce genetic transformation is genotype-dependent. In the present study, we have successfully developed an optimized Agrobacterium-mediated transformation protocol for elite lettuce cultivars, which belong to the romaine, leaf, and butterhead cultivar types. We optimized the type and concentration of plant growth regulators [...] Read more.
Lettuce genetic transformation is genotype-dependent. In the present study, we have successfully developed an optimized Agrobacterium-mediated transformation protocol for elite lettuce cultivars, which belong to the romaine, leaf, and butterhead cultivar types. We optimized the type and concentration of plant growth regulators (PGRs) and selection antibiotics and found that the use of 1-naphthaleneacetic acid (NAA; 0.10 mg/L) and 6-benzyladenine (BA; 0.25 mg/L) as plant growth regulators, the use of hygromycin (15 mg/L) for transgenic plant selection, and the use of cotyledons and the first true leaf as explants efficiently yielded transformed plants for seven out of the eleven tested cultivars, achieving a 24.3–100% transformation efficiency. These seven cultivars include two romaine-type cultivars, three leaf-type cultivars, and two butterhead-type cultivars, and mark the first successful genetic transformation of the romaine cultivars ‘Kahu’ and ‘Rosalita’, the leaf cultivars ‘Red Sails’ and ‘Royal Oak Leaf’, and the butterhead cultivar ‘Lollo Biondo’. We also observed that substituting hygromycin selection with kanamycin selection (40 mg/L) resulted in a 64.3% transformation efficiency in the butterhead-type ‘Mariska’, one of the remaining four cultivars. Our newly optimized protocols are applicable in elite lettuce cultivars for Agrobacterium-mediated genetic transformation and regeneration, enabling hygromycin or kanamycin selection. Full article
(This article belongs to the Section Plant Development and Morphogenesis)
Show Figures

Graphical abstract

17 pages, 4729 KB  
Article
Discovery of MK8383s with Antifungal Activity from Mangrove Endophytic Fungi Medicopsis sp. SCSIO 40440 Against Fusarium Wilt of Banana
by Tianyu Zhou, Yulei Qiao, Lu Wang, Zifeng Li, Haibo Zhang, Liping Zhang, Shengrong Liao, Minhui Li, Changsheng Zhang and Wenjun Zhang
Mar. Drugs 2025, 23(2), 88; https://doi.org/10.3390/md23020088 - 18 Feb 2025
Cited by 1 | Viewed by 1322
Abstract
Fusarium wilt of banana (FWB), caused by Fusarium oxysporum f. sp. cubense (Foc) tropical race 4 (TR4), poses a severe threat to the global banana industry. The screening of endophytic fungi from the mangrove plant led to the identification of Medicopsis sp. [...] Read more.
Fusarium wilt of banana (FWB), caused by Fusarium oxysporum f. sp. cubense (Foc) tropical race 4 (TR4), poses a severe threat to the global banana industry. The screening of endophytic fungi from the mangrove plant led to the identification of Medicopsis sp. SCSIO 40440, which exhibited potent antifungal activity against Fusarium. The further fraction of the extract yielded ten compounds, including MK8383 (1) and nine new analogues, MK8383s B-J (210). The structures of 110 were elucidated using extensive spectroscopic data and single-crystal X-ray diffraction analysis. In vitro antifungal assays revealed that 1 showed strongly antifungal activities against Foc TR4, with an EC50 of 0.28 μg/mL, surpassing nystatin and hygromycin B (32 and 16 μg/mL, respectively). Pot experiments showed that 1 or spores of SCSIO 40440 could significantly reduce the virulence of Foc TR4 on Cavendish banana. Full article
Show Figures

Graphical abstract

13 pages, 3053 KB  
Article
Development of Fragrant Thermosensitive Genic Male Sterile Line Rice Using CRISPR/Cas9
by Tengkui Chen, Na Pu, Menglin Ni, Huabin Xie, Zhe Zhao, Juan Hu, Zhanhua Lu, Wuming Xiao, Zhiqiang Chen, Xiuying He and Hui Wang
Agronomy 2025, 15(2), 411; https://doi.org/10.3390/agronomy15020411 - 6 Feb 2025
Cited by 2 | Viewed by 1669
Abstract
This study aimed to develop an aromatic thermosensitive genic male sterile (TGMS) line in indica rice using CRISPR/Cas9 technology. The TMS5 and FGR in the high-quality conventional rice variety Huahang 48 were targeted for editing using CRISPR/Cas9 technology. CRISPR/Cas9 vectors designed for TMS5 [...] Read more.
This study aimed to develop an aromatic thermosensitive genic male sterile (TGMS) line in indica rice using CRISPR/Cas9 technology. The TMS5 and FGR in the high-quality conventional rice variety Huahang 48 were targeted for editing using CRISPR/Cas9 technology. CRISPR/Cas9 vectors designed for TMS5 and FGR were constructed and introduced into rice calli through Agrobacterium-mediated transformation. Transgenic seedlings were subsequently regenerated, and the target sites of the edited plants were analyzed via sequencing. A total of fifteen T0 double mutants were successfully obtained. Three mutants without T-DNA insertion were screened in the T1 generation by the PCR detection of hygromycin gene fragments, and homozygous mutants without T-DNA insertion were screened in the T2 generation by the sequencing analysis of the mutation sites, named Huahang 48s. Huahang 48s exhibited complete sterility at 24 °C and pollen transfer at 23 °C. The 2-acetyl-1-pyrroline (2-AP) content was detected in the young panicles, leaves, and stems of Huahang 48s. The leaves of Huahang 48s had the highest 2-AP content, contrasting with the absence of 2-AP in HuaHang 48. F1 hybrids that crossed Huahang 48s with two high-quality restorer lines were superior to the two parents in terms of yield per plant and 1000-grain weight. Huahang 48s has a certain combining ability and application potential in two-line cross breeding. The successful application of CRISPR/Cas9 technology in Huahang 48 established a foundation for developing aromatic TGMS lines, providing both theoretical insights and practical materials for breeding efforts. Full article
(This article belongs to the Section Crop Breeding and Genetics)
Show Figures

Figure 1

19 pages, 3437 KB  
Article
Botrytis cinerea PMT4 Is Involved in O-Glycosylation, Cell Wall Organization, Membrane Integrity, and Virulence
by Verónica Plaza, Alice Pasten, Luz A. López-Ramírez, Héctor M. Mora-Montes, Julia Rubio-Astudillo, Evelyn Silva-Moreno and Luis Castillo
J. Fungi 2025, 11(1), 71; https://doi.org/10.3390/jof11010071 - 17 Jan 2025
Cited by 3 | Viewed by 3043
Abstract
Proteins found within the fungal cell wall usually contain both N- and O-oligosaccharides. N-glycosylation is the process where these oligosaccharides (hereinafter: glycans) are attached to asparagine residues, while in O-glycosylation the glycans are covalently bound to serine or threonine [...] Read more.
Proteins found within the fungal cell wall usually contain both N- and O-oligosaccharides. N-glycosylation is the process where these oligosaccharides (hereinafter: glycans) are attached to asparagine residues, while in O-glycosylation the glycans are covalently bound to serine or threonine residues. The PMT family is grouped into PMT1, PMT2, and PMT4 subfamilies. Using bioinformatics analysis within the Botrytis cinerea genome database, an ortholog to Saccharomyces cerevisiae Pmt4 and other fungal species was identified. The aim of this study was to assess the relevance of the bcpmt4 gene in B. cinerea glycosylation. For this purpose, the bcpmt4 gene was disrupted by homologous recombination in the B05.10 strain using a hygromycin B resistance cassette. Expression of bcpmt4 in S. cerevisiae ΔScpmt4 or ΔScpmt3 null mutants restored glycan levels like those observed in the parental strain. The phenotypic analysis showed that Δbcpmt4 null mutants exhibited significant changes in hyphal cell wall composition, including reduced mannan levels and increased amounts of chitin and glucan. Furthermore, the loss of bcpmt4 led to decreased glycosylation of glycoproteins in the B. cinerea cell wall. The null mutant lacking PMT4 was hypersensitive to a range of cell wall perturbing agents, antifungal drugs, and high hydrostatic pressure. Thus, in addition to their role in glycosylation, the PMT4 is required to virulence, biofilm formation, and membrane integrity. This study adds to our knowledge of the role of the B. cinerea bcpmt4 gene, which is involved in glycosylation and cell biology, cell wall formation, and antifungal response. Full article
(This article belongs to the Special Issue Growth and Virulence of Plant Pathogenic Fungi)
Show Figures

Figure 1

Back to TopTop