Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (39)

Search Parameters:
Keywords = hydrothermal plume

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
44 pages, 5917 KB  
Article
Post-Collisional Cu-Au Porphyry and Associated Epithermal Mineralisation in the Eastern Mount Isa Block: A New Exploration Paradigm for NW Queensland
by Kenneth D. Collerson and David Wilson
Geosciences 2026, 16(1), 46; https://doi.org/10.3390/geosciences16010046 - 20 Jan 2026
Abstract
Post-collisional Cu-Au-Ni-Co-Pt-Pd-Sc porphyry [Duck Creek porphyry system (DCPS)] with overlying Au-Te-Bi-W-HRE epithermal mineralisation [Highway epithermal system (HES)] has been discovered in the core of the Mitakoodi anticline, southwest of Cloncurry. Xenotime and monazite geochronology indicate mineralisation occurred between ~1490 and 1530 Ma. Host [...] Read more.
Post-collisional Cu-Au-Ni-Co-Pt-Pd-Sc porphyry [Duck Creek porphyry system (DCPS)] with overlying Au-Te-Bi-W-HRE epithermal mineralisation [Highway epithermal system (HES)] has been discovered in the core of the Mitakoodi anticline, southwest of Cloncurry. Xenotime and monazite geochronology indicate mineralisation occurred between ~1490 and 1530 Ma. Host rock lithologies show widespread potassic and/or propylitic to phyllic alteration. Paragenesis of porphyry sulphides indicates early crystallisation of pyrite, followed by chalcopyrite, with bornite forming by hydrothermal alteration of chalcopyrite. Cu sulphides also show the effect of supergene oxidation alteration with rims of covellite, digenite and chalcocite. Redox conditions deduced from the V/Sc systematics indicate that the DCPS contains both highly oxidised (typical of porphyries) and reduced lithologies, typical of plume-generated tholeiitic and alkaline suites. Ni/Te and Cu/Te systematics plot within the fields defined by epithermal and porphyry deposits. Duck Creek chalcophile and highly siderophile element (Cu, MgO and Pd) systematics resemble data from porphyry mineral systems, at Cadia, Bingham Canyon, Grasberg, Skouries, Kalmakyr, Elaisite, Assarel and Medet. SAM geophysical inversion models suggest the presence of an extensive porphyry system below the HES. A progressive increase in molar Cu/Au ratios with depth from the HES to the DCPS supports this conclusion. Three metal sources contributed to the linked DCPS-HES viz., tholeiitic ferrogabbro, potassic ultramafic to mafic system and an Fe and Ca-rich alkaline system. The latter two imparted non-crustal superchondritic Nb/Ta ratios that are characteristic of many deposits in the eastern Mount Isa Block. The associated tholeiite and alkaline magmatism reflect mantle plume upwelling through a palaeo-slab window that had accreted below the eastern flank of the North Australian craton following west-verging collision by the Numil Terrane. Discovery of this linked mineral system provides a new paradigm for mineral exploration in the region. Full article
(This article belongs to the Section Structural Geology and Tectonics)
26 pages, 7813 KB  
Article
Fe–Si–O Isotope Characteristics and Ore Formation Mechanisms of the Hugushan Area BIF-Type Iron Deposits in the Central North China Craton
by Ende Wang, Deqing Zhang, Jinpeng Luan, Yekai Men, Ran Wang, Jianming Xia and Suibo Zhang
Minerals 2025, 15(9), 996; https://doi.org/10.3390/min15090996 - 19 Sep 2025
Viewed by 732
Abstract
The Hugushan banded iron formation (BIF) is one of the most representative iron ore deposits in the central part of the North China Craton, and its ore formation mechanism remains highly controversial. This study presents whole-rock and Fe–Si–O isotope geochemical evidence, offering a [...] Read more.
The Hugushan banded iron formation (BIF) is one of the most representative iron ore deposits in the central part of the North China Craton, and its ore formation mechanism remains highly controversial. This study presents whole-rock and Fe–Si–O isotope geochemical evidence, offering a new perspective on the ore formation mechanism of the Hugushan BIFs. The samples from the upper and lower parts of the Hugushan BIFs are characterized by slight enrichment of heavy and light Fe isotopes, respectively. Additionally, the samples from the upper part of the Hugushan BIFs show characteristics of slightly positive Ce anomalies and negative La anomalies, suggesting that the shallow ancient seawater was in a partially oxidized state, whereas the deep seawater remained in a reductive environment during the depositional period. The low Al2O3 and TiO2 concentrations, as well as the depletion of Zr and Hf in the Hugushan BIFs, suggest that the contribution of terrestrial detrital materials to deposition is extremely limited. The BIFs all exhibit positive Eu anomalies, and the quartz in the BIFs is depleted in 30Si, a characteristic similar to that observed in siliceous rocks formed in hydrothermal vent environments and during hydrothermal plume activity. Additionally, the δ18O values of quartz in Hugushan BIFs are similar to the O isotope compositions of hydrothermal sedimentary siliceous rocks, further suggesting that the silicon in BIFs originates primarily from seafloor hydrothermal activity. The combination of Eu/Sm, Sm/Yb, and Y/Ho ratios indicates that the major components (iron and silica) of the Hugushan Iron Ore Deposit originated from the mixing of high-temperature hydrothermal fluids with seawater, with the hydrothermal fluid contributing slightly less than 0.1%. The magnetite and quartz bands in the BIFs exhibit inhomogeneous and covariant δ56Fe and δ30Si isotope characteristics, suggesting that the alternating siliceous and ferruginous layers are products of original chemical deposition in the ocean. Periodic hydrothermal activity and ocean transgression caused the recurring deposition of siliceous and ferruginous layers, resulting in the characteristic banded structure of the Hugushan Iron Ore Deposit. Full article
(This article belongs to the Special Issue Selected Papers from the 7th National Youth Geological Congress)
Show Figures

Figure 1

18 pages, 5739 KB  
Article
Numerical Simulation Study of Blast Furnace Mixed Blown Pulverized Coal and Hydrochar
by Xiaojun Ning, Zheng Ren, Guangze Kan, Haibin Zhang, Junyi Wu and Guangwei Wang
Sustainability 2025, 17(18), 8122; https://doi.org/10.3390/su17188122 - 9 Sep 2025
Viewed by 729
Abstract
In order to alleviate the energy crisis and respond to the “dual carbon strategy”, a new energy substance is needed to replace pulverized coal as the new blast furnace blowing fuel. Hydrochar is a clean and renewable carbon resource with high calorific value, [...] Read more.
In order to alleviate the energy crisis and respond to the “dual carbon strategy”, a new energy substance is needed to replace pulverized coal as the new blast furnace blowing fuel. Hydrochar is a clean and renewable carbon resource with high calorific value, good transportation and storage properties, and low ash content. Numerical simulation is used to study the combustion process of co-blown pulverized coal and hydrochar inside the cyclone zone. In this study, a three-dimensional physical model was constructed based on the actual dimensions of the direct-blowing pipe, tuyere, coal gun, and swirl zone of a large blast furnace in China. Numerical simulation methods were used to study the combustion process of coal powder and hydrothermal carbon co-injected into the swirl zone, and to investigate changes in the swirl zone of the tuyere under different conditions. The results show that increasing the proportion of hydrochar in the blended coal is conducive to improving the combustion rate of the blended coal, the temperature inside the gyratory zone increases significantly with the increase in the oxygen enrichment rate, and the high temperature zone is gradually enlarged. For every 1% increase in the oxygen enrichment rate, the maximum temperature of the centerline of the coal plume increases by 28 K, and the burnout rate increases by 1.12%; the increase in the blast temperature makes the combustion of pulverized coal slightly advance and promotes the increase in the internal temperature of the gyratory zone. The change of the blast temperature to 1559 K is more obvious, and the increase in the blast temperature after it is greater than 1559 K is not significant for the improvement of the burnout rate and the temperature of the gyratory area, and it will increase the cost; the lower the proportion of the small particle size is, the bigger the high temperature area of the gyratory area is, and the higher the temperature of the centerline of the coal strand is. If the content of the volatile matter remains unchanged, the increase in the ratio of the hydrochar has little influence on the temperature field of the gyratory area and the temperature of the centerline of the coal strand. The temperature difference is kept at 20 K. With the increase in the hydrochar ratio, the overall burnout rate of pulverized coal gradually increases. Therefore, hydrochar can replace bituminous coal as blast furnace blowing fuel to a certain extent, which can reduce costs and carbon emissions. Full article
Show Figures

Figure 1

16 pages, 3246 KB  
Article
High-Abundance Heterotrophic Bacteria Inhabit the 85° E Hydrothermal Plume of the Explosive Volcanic Zone at Gakkel Ridge, Arctic Ocean
by Juan Yu, Yejian Wang, Xiqiu Han, Hanlin Wang, Tao Zhang, Weiwei Ding, Chi Yang, Yinxia Fang and Jiabiao Li
Biology 2025, 14(8), 1036; https://doi.org/10.3390/biology14081036 - 12 Aug 2025
Cited by 1 | Viewed by 963
Abstract
While under-ice submarine hydrothermal systems provide critical insights into extremophile adaptations, the ecological impacts of explosive volcanism on these ecosystems remain poorly constrained. We successfully detected evidence of hydrothermal activities and explosive volcanism at 85° E, the eastern volcanic zone, ultra-slow spreading Gakkel [...] Read more.
While under-ice submarine hydrothermal systems provide critical insights into extremophile adaptations, the ecological impacts of explosive volcanism on these ecosystems remain poorly constrained. We successfully detected evidence of hydrothermal activities and explosive volcanism at 85° E, the eastern volcanic zone, ultra-slow spreading Gakkel Ridge. Hydrothermal plume, surface sediments, and volcanic glass samples were systematically collected to investigate the diversity of microbial communities. Our results revealed two distinct microbial regimes in hydrothermal plume: (1) chemoautotrophic bacteria (Sulfurimonas and SUP05_cluster), prevalent in global basaltic hydrothermal systems, potentially involved in carbon fixation through the CBB and rTCA cycles and (2) Alcanivorax (up to 82.5%), known for degrading hydrocarbons. Sediment profiles showed a depth-dependent decline of Alcanivorax, tightly coupled with TOC (1.05% to 0.45%, r = 0.75, p < 0.05). Additionally, the Alcanivorax MAGs demonstrated their potential in degrading various types of organic carbon, especially in alkane degradation. Strikingly, this pattern contrasts with hydrothermal plumes from effusive volcanic zones (Aurora and Polaris regions), where Alcanivorax was undetectable. We speculate that the surge of Alcanivorax in the 85° E hydrothermal plume was associated with the violent disturbances caused by explosive volcanism. This mechanism accelerates microbial-mediated carbon turnover rates compared to a stable hydrothermal ecosystem. Full article
Show Figures

Figure 1

24 pages, 6356 KB  
Article
Tectonic Rift-Related Manganese Mineralization System and Its Geophysical Signature in the Nanpanjiang Basin
by Daman Cui, Zhifang Zhao, Wenlong Liu, Haiying Yang, Yun Liu, Jianliang Liu and Baowen Shi
Remote Sens. 2025, 17(15), 2702; https://doi.org/10.3390/rs17152702 - 4 Aug 2025
Viewed by 1214
Abstract
The southeastern Yunnan region in the southwestern Nanpanjiang Basin is one of the most important manganese enrichment zones in China. Manganese mineralization is mainly confined to marine mud–sand–carbonate interbeds of the Middle Triassic Ladinian Falang Formation (T2f), which contains several [...] Read more.
The southeastern Yunnan region in the southwestern Nanpanjiang Basin is one of the most important manganese enrichment zones in China. Manganese mineralization is mainly confined to marine mud–sand–carbonate interbeds of the Middle Triassic Ladinian Falang Formation (T2f), which contains several medium to large deposits such as Dounan, Baixian, and Yanzijiao. However, the geological processes that control manganese mineralization in this region remain insufficiently understood. Understanding the tectonic evolution of the basin is therefore essential to unravel the mechanisms of Middle Triassic metallogenesis. This study investigates how rift-related tectonic activity influences manganese ore formation. This study integrates global gravity and magnetic field models (WGM2012, EMAG2v3), audio-frequency magnetotelluric (AMT) profiles, and regional geological data to investigate ore-controlling structures. A distinct gravity low–magnetic high belt is delineated along the basin axis, indicating lithospheric thinning and enhanced mantle-derived heat flow. Structural interpretation reveals a rift system with a checkerboard pattern formed by intersecting NE-trending major faults and NW-trending secondary faults. Four hydrothermal plume centers are identified at these fault intersections. AMT profiles show that manganese ore bodies correspond to stable low-resistivity zones, suggesting fluid-rich, hydrothermally altered horizons. These findings demonstrate a strong spatial coupling between hydrothermal activity and mineralization. This study provides the first identification of the internal rift architecture within the Nanpanjiang Basin. The basin-scale rift–graben system exerts first-order control on sedimentation and manganese metallogenesis, supporting a trinity model of tectonic control, hydrothermal fluid transport, and sedimentary enrichment. These insights not only improve our understanding of rift-related manganese formation in southeastern Yunnan but also offer a methodological framework applicable to similar rift basins worldwide. Full article
Show Figures

Graphical abstract

31 pages, 4555 KB  
Article
The Roles of Transcrustal Magma- and Fluid-Conducting Faults in the Formation of Mineral Deposits
by Farida Issatayeva, Auez Abetov, Gulzada Umirova, Aigerim Abdullina, Zhanibek Mustafin and Oleksii Karpenko
Geosciences 2025, 15(6), 190; https://doi.org/10.3390/geosciences15060190 - 22 May 2025
Viewed by 1793
Abstract
In this article, we consider the roles of transcrustal magma- and fluid-conducting faults (TCMFCFs) in the formation of mineral deposits, showing the importance of deep sources of heat and hydrothermal solutions in the genesis and history of deposit formation. As a result of [...] Read more.
In this article, we consider the roles of transcrustal magma- and fluid-conducting faults (TCMFCFs) in the formation of mineral deposits, showing the importance of deep sources of heat and hydrothermal solutions in the genesis and history of deposit formation. As a result of the impact on the lithosphere of mantle plumes rising along TCMFCFs, intense block deformations and tectonic movements are generated; rift systems, and volcanic–plutonic belts spatially combined with them, are formed; and intrusive bodies are introduced. These processes cause epithermal ore formation as a consequence of the impact of mantle plumes rising along TCMFCF to the lithosphere. At hydrocarbon fields, they play extremely important roles in conductive and convective heat, as well as in mass transfer to the area of hydrocarbon generation, determining the relationship between the processes of lithogenesis and tectogenesis, and activating the generation of hydrocarbons from oil and gas source rock. Detection of TCMFCFs was carried out using MMSS (the method of microseismic sounding) and MTSM (the magnetotelluric sounding method), in combination with other geological and geophysical data. Practical examples are provided for mineral deposits where subvertical transcrustal columns of increased permeability, traced to considerable depths, have been found; the nature of these unique structures is related to faults of pre-Paleozoic emplacement, which determined the fragmentation of the sub-crystalline structure of the Earth and later, while developing, inherited the conditions of volumetric fluid dynamics, where the residual forms of functioning of fluid-conducting thermohydrocolumns are granitoid batholiths and other magmatic bodies. Experimental modeling of deep processes allowed us to identify the quantum character of crystal structure interactions of minerals with “inert” gases under elevated thermobaric conditions. The roles of helium, nitrogen, and hydrogen in changing the physical properties of rocks, in accordance with their intrastructural diffusion, has been clarified; as a result of low-energy impact, stress fields are formed in the solid rock skeleton, the structures and textures of rocks are rearranged, and general porosity develops. As the pressure increases, energetic interactions intensify, leading to deformations, phase transitions, and the formation of chemical bonds under the conditions of an unstable geological environment, instability which grows with increasing gas saturation, pressure, and temperature. The processes of heat and mass transfer through TCMFCFs to the Earth’s surface occur in stages, accompanied by a release of energy that can manifest as explosions on the surface, in coal and ore mines, and during earthquakes and volcanic eruptions. Full article
(This article belongs to the Section Geophysics)
Show Figures

Figure 1

20 pages, 9495 KB  
Article
Dominance of Sulfur-Oxidizing Bacteria, Thiomicrorhabdus, in the Waters Affected by a Shallow-Sea Hydrothermal Plume
by Chih-Ching Chung, Gwo-Ching Gong, Hsiao-Chun Tseng, Wen-Chen Chou and Chuan-Hsin Ho
Biology 2025, 14(1), 28; https://doi.org/10.3390/biology14010028 - 1 Jan 2025
Cited by 1 | Viewed by 2252
Abstract
The shallow-sea hydrothermal vent at Guishan Islet, located off the coast of Taiwan, serves as a remarkable natural site for studying microbial ecology in extreme environments. In April 2019, we investigated the composition of prokaryotic picoplankton communities, their gene expression profiles, and the [...] Read more.
The shallow-sea hydrothermal vent at Guishan Islet, located off the coast of Taiwan, serves as a remarkable natural site for studying microbial ecology in extreme environments. In April 2019, we investigated the composition of prokaryotic picoplankton communities, their gene expression profiles, and the dissolved inorganic carbon uptake efficiency. Our results revealed that the chemolithotrophs Thiomicrorhabdus spp. contributed to the majority of primary production in the waters affected by the hydrothermal vent plume. The metatranscriptomic analysis aligned with the primary productivity measurements, indicating the significant gene upregulations associated with carboxysome-mediated carbon fixation in Thiomicrorhabdus. Synechococcus and Prochlorococcus served as the prokaryotic photoautotrophs for primary productivity in the waters with lower influence from hydrothermal vent emissions. Thiomicrorhabdus and picocyanobacteria jointly provided organic carbon for sustaining the shallow-sea hydrothermal vent ecosystem. In addition to the carbon fixation, the upregulation of genes involved in the SOX (sulfur-oxidizing) pathway, and the dissimilatory sulfate reduction indicated that energy generation and detoxification co-occurred in Thiomicrorhabdus. This study improved our understanding of the impacts of shallow-sea hydrothermal vents on the operation of marine ecosystems and biogeochemical cycles. Full article
(This article belongs to the Special Issue Multi-Omics of Extremophilic Organisms)
Show Figures

Figure 1

27 pages, 29442 KB  
Article
Sinking Particle Fluxes at the Jan Mayen Hydrothermal Vent Field Area from Short-Term Sediment Traps
by Alexey A. Klyuvitkin, Marina D. Kravchishina, Dina P. Starodymova, Anton V. Bulokhov and Alla Yu. Lein
J. Mar. Sci. Eng. 2024, 12(12), 2339; https://doi.org/10.3390/jmse12122339 - 20 Dec 2024
Viewed by 1592
Abstract
The mixing of hydrothermal vent fluids with deep ocean water and near-vent pelagic matter results in particle populations with a complex composition consisting of hydrothermally derived, rock-forming, and biogenic particles. This study is the first investigation of deep sediment trap material collected at [...] Read more.
The mixing of hydrothermal vent fluids with deep ocean water and near-vent pelagic matter results in particle populations with a complex composition consisting of hydrothermally derived, rock-forming, and biogenic particles. This study is the first investigation of deep sediment trap material collected at the Jan Mayen hydrothermal vent field area at 71° N and 6° W of the southernmost Mohns Ridge in the Norwegian–Greenland Sea. This area is characterized by high magmatic activity, axial volcanic ridges, and mafic-hosted volcanogenic massive sulfide deposits. Data on sinking particle fluxes from two hydrothermal settings, the Troll Wall and Soria Moria vent fields, located about 4 km apart, are discussed in the article. In particular, the study emphasize the differences between two hydrothermal settings from each other that demonstrate the geodiversity of hydrothermal processes within the relatively shallow Jan Mayen hydrothermal vent field area affected by the Iceland and Jan Mayen hotspots. The fluxes of sinking hydrothermally derived particles (barite, gypsum, non-crystalline Fe-Si oxyhydroxides, and Fe, Zn, and Cu sulfides) obtained at the Jan Mayen hydrothermal vents made it possible to elucidate the characteristic features of their buoyancy plumes and compare them with similar data reported for other submarine hydrothermal systems. In terms of the composition of the deep-sea hydrothermal particles from buoyant plumes, the studied vent fields are most similar to the Menez Gwen and Lucky Strike vent fields affected by the Azores hotspot. The supply of hydrothermally derived matter is accompanied by normal pelagic/hemipelagic sedimentation, which is dominated by biogenic particles, especially in the upper water layers. Full article
(This article belongs to the Section Geological Oceanography)
Show Figures

Figure 1

19 pages, 30817 KB  
Article
Sedimentary Record of the Bio-Geological Events in Tethys: Insight from the Permian Yangtze Block Breakup in the Sichuan Basin
by Xuanwei Liu, Fujie Jiang, Xiaowei Zheng, Yang Gao and Siyu Zhou
Appl. Sci. 2024, 14(24), 11863; https://doi.org/10.3390/app142411863 - 19 Dec 2024
Cited by 3 | Viewed by 1481
Abstract
At the end of the Middle Permian Guadeloupe series, the Chinese region recorded the only internationally recognized large igneous provincial eruption event, known as the Emeishan LIP. The Yangtze region of South China records a series of short and almost synchronous geological events [...] Read more.
At the end of the Middle Permian Guadeloupe series, the Chinese region recorded the only internationally recognized large igneous provincial eruption event, known as the Emeishan LIP. The Yangtze region of South China records a series of short and almost synchronous geological events that accompanied the development of bio-geological events such as large-scale magmatic intrusion, plate rupture, magnetic pole anomalies, and ecological collapse. These events ultimately triggered the extinction of living organisms. However, the current study leaves several questions unanswered. What was the sequence of geological events? Are the global records of these events synchronized? What is the causal relationship between these events? This study discusses the sedimentary responses to various geological events using biofossils, fluid inclusion, carbon isotopic analysis, and astrochronological analysis. The results reflect the following: (i) Mantle plumes: Mantle plumes act as pathways for heated fluids to ascend from the Earth’s interior. The mantle plume reached the Moho surface in the mid-Wordian and affected the magnetic field at the Earth’s surface; (ii) Magnetic pole anomalies: The anomaly of the Earth’s magnetic poles appeared in the mid-Wordian stage, causing the originally stable plates to begin to split. The sea level changes dramatically, and the ancient landform pattern changes dramatically; (iii) Plate rupture: The rifting of plates accelerated the activity of deep hydrothermal fluids; the hydrothermal fluid gradually infiltrated the paleo-ocean after the J. altudaensis zone; (iv) Emeishan LIP: The volcano erupted at 260 Ma, and eventually led to the mass extinction. We aim to identify the initial triggers of various geological events by analyzing the sedimentary record. Full article
Show Figures

Figure 1

14 pages, 7391 KB  
Article
The Role of the Emeishan Large Igneous Province in Hydrocarbon Formation in the Anyue Gas Field, Sichuan Basin, China
by Zhiyong Ni, Chuanqing Zhu, Huichun Liu, Chengyu Yang, Ganggang Shao, Wen Zhang and Bing Luo
Minerals 2024, 14(12), 1266; https://doi.org/10.3390/min14121266 (registering DOI) - 12 Dec 2024
Cited by 1 | Viewed by 1633
Abstract
This study investigates the impact of the Emeishan Large Igneous Province (ELIP) on hydrocarbon formation within the Anyue gas field in the Sichuan Basin. As a major Middle to Late Permian large igneous province, the ELIP hosted intense mantle plume activity that reshaped [...] Read more.
This study investigates the impact of the Emeishan Large Igneous Province (ELIP) on hydrocarbon formation within the Anyue gas field in the Sichuan Basin. As a major Middle to Late Permian large igneous province, the ELIP hosted intense mantle plume activity that reshaped regional tectonics and thermal structures, indirectly influencing hydrocarbon accumulation. This paper examines three primary factors in hydrocarbon evolution linked to the ELIP: its thermal influence, induced fluid activity, and role in hydrocarbon cracking. Data reveal that the thermal effects of the ELIP extend to the central Sichuan Basin, where an elevated paleogeothermal gradient has driven hydrocarbon evolution in the Anyue gas field. Petrographic characteristics, chronological data, fluid inclusion features, and C–O, S, and Pb isotopic signatures collectively indicate that around 260 Ma, a hydrothermal event occurred in the Sichuan Basin, closely aligned with a natural gas charging event. The combined effects of a heightened geothermal gradient and hydrothermal fluids (with temperatures up to 320 °C) suggest that paleo-oil reservoirs had already cracked into natural gas during the peak ELIP activity. Full article
(This article belongs to the Special Issue Volcanism and Oil–Gas Reservoirs—Geology and Geochemistry)
Show Figures

Figure 1

15 pages, 9411 KB  
Article
A Probabilistic Study of CO2 Plume Geothermal and Hydrothermal Systems: A Sensitivity Study of Different Reservoir Conditions in Williston Basin, North Dakota
by Emmanuel Gyimah, Olusegun Tomomewo, Luc Yvan Nkok, Shree Om Bade, Ebenezer Asare Ofosu and Maxwell Collins Bawuah
Eng 2024, 5(3), 1407-1421; https://doi.org/10.3390/eng5030074 - 10 Jul 2024
Cited by 3 | Viewed by 1896
Abstract
The exploration of alternative energy sources has gained significant traction in recent years, driven by the urgent need to mitigate greenhouse gas emissions and transition towards sustainable energy. Among these alternatives, CO2 plume geothermal and hydrothermal systems have emerged as promising [...] Read more.
The exploration of alternative energy sources has gained significant traction in recent years, driven by the urgent need to mitigate greenhouse gas emissions and transition towards sustainable energy. Among these alternatives, CO2 plume geothermal and hydrothermal systems have emerged as promising options due to their potential for providing clean, renewable energy. This study presents a probabilistic investigation into the sensitivity of CO2 plume geothermal and hydrothermal systems under various reservoir conditions in the Williston Basin, North Dakota. In addition to elucidating the impact of reservoir conditions on system performance, the study utilizes probabilistic methods to assess energy output of CO2 plume geothermal and hydrothermal systems. Insights derived from this probabilistic investigation offer valuable guidance for the working fluid selection, systems design and optimization in the Williston Basin and beyond. Results from the sensitivity analysis reveal the profound influence of reservoir conditions on the behavior and efficiency of CO2 plume geothermal and hydrothermal systems. Our case study on Red River Formation and Deadwood Formations shows a potential of 34% increase and 32% decrease in heat extraction based on varying reservoir conditions. Our investigations in the Beaver Lodge field within the Red River Formation yielded arithmetic mean values for CO2 best case resources, hydrothermal resources and the CO2 worst case as 6.36 × 1018 J, 4.75 × 1018 J and 3.24 × 1018 J, respectively. Overall, this research contributes to advancing the knowledge and understanding of CO2 plume geothermal and hydrothermal systems as viable pathways towards sustainable energy production and carbon sequestration. By highlighting the sensitivity of these systems to reservoir conditions, the study provides valuable insights that can inform decision-making processes and future research endeavours aimed at fostering the transition to a low-carbon energy landscape. Full article
(This article belongs to the Special Issue GeoEnergy Science and Engineering 2024)
Show Figures

Figure 1

21 pages, 24476 KB  
Article
The Effect of the Emeishan Mantle Plume on the Genetic Mechanism of the Maokou Formation Reservoir in the Central Sichuan Region
by Qimin Guo, Xizhe Li, Zhenhua Guo, Lin Zhang, Mao Zhu, Mengfei Zhou, Yize Huang, Xiangyang Pei, Yunlong Wu, Wen Li, Mengnan Yan, Shan Du and Hongming Zhan
Minerals 2024, 14(2), 129; https://doi.org/10.3390/min14020129 - 24 Jan 2024
Cited by 4 | Viewed by 1952
Abstract
Thin layers and high-yield dolomite reservoirs were recently discovered in the Permian Guadeloupian Maokou Formation. The genetic mechanism of this reservoir is controversial because of its complex sedimentation and diagenesis in the Maokou Formation. Traditionally, the genesis has focused on sedimentation, karst, and [...] Read more.
Thin layers and high-yield dolomite reservoirs were recently discovered in the Permian Guadeloupian Maokou Formation. The genetic mechanism of this reservoir is controversial because of its complex sedimentation and diagenesis in the Maokou Formation. Traditionally, the genesis has focused on sedimentation, karst, and fracture, whereas the influence of the Emeishan mantle plume activity (EMP) has been ignored. In this study, we enumerated petrographic (grouped into micritic bioclastic limestone, limy dolomite, grain dolomite, dolomite cement, calcite cement, and saddle dolomite) and geochemical data (δ13C, δ18O, REE, and 87Sr/86Sr) from a microscopic perspective to support the impact of EMP on reservoirs. We conclude that EMP activity altered the sedimentary environment and induced a complex diagenesis. The paleogeomorphic reconstruction data indicate that the EMP caused an uplift zone in the NE–SW direction, depositing advantageous high-energy beach facies. In terms of diagenesis, the abnormally high 87Sr/86Sr ratios and REE with positive Eu anomalies suggest that dolomitization was influenced by both seawater and hydrothermal fluids. Based on the above evidence, we established a reservoir genetic model for the Maokou Formation related to the intensity of the EMP. This study provides a new perspective on the mantle plume activity for the study of carbonate reservoir genesis. Full article
Show Figures

Figure 1

18 pages, 5670 KB  
Article
Geochemical Characteristics of Seabed Sediments in the Xunmei Hydrothermal Field (26°S), Mid-Atlantic Ridge: Implications for Hydrothermal Activity
by Peng Yang, Chuanshun Li, Yuan Dang, Lei Fan, Baoju Yang, Yili Guan, Qiukui Zhao and Dewen Du
Minerals 2024, 14(1), 107; https://doi.org/10.3390/min14010107 - 19 Jan 2024
Cited by 2 | Viewed by 2228
Abstract
The compositions of metalliferous sediments associated with hydrothermal vents can provide key geochemical data for locating seafloor sulfides. In this study, we present the geochemistry of seabed sediments from the Xunmei hydrothermal field (HF) in the South Mid-Atlantic Ridge (SMAR). The results indicate [...] Read more.
The compositions of metalliferous sediments associated with hydrothermal vents can provide key geochemical data for locating seafloor sulfides. In this study, we present the geochemistry of seabed sediments from the Xunmei hydrothermal field (HF) in the South Mid-Atlantic Ridge (SMAR). The results indicate that the sediments are mainly composed of pelagic material (biogenic calcium components), basaltic debris, iron-manganese oxides, and hydrothermal components. The sediments are significantly enriched in Cu, Zn, Fe, and Co deriving from hydrothermal fluids, as well as Mn, V, Mo, U, and P, which are primarily scavenged from seawater. The northeastern Xunmei has the highest concentrations of Cu and Zn, while the northeastern, northern, and southern regions are characterized by great inputs of Fe. Manganese and Mo are mainly enriched in the western and southern parts and show a strong positive correlation, indicating that Mo is mainly scavenged by Mn oxides. Uranium, P, and Fe exhibit strong positive correlations, suggesting that they coprecipitate with Fe from hydrothermal plumes. Vanadium and Co are introduced into sediments in different ways: V is scavenged and coprecipitated by hydrothermal plumes, and Co is derived from sulfide debris. Based on the contents of Cu and Zn and Cu/Fe (0.159), Zn/Fe (0.158), and Fe/Mn (1440) ratios, it can be inferred that a high-temperature hydrothermal vent existed in northeastern Xunmei. In combination with the distribution patterns of the above elements, the hydrothermal vents in the southern part ceased erupting after a short period of activity. In addition, the high Mn anomaly and the high U/Fe ratios at the boundaries of the investigated area indicate the presence of a relatively oxidized environment in southwestern Xunmei. Full article
(This article belongs to the Special Issue Geology and Geochemistry of Marine Mineral Resources)
Show Figures

Figure 1

19 pages, 5970 KB  
Article
Origin of Redbeds in the Neoproterozoic Socheong Formation and Their Relation to the Dashigou Large Igneous Province
by Hawon Yun, Seung Hwan Lee and Inah Seo
Minerals 2024, 14(1), 59; https://doi.org/10.3390/min14010059 - 2 Jan 2024
Cited by 1 | Viewed by 2412
Abstract
During the latest Mesoproterozoic–Early Neoproterozoic era, extensional regimes generated a number of sedimentary basins in various regions in the Sino-Korean Craton. Mantle-plume emplacements are widely recognized in the sedimentary strata as mafic dikes and sills of the Dashigou Large Igneous Province (LIP). The [...] Read more.
During the latest Mesoproterozoic–Early Neoproterozoic era, extensional regimes generated a number of sedimentary basins in various regions in the Sino-Korean Craton. Mantle-plume emplacements are widely recognized in the sedimentary strata as mafic dikes and sills of the Dashigou Large Igneous Province (LIP). The occurrence of Fe-rich redbeds is first reported in the Neoproterozoic Socheong Formation of the Sangwon Supergroup in the Pyeongnam Basin. Their geochemical and mineralogical characteristics indicate basin-wide Fe enrichment due to hydrothermal fluid input. The episodic yet repetitive hydrothermal injection into the basin generated short-lived anoxia, recorded as greenish-gray coloration in the ferruginous beds. This hydrothermal fluid was likely sourced from the mafic igneous activities involved in the Dashigou LIP. The redbeds can be utilized as key beds for intra- or inter-basinal stratigraphic correlation and to study the negative carbon isotope excursions that occurred in the genetically related basins in the region (e.g., the Sangwon, Xu-Huai, and Dalian basins). Full article
(This article belongs to the Special Issue Large Igneous Provinces: Research Frontiers)
Show Figures

Figure 1

24 pages, 7620 KB  
Article
Assessment of RANS Turbulence Models in Prediction of the Hydrothermal Plume in the Longqi Hydrothermal Field
by Wei Zhao, Sheng Chen, Junyi Yang and Weichang Zhou
Appl. Sci. 2023, 13(13), 7496; https://doi.org/10.3390/app13137496 - 25 Jun 2023
Cited by 2 | Viewed by 2170
Abstract
In this paper, the numerical models are selected to simulate the hydrothermal plume based on the water temperature observation data of the Longqi hydrothermal field in the Southwest Indian Ridge (SWIR). Then, the unsteady Reynolds-averaged Navier–Stokes equations are solved to evaluate the performance [...] Read more.
In this paper, the numerical models are selected to simulate the hydrothermal plume based on the water temperature observation data of the Longqi hydrothermal field in the Southwest Indian Ridge (SWIR). Then, the unsteady Reynolds-averaged Navier–Stokes equations are solved to evaluate the performance of the Realizable k-ε (rke) model and the SST k-ω (sst) model in hydrothermal plume simulation. By comparing the calculated results with the Conductivity Temperature Depth (CTD) observation data and the literature results, the difference in prediction performance between the two models is evaluated. Before the numerical simulation, the optimal mesh parameters are determined by considering the grid independence test. The results show that the relative difference of the maximum plume height calculated by the two models is within 5%. Compared with the CTD 05-2, the rke model calculates the root mean square error of the velocity is 0.5081, which is smaller than that of the sst model. In terms of turbulent viscosity, the rke model is in good agreement with reference value in predicting turbulent viscosity. Therefore, the turbulent viscosity distribution calculated by the rke model is more consistent with the plume development process than that calculated by the sst model. In addition, the two models have the same effect on the prediction of turbulent kinetic energy and plume temperature. Full article
Show Figures

Figure 1

Back to TopTop