Further Evidence for the Immunosuppressive Activity of Transmembrane Envelope Protein p15E of Porcine Endogenous Retrovirus
Abstract
1. Introduction
2. Results
2.1. Sequence Homology of the Retroviral Isu Domain
2.2. Cloning and Transfection of p15E of PERV
2.3. Analysis of p15E of PERV Expression in Transfected and Virus-Producing Human Cells
2.4. Effect of p15E of PERV on Cytokine Expression in Human PBMCs
2.5. Effect of p15E of PERV on Human Cytotoxic Effector Cells
2.6. Effect of p15E of PERV on MHC Class I Expression
2.7. New Set of Expression Constructs, Transfection, and Co-Cultivation with Human PBMCs
3. Discussion
4. Materials and Methods
4.1. Wild-Type 293 Cells, PERV-Producing Human 293 Cells, and Pig Cells
4.2. Cloning of p15E
4.3. Transfection of p15E and Establishment of Transfected p15E-Expressing Cells
4.4. Peripheral Blood Mononuclear Cells (PBMCs)
4.5. Ethics Declarations
4.6. Co-Cultivation
4.7. Fluorescence Analysis
4.8. Antibodies and Flow Cytometry
4.9. CD107a Assay
4.10. Statistical Analysis
4.11. DNA and RNA Extraction
4.12. Polymerase Chain Reaction (PCR), Real-Time PCR and Real-Time RT-PCR
4.13. Detection of Cytokine Expression by RT-PCR
4.14. Detection of Cytokine Release by ELISA
4.15. Endotoxin Measurement
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| BaEV | baboon endogenous retrovirus |
| BERV | bovine endogenous retrovirus |
| C-CC | cysteine loop |
| CKS-17 | consensus sequence of the gammaretroviruses |
| Env | envelope protein |
| ERV-3 | endogenous retrovirus 3 |
| FCN1 | ficolin-1 |
| FeLV | feline leukemia virus |
| FP | fusion peptide |
| GaLV | gibbon ape leukemia virus |
| HERV | human endogenous retrovirus |
| HIV | human immunodeficiency virus |
| IFN | interferon |
| IL | interleukin |
| IP-10 | interferon gamma-induced protein 10 |
| Isu | immunosuppressive domain |
| KoRV | koala retrovirus |
| Mab-Env1–4 | syncytins of Marubya lizards |
| MCP | monocyte chemoattractant protein |
| MHC | major histocompatibility complex |
| MIP | macrophage inflammatory protein |
| MMP1 | matrix metalloproteinase 1 |
| MMTV | mouse mammary tumor virus |
| MPMV | Mason Pfizer monkey virus |
| MSD | membrane spanning domain |
| MuLV | murine leukemia virus |
| PBMCs | peripheral blood mononuclear cells |
| PERV | porcine endogenous retrovirus |
| SEPP1 | selenoprotein P, plasma, 1 |
| SHIV | simian–human immunodeficiency virus |
| SIV cpz | simian immunodeficiency virus chimpanzee |
| SIV sm | SIV sooty mangabey |
| SIVagm | SIV African green monkeys |
| SRV-1 | simian retrovirus-1 |
| SU | surface envelope protein |
| TM | transmembrane envelope protein |
| TNF | tumor necrosis factor |
| TREM | triggering receptor expressed on myeloid cells |
| VEC | vascular endothelial cell |
References
- Denner, J. The transmembrane proteins contribute to immunodeficiencies induced by HIV-1 and other retroviruses. AIDS 2014, 28, 1081–1090. [Google Scholar] [CrossRef]
- Oostendorp, R.A.; Meijer, C.J.; Scheper, R.J. Immunosuppression by retroviral-envelope-related proteins, and their role in nonretroviral human disease. Crit. Rev. Oncol. Hematol. 1993, 14, 189–206. [Google Scholar] [CrossRef]
- Borghi, P.; Fantuzzi, L.; Varano, B.; Gessani, S.; Puddu, P.; Conti, L.; Capobianchi, M.R.; Ameglio, F.; Belardelli, F. Induction of interleukin-10 by human immunodeficiency virus type 1 and its gp120 protein in human monocytes/macrophages. J. Virol. 1995, 69, 1284–1287. [Google Scholar] [CrossRef]
- Planès, R.; BenMohamed, L.; Leghmari, K.; Delobel, P.; Izopet, J.; Bahraoui, E. HIV-1 Tat protein induces PD-L1 (B7-H1) expression on dendritic cells through tumor necrosis factor alpha- and toll-like receptor 4-mediated mechanisms. J. Virol. 2014, 88, 6672–6689. [Google Scholar] [CrossRef] [PubMed]
- Quaranta, M.G.; Mattioli, B.; Giordani, L.; Viora, M. Immunoregulatory effects of HIV-1 Nef protein. Biofactors 2009, 35, 169–174. [Google Scholar] [CrossRef]
- Collette, V.; Dutartre, H.; Benziane, A.; Olive, D. Similarity between Nef of primate lentiviruses and p15E of murine and feline leukaemia viruses. AIDS 1996, 10, 441. [Google Scholar] [CrossRef]
- Mallet, F.; Bouton, O.; Prudhomme, S.; Cheynet, V.; Oriol, G.; Bonnaud, B.; Lucotte, G.; Duret, L.; Mandrand, B. The endogenous retroviral locus ERVWE1 is a bona fide gene involved in hominoid placental physiology. Proc. Natl. Acad. Sci. USA 2004, 101, 1731–1736. [Google Scholar] [CrossRef]
- Blaise, S.; de Parseval, N.; Bénit, L.; Heidmann, T. Genomewide screening for fusogenic human endogenous retrovirus envelopes identifies syncytin 2, a gene conserved on primate evolution. Proc. Natl. Acad. Sci. USA 2003, 100, 13013–13018. [Google Scholar] [CrossRef] [PubMed]
- Heidmann, O.; Béguin, A.; Paternina, J.; Berthier, R.; Deloger, M.; Bawa, O.; Heidmann, T. HEMO, an ancestral endogenous retroviral envelope protein shed in the blood of pregnant women and expressed in pluripotent stem cells and tumors. Proc. Natl. Acad. Sci. USA 2017, 114, E6642–E6651. [Google Scholar] [CrossRef]
- Henzy, J.E.; Gifford, R.J.; Kenaley, C.P.; Johnson, W.E. An intact retroviral gene conserved in spiny-rayed fishes for over 100 My. Mol. Biol. Evol. 2017, 34, 634–639. [Google Scholar] [CrossRef] [PubMed]
- Hogan, V.A.; Harmon, J.; Cid-Rosas, M.; Hall, L.R.; Johnson, W.E. Conserved residues of the immunosuppressive domain of MLV are essential for regulating the fusion-critical SU-TM disulfide bond. J. Virol. 2024, 98, e0098924. [Google Scholar] [CrossRef]
- Eksmond, U.; Jenkins, B.; Merkenschlager, J.; Mothes, W.; Stoye, J.P.; Kassiotis, G. Mutation of the putative immunosuppressive domain of the retroviral envelope glycoprotein compromises infectivity. J. Virol. 2017, 91, e01152-17. [Google Scholar] [CrossRef]
- Good, R.A.; Ogasawara, M.; Liu, W.T.; Lorenz, E.; Day, N.K. Immunosuppressive actions of retroviruses. Lymphology 1990, 23, 56–59. [Google Scholar]
- Takahashi, A.; Day, N.K.; Luangwedchakarn, V.; Good, R.A.; Haraguchi, S. A retroviral-derived immunosuppressive peptide activates mitogen-activated protein kinases. J. Immunol. 2001, 166, 6771–6775. [Google Scholar] [CrossRef]
- Ruegg, C.L.; Strand, M. A synthetic peptide with sequence identity to the transmembrane protein GP41 of HIV-1 inhibits distinct lymphocyte activation pathways dependent on protein kinase C and intracellular calcium influx. Cell. Immunol. 1991, 137, 1–13. [Google Scholar] [CrossRef]
- Koutsonikolis, A.; Haraguchi, S.; Brigino, E.N.; Owens, U.E.; Good, R.A.; Day, N.K. HIV-1 recombinant gp41 induces IL-10 expression and production in peripheral blood monocytes but not in T-lymphocytes. Immunol. Lett. 1997, 55, 109–113. [Google Scholar] [CrossRef] [PubMed]
- Takeshita, S.; Breen, E.C.; Ivashchenko, M.; Nishanian, P.G.; Kishimoto, T.; Vredevoe, D.L.; Martinez-Maza, O. Induction of IL-6 and IL-10 production by recombinant HIV-1 envelope glycoprotein 41 (gp41) in the THP-1 human monocytic cell line. Cell. Immunol 1999, 165, 234–242. [Google Scholar] [CrossRef]
- Speth, C.; Joebstl, B.; Barcova, M.; Dierich, M.P. HIV-1 envelope protein gp41 modulates expression of interleukin-10 and chemokine receptors on monocytes, astrocytes and neurones. AIDS 2000, 14, 629–636. [Google Scholar] [CrossRef] [PubMed]
- Barcova, M.; Kacani, L.; Speth, C.; Dierich, M.P. Gp41 envelope protein of human immunodeficiency virus induces interleukin (IL)-10 in monocytes, but not in B, T, or NK cells, leading to reduced IL-2 and interferon-γ production. J. Infect. Dis. 1998, 177, 905–913. [Google Scholar] [CrossRef]
- Kim, K.S.; Kim, K.H.; Choi, S.E.; Yoon, J.W.; Kang, Y. Soluble expression in Escherichia coli of murine endogenous retroviral transmembrane envelope protein having immunosuppressive activity. Protein Expr. Purif. 1999, 16, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Pengal, R.A.; Ganesan, L.P.; Wei, G.; Fang, H.; Ostrowski, M.C.; Tridandapani, S. Lipopolysaccharide-induced production of interleukin-10 is promoted by the serine/threonine kinase Akt. Mol. Immunol. 2006, 43, 1557–1564. [Google Scholar] [CrossRef]
- Ivanusic, D.; Denner, J. Sensitive detection of lipopolysaccharide (LPS) by monitoring of IL-10 secretion from PBMCs. MicroPubl. Biol. 2023. [Google Scholar] [CrossRef]
- Mangeney, M.; Heidmann, T. Tumor cells expressing a retroviral envelope escape immune rejection in vivo. Proc. Natl. Acad. Sci. USA 1998, 95, 14920–14925. [Google Scholar] [CrossRef] [PubMed]
- Blaise, S.; Mangeney, M.; Heidmann, T. The envelope of Mason-Pfizer monkey virus has immunosuppressive properties. J. Gen. Virol. 2001, 82, 1597–1600. [Google Scholar] [CrossRef]
- Mangeney, M.; de Parseval, N.; Thomas, G.; Heidmann, T. The full-length envelope of an HERV-H human endogenous retrovirus has immunosuppressive properties. J. Gen. Virol. 2001, 82, 2515–2518. [Google Scholar] [CrossRef]
- Schlecht-Louf, G.; Mangeney, M.; El-Garch, H.; Lacombe, V.; Poulet, H.; Heidmann, T. A targeted mutation within the FeLV envelope protein immunosuppressive domain to improve a canarypox-based FeLV vaccine. J. Virol. 2013, 88, 992–1001. [Google Scholar] [CrossRef]
- Mangeney, M.; Renard, M.; Schlecht-Louf, G.; Bouallaga, I.; Heidmann, O.; Letzelter, C.; Richaud, A.; Ducos, B.; Heidmann, T. Placental syncytins: Genetic disjunction between the fusogenic and immunosuppressive activity of retroviral envelope proteins. Proc. Natl. Acad. Sci. USA 2007, 104, 20534–20539. [Google Scholar] [CrossRef]
- Kedzierska, K.; Crowe, S.M. Cytokines and HIV-1: Interactions and clinical implications. Antivir. Chem. Chemother. 2001, 12, 133–150. [Google Scholar] [CrossRef]
- Morozov, V.A.; Morozov, A.V.; Semaan, M.; Denner, J. Single mutations in the transmembrane envelope protein abrogate the immunosuppressive property of HIV-1. Retrovirology 2012, 9, 67. [Google Scholar] [CrossRef] [PubMed]
- Morozov, V.A.; Dao Thi, L.; Denner, J. The transmembrane protein of the human endogenous retrovirus-K (HERV-K) modulates cytokine release and gene expression. PLoS ONE 2013, 8, e70399. [Google Scholar] [CrossRef] [PubMed]
- Denner, J.; Eschricht, M.; Lauck, M.; Semaan, M.; Schlaermann, P.; Ryu, H.; Akyüz, L. Modulation of cytokine release and gene expression by the immunosuppressive domain of gp41 of HIV-1. PLoS ONE 2013, 8, e55199. [Google Scholar] [CrossRef]
- Nzounza, P.; Martin, G.; Dereuddre-Bosquet, N.; Najburg, V.; Gosse, L.; Ruffié, C.; Combredet, C.; Petitdemange, C.; Souquère, S.; Schlecht-Louf, G.; et al. A recombinant measles virus vaccine strongly reduces SHIV viremia and virus reservoir establishment in macaques. NPJ Vaccines 2021, 6, 123. [Google Scholar] [CrossRef] [PubMed]
- Karlas, A.; Irgang, M.; Votteler, J.; Specke, V.; Ozel, M.; Kurth, R.; Denner, J. Characterisation of a human cell-adapted porcine endogenous retrovirus PERV-A/C. Ann. Transplant. 2010, 15, 45–54. [Google Scholar]
- Denner, J.; Specke, V.; Thiesen, U.; Karlas, A.; Kurth, R. Genetic alterations of the long terminal repeat of an ecotropic porcine endogenous retrovirus during passage in human cells. Virology 2003, 314, 125–133. [Google Scholar] [CrossRef]
- Dean, T.T.; Serrão, V.H.B.; Lee, J.E. Structure of the Core Postfusion Porcine Endogenous Retrovirus Fusion Protein. mBio 2022, 13, e0292021. [Google Scholar] [CrossRef] [PubMed]
- Schippers, T. Functional Characterization of the Potential Immune Evasion Proteins pUL49.5 and p012 of Marek’s Disease Virus (MDV). Ph.D. Thesis, Free University Berlin, Berlin, Germany, 2015. [Google Scholar]
- Yang, S.; Zhou, X.; Li, R.; Fu, X.; Sun, P. Optimized PEI-based Transfection Method for Transient Transfection and Lentiviral Production. Curr. Protoc. Chem. Biol. 2017, 9, 147–157. [Google Scholar] [CrossRef]
- Kaulitz, D.; Fiebig, U.; Eschricht, M.; Wurzbacher, C.; Kurth, R.; Denner, J. Generation of neutralising antibodies against porcine endogenous retroviruses (PERVs). Virology 2011, 411, 78–86. [Google Scholar] [CrossRef] [PubMed]
- Fiebig, U.; Stephan, O.; Kurth, R.; Denner, J. Neutralizing antibodies against conserved domains of p15E of porcine endogenous retroviruses: Basis for a vaccine for xenotransplantation? Virology 2003, 307, 406–413. [Google Scholar] [CrossRef]
- Czauderna, F.; Fischer, N.; Boller, K.; Kurth, R.; Tönjes, R.R. Establishment and characterization of molecular clones of porcine endogenous retroviruses replicating on human cells. J. Virol. 2000, 74, 4028–4038. [Google Scholar] [CrossRef]
- Yang, L.; Güell, M.; Niu, D.; George, H.; Lesha, E.; Grishin, D.; Aach, J.; Shrock, E.; Xu, W.; Poci, J.; et al. Genome-wide inactivation of porcine endogenous retroviruses (PERVs). Science 2015, 350, 1101–1104. [Google Scholar] [CrossRef]
- Kamp, W.; Breij, E.C.; Nottet, H.S.; Berk, M.B. Interactions between major histocompatibility complex class II surface expression and HIV: Implications for pathogenesis. Eur. J. Clin. Investig. 2001, 31, 984–991. [Google Scholar] [CrossRef]
- Jones, S.M.; Moors, M.A.; Ryan, Q.; Klyczek, K.K.; Blank, K.J. Altered macrophage antigen-presenting cell function following Friend leukemia virus infection. Viral Immunol. 1992, 5, 201–211. [Google Scholar] [CrossRef]
- Ivanusic, D.; Pietsch, H.; König, J.; Denner, J. Absence of IL-10 production by human PBMCs co-cultivated with human cells expressing or secreting retroviral immunosuppressive domains. PLoS ONE 2018, 13, e0200570. [Google Scholar] [CrossRef]
- Isshiki, M.; Tsumoto, A.; Shimamoto, K. The serine/arginine-rich protein family in rice plays important roles in constitutive and alternative splicing of pre-mRNA. Plant Cell 2006, 18, 146–158. [Google Scholar] [CrossRef]
- Manley, J.L.; Krainer, A.R. A rational nomenclature for serine/arginine-rich protein splicing factors (SR proteins). Genes Dev. 2010, 24, 1073–1074. [Google Scholar] [CrossRef]
- Denner, J. Immunosuppression by Retroviruses: Implications for Xenotransplantation. Ann. N. Y. Acad. Sci. 1998, 862, 75–86. [Google Scholar] [CrossRef]
- Tacke, S.J.; Kurth, R.; Denner, J. Porcine endogenous retroviruses inhibit human immune cell function: Risk for xenotransplantation? Virology 2000, 268, 87–93. [Google Scholar] [CrossRef]
- Snyderman, R.; Cianciolo, G.J. Immunosuppressive activity of the retroviral envelope protein P 15E and its possible relationship to neoplasia. Immunol. Today 1984, 5, 240–244. [Google Scholar] [CrossRef] [PubMed]
- Denner, J. Expression and function of endogenous retroviruses in the placenta. APMIS 2016, 124, 31–43. [Google Scholar] [CrossRef] [PubMed]
- Denner, J.; Norley, S.; Kurth, R. The immunosuppressive peptide of HIV-1: Functional domains and immune response in AIDS patients. AIDS 1994, 8, 1063–1072. [Google Scholar] [CrossRef] [PubMed]
- Woessner, F.; Nagase, H. Matrix Metalloproteinases and TIMPs; Oxford University Press: New York, NY, USA, 2000. [Google Scholar]
- Hurwitz, B.E.; Klaus, J.R.; Llabre, M.M.; Gonzalez, A.; Lawrence, P.J.; Maher, K.J.; Greeson, J.M.; Baum, M.K.; Shor-Posner, G.; Skyler, J.S.; et al. Suppression of human immunodeficiency virus type 1 viral load with selenium supplementation: A randomized controlled trial. Arch. Intern. Med. 2007, 167, 148–154. [Google Scholar] [CrossRef]
- Murai, K.; Honda, M.; Shirasaki, T.; Shimakami, T.; Omura, H.; Misu, H.; Kita, Y.; Takeshita, Y.; Ishii, K.A.; Takamura, T.; et al. Induction of Selenoprotein P mRNA during Hepatitis C Virus Infection Inhibits RIG-I-Mediated Antiviral Immunity. Cell Host Microbe 2019, 25, 588–601.e7. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Quinn, P.J. Endotoxins: Lipopolysaccharides of gram-negative bacteria. Subcell. Biochem. 2010, 53, 3–25. [Google Scholar] [PubMed]
- Mühle, M.; Lehmann, M.; Hoffmann, K.; Stern, D.; Kroniger, T.; Luttmann, W.; Denner, J. Antigenic and immunosuppressive properties of a trimeric recombinant transmembrane envelope protein gp41 of HIV-1. PLoS ONE 2017, 12, e0173454. [Google Scholar] [CrossRef] [PubMed]
- Cooper, D.K.; Matsumoto, S.; Abalovich, A.; Itoh, T.; Mourad, N.I.; Gianello, P.R.; Wolf, E.; Cozzi, E. Progress in Clinical Encapsulated Islet Xenotransplantation. Transplantation 2016, 100, 2301–2308. [Google Scholar] [CrossRef]
- Griffith, B.P.; Goerlich, C.E.; Singh, A.K.; Rothblatt, M.; Lau, C.L.; Shah, A.; Lorber, M.; Grazioli, A.; Saharia, K.K.; Hong, S.N.; et al. Genetically Modified Porcine-to-Human Cardiac Xenotransplantation. N. Engl. J. Med. 2022, 387, 35–44. [Google Scholar] [CrossRef]
- Mohiuddin, M.M.; Singh, A.K.; Scobie, L.; Goerlich, C.E.; Grazioli, A.; Saharia, K.; Crossan, C.; Burke, A.; Drachenberg, C.; Oguz, C.; et al. Graft dysfunction in compassionate use of genetically engineered pig-to-human cardiac xenotransplantation: A case report. Lancet 2023, 402, 397–410. [Google Scholar] [CrossRef]
- Montgomery, R.A.; Stern, J.M.; Lonze, B.E.; Tatapudi, V.S.; Mangiola, M.; Wu, M.; Weldon, E.; Lawson, N.; Deterville, C.; Dieter, R.A.; et al. Results of Two Cases of Pig-to-Human Kidney Xenotransplantation. N. Engl. J. Med. 2022, 386, 1889–1898. [Google Scholar] [CrossRef]
- Schlecht-Louf, G.; Renard, M.; Mangeney, M.; Letzelter, C.; Richaud, A.; Ducos, B.; Bouallaga, I.; Heidmann, T. Retroviral infection in vivo requires an immune escape virulence factor encrypted in the envelope protein of oncoretroviruses. Proc. Natl. Acad. Sci. USA 2010, 107, 3782–3787. [Google Scholar] [CrossRef]
- Keller, M.; Petersen, B.; Niemann, H.; Denner, J. Lack of antibody response in pigs immunized with the transmembrane envelope protein of porcine endogenous retroviruses. J. Gen. Virol. 2014, 95, 1827–1831. [Google Scholar] [CrossRef]
- Nellore, A.; Fishman, J.A. Donor-derived infections and infectious risk in xenotransplantation and allotransplantation. Xenotransplantation 2018, 25, e12423. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]

) indicates the furin peptidase cleavage site, which is positioned after the carboxy-terminal arginine (Arg) residue in the sequence –Arg–X–Lys/Arg–Arg↓– (where Lys is lysine, X is any amino acid, and ↓ identifies the cleavage site). Numbers above entry indicate the nucleotide according to the PERV sequence; numbers below refer to the nucleotide position according to the env gene. (B) Schematic presentation of p15E-link-His and p15E-NHR-His expression constructs. ΔFP, deletion of the fusion peptide coding region; C–S, single-nucleotide exchange at position 1652 that leads to a cysteine-to-serine substitution. (C) Sequence of the full-length Moloney murine leukemia virus (MoMuLV) envelope (env) gene, the signal peptide (SP), and the proteolytic cleavage site at position 470 (arrow) are indicated, and the final p15E sequence is expressed in murine tumor cells as described by Mangeney and Heidmann [23]. (D) Partial sequence of the transmembrane envelope protein of PERV containing the immunosuppressive and immunodominant domains. * indicates the mutated cysteine in p15E-link. (E) This construct corresponds to construct p15E-link-His shown in (B). (F) The same construct as in (E), but with a mutation in the immunosuppressive domain, substituting LQNR into AAAA. (G) A new construct, combining human albumin with p15E, flag-tag, and infrared fluorescent protein (iRFP), (H) A new construct combining a fragment of the surface envelope protein gp70 of PERV with p15E, flag-tag, and iRFP. iRFP, infrared fluorescent protein; N-helix, N-terminal helix; C-helix, C-terminal helix; TM, transmembrane domain; ISU, immunosuppressive domain; furin, furine peptidase cut; 2AP, 2A peptide.
) indicates the furin peptidase cleavage site, which is positioned after the carboxy-terminal arginine (Arg) residue in the sequence –Arg–X–Lys/Arg–Arg↓– (where Lys is lysine, X is any amino acid, and ↓ identifies the cleavage site). Numbers above entry indicate the nucleotide according to the PERV sequence; numbers below refer to the nucleotide position according to the env gene. (B) Schematic presentation of p15E-link-His and p15E-NHR-His expression constructs. ΔFP, deletion of the fusion peptide coding region; C–S, single-nucleotide exchange at position 1652 that leads to a cysteine-to-serine substitution. (C) Sequence of the full-length Moloney murine leukemia virus (MoMuLV) envelope (env) gene, the signal peptide (SP), and the proteolytic cleavage site at position 470 (arrow) are indicated, and the final p15E sequence is expressed in murine tumor cells as described by Mangeney and Heidmann [23]. (D) Partial sequence of the transmembrane envelope protein of PERV containing the immunosuppressive and immunodominant domains. * indicates the mutated cysteine in p15E-link. (E) This construct corresponds to construct p15E-link-His shown in (B). (F) The same construct as in (E), but with a mutation in the immunosuppressive domain, substituting LQNR into AAAA. (G) A new construct, combining human albumin with p15E, flag-tag, and infrared fluorescent protein (iRFP), (H) A new construct combining a fragment of the surface envelope protein gp70 of PERV with p15E, flag-tag, and iRFP. iRFP, infrared fluorescent protein; N-helix, N-terminal helix; C-helix, C-terminal helix; TM, transmembrane domain; ISU, immunosuppressive domain; furin, furine peptidase cut; 2AP, 2A peptide.







| Primer | Sequence | Reference | Accession Number | Localization |
|---|---|---|---|---|
| PK 34 | 5′-AAAGGATGAAAATGCAACCTAACC-3′ | Czauderna et al. [40] | Y17012 | 3–26 |
| PK 26 | 5′-ACGCACAAGACAAAGACACACGAA-3′ | 1134–1111 | ||
| PERV pol fw | 5′-CGACTGCCCCAAGGGTTCAA-3′ | Yang et al. [41] | HM159246 | 3568–3587 |
| PERV pol rev | 5′-TCTCTCCTGCAAATCTFFGCC-3′ | 3803–3783 | ||
| GAPDH fw | 5′-GGCCATGCTGGCGCTGAGTAC-3′ | Denner et al. [31] | NM 002046.3 | 364–386 |
| GAPDH rev | 5′-TGGTCCACACCCATGACGA-3′ | 494–512 | ||
| GAPDH probe | 5′-HEX-CTTCACCACCATGGAGAAGGCTGGG-BHQ-1-3′ | 405–429 | ||
| IFN-γ fw | 5′-TGCAGAGCCAAATTGTCTCC-3′ | this manuscript | NM 000619.3 | 328–347 |
| IFN-γ rev | 5′-TGCTTTGCGTTGGACATTCA-3′ | 502–521 | ||
| IFN-γ probe | 5′-6-FAM-ACCATCAAGGAAGACATGAATGTCAAG-BHQ-1-3′ | 408–434 | ||
| IL-6 fw | 5′-GGTACATCCTCGACGGCATCT-3′ | Denner et al. [31] | NM 000600.3 | 289–309 |
| IL-6 rev | 5′-GTGCCTCTTTGCTGCTTTCAC-3′ | 349–369 | ||
| IL-6 probe | 5′-6-Fam-TGTTACTCTTGTTACATGTCTCCTTTCTCAGGGCT-BHQ-1-3′ | 311–345 | ||
| IL-10 fw | 5′-CCACGCTTTCTAGCTGTT-3′ | Denner et al. [31] | NM 000572.2 | 966–983 |
| IL-10 rev | 5′-CTCCCTGGTTTCTCTTCCTAA-3′ | 1058–1078 | ||
| I-10 probe | 5′-6-FAM-TCTTGTCTCTGGGCTT-BHQ-1-3′ | 1015–1030 | ||
| MMP1 fw | 5′-CATCCAAGCCATATATGGACG-3′ | Denner et al. [31] | NM 002421.3 | 908–928 |
| MMP1 rev | 5′-TCTCTTAAAACTGAGAGGTCT-3′ | 1498–1518 | ||
| MMP1 probe | 5′-6-FAM-CTGGGCTGTTCAGGGACAGAA-BHQ-1-3′ | 1187–1207 | ||
| SEPP1 fw | 5′-CATGGACATCAGCACCTT-3′ | Denner et al. [31] | NM 005410.2 | 774–459 |
| SEPP1 rev | 5′-TCGACAGAGCTTCTTTTG-3′ | 954–972 | ||
| SEPP1 probe | 5′-6-FAM-AGAATCAGCAACCAGGAGCA-BHQ-1-3′ | 721–740 | ||
| TNF-α fw | 5′-GAGAAGCAACTACAGACCCC-3′ | this manuscript | NM 000594.4 | 48–67 |
| TNF-α rev | 5′-CATGCTTTCAGTGCTCATGG | 176–195 | ||
| TNF-α probe | 5′-6-FAM-ACAACCCTCAGACGCCACATCC-BHQ-1-3′ | 76–97 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Denner, J.; Schwinzer, R.; Pokoyski, C.; Kaufer, B.B.; Dierkes, B.; Ban, J.; Lovlesh, L. Further Evidence for the Immunosuppressive Activity of Transmembrane Envelope Protein p15E of Porcine Endogenous Retrovirus. Int. J. Mol. Sci. 2026, 27, 1094. https://doi.org/10.3390/ijms27021094
Denner J, Schwinzer R, Pokoyski C, Kaufer BB, Dierkes B, Ban J, Lovlesh L. Further Evidence for the Immunosuppressive Activity of Transmembrane Envelope Protein p15E of Porcine Endogenous Retrovirus. International Journal of Molecular Sciences. 2026; 27(2):1094. https://doi.org/10.3390/ijms27021094
Chicago/Turabian StyleDenner, Joachim, Reinhard Schwinzer, Claudia Pokoyski, Benedikt B. Kaufer, Björn Dierkes, Jinzhao Ban, and Lovlesh Lovlesh. 2026. "Further Evidence for the Immunosuppressive Activity of Transmembrane Envelope Protein p15E of Porcine Endogenous Retrovirus" International Journal of Molecular Sciences 27, no. 2: 1094. https://doi.org/10.3390/ijms27021094
APA StyleDenner, J., Schwinzer, R., Pokoyski, C., Kaufer, B. B., Dierkes, B., Ban, J., & Lovlesh, L. (2026). Further Evidence for the Immunosuppressive Activity of Transmembrane Envelope Protein p15E of Porcine Endogenous Retrovirus. International Journal of Molecular Sciences, 27(2), 1094. https://doi.org/10.3390/ijms27021094

