applsci-logo

Journal Browser

Journal Browser

Research Progress in Paleontology and Paleogeography of Tethys and Its Neighboring Areas

A special issue of Applied Sciences (ISSN 2076-3417). This special issue belongs to the section "Earth Sciences".

Deadline for manuscript submissions: 20 January 2026 | Viewed by 1568

Special Issue Editors


E-Mail Website
Guest Editor
School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
Interests: paleontology and paleogeography of Tethys

E-Mail Website
Guest Editor
Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
Interests: Tibetan plateau earth system; paleontology

E-Mail Website
Guest Editor
College of Oceanography, Hohai University, Nanjing 213200, China
Interests: paleontology; marine geology

Special Issue Information

Dear Colleagues,

Tethys is a giant ocean that was located between the Laurasia Supercontinent to the north and the Gondwana Supercontinent to the south during the Phanerozoic period on Earth. According to its evolution, the history of Tethys can be divided into three stages: Proto-Tethys, Paleo-Tethys, and Neo-Tethys. The closure of the Paleo-Tethys led to the formation of the Pangea Supercontinent in a global sense. The closure of the Neo-Tethys formed the giant latitudinal orogenic belt from the Alps to the Himalayas. The formation and disappearance of Tethys is the most significant geological event that has occurred on Earth since the Phanerozoic era, the evolution of which is closely related to a series of significant land and sea changes. Therefore, it has had a profound and important impact on the evolution of paleontology, paleogeography, the paleoenvironment, and the paleoclimate on Earth. During the entire evolution of Tethys, the biological evolution of Earth was dominated by five major extinctions and their subsequent biological recovery. This Special Issue aims to provide an overview of recent research addressing the biological evolution and paleogeographic changes that occurred during the evolution of Tethys.

Prof. Dr. Guobiao Li
Dr. Qinghai Zhang
Prof. Dr. Shijun Jiang
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Applied Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • paleontology
  • paleogeography
  • Tethys and its neighboring areas

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

27 pages, 296121 KiB  
Article
Biostratigraphy and Microfacies of Upper Cretaceous Oceanic Red Beds in the Northern Tethyan Himalaya: A Case Study from the Zhangguo Section, Gyangze, Southern Tibet, China
by Yuewei Li, Guobiao Li, Jie Ding, Dan Xie, Tianyang Wang, Zhantu Baoke, Mengmeng Jia and Chengshan Wang
Appl. Sci. 2025, 15(13), 7136; https://doi.org/10.3390/app15137136 - 25 Jun 2025
Viewed by 165
Abstract
The Cretaceous oceanic red beds (CORBs) and their implications for “oceanic oxic events” have been widely studied by geologists globally. In southern Tibet, CORBs are extensively distributed within the Upper Cretaceous strata of the northern Tethyan Himalaya (NTH). A well-exposed, CORB-bearing, mixed carbonate–shale [...] Read more.
The Cretaceous oceanic red beds (CORBs) and their implications for “oceanic oxic events” have been widely studied by geologists globally. In southern Tibet, CORBs are extensively distributed within the Upper Cretaceous strata of the northern Tethyan Himalaya (NTH). A well-exposed, CORB-bearing, mixed carbonate–shale sequence is found in the Zhangguo section of Rilang Township, Gyangze County. The Chuangde Formation in this section is characterized by well-preserved CORBs, which include reddish shale, limestone, marlstone, and interbedded siltstone. These CORBs are stratigraphically overlain by the Jiabula/Gyabula Formation (predominantly shale) and underlain by the Zongzhuo Formation (“mélange”). However, the precise age, depositional environments, and regional/global correlations of these CORBs, as well as their implications for synchronous versus diachronous oceanic oxic events, remain to be fully understood. In this study, a comprehensive analysis of foraminiferal biostratigraphy and microfacies is conducted for the CORB-bearing Chuangde Formation and the upper Jiabula (Gyabula) Formation in the Zhangguo section. Five planktic foraminiferal biozones including Dicarinella asymetrica, Globotruncanita elevata, Contusotruncana plummerae, Radotruncana calcarata, and Globotruncanella havanensis are identified through detailed biostratigraphic analysis, confirming a Campanian age for the Chuangde Formation and its CORBs. These findings are broadly correlated with typical Upper Cretaceous CORBs in pelagic–hemipelagic settings across the NTH in southern Tibet. Nine microfacies and four facies associations are identified within the Upper Cretaceous strata of Gyangze and adjacent areas through field and petrographic analyses. Notably, it is indicated that planktic foraminiferal packstone/grainstone CORBs were deposited in outer shelf to upper slope environments, while radiolarian chert CORBs are inferred to have formed in deep-water, basinal settings below the carbonate compensation depth (CCD). Full article
Show Figures

Figure 1

19 pages, 30817 KiB  
Article
Sedimentary Record of the Bio-Geological Events in Tethys: Insight from the Permian Yangtze Block Breakup in the Sichuan Basin
by Xuanwei Liu, Fujie Jiang, Xiaowei Zheng, Yang Gao and Siyu Zhou
Appl. Sci. 2024, 14(24), 11863; https://doi.org/10.3390/app142411863 - 19 Dec 2024
Cited by 1 | Viewed by 941
Abstract
At the end of the Middle Permian Guadeloupe series, the Chinese region recorded the only internationally recognized large igneous provincial eruption event, known as the Emeishan LIP. The Yangtze region of South China records a series of short and almost synchronous geological events [...] Read more.
At the end of the Middle Permian Guadeloupe series, the Chinese region recorded the only internationally recognized large igneous provincial eruption event, known as the Emeishan LIP. The Yangtze region of South China records a series of short and almost synchronous geological events that accompanied the development of bio-geological events such as large-scale magmatic intrusion, plate rupture, magnetic pole anomalies, and ecological collapse. These events ultimately triggered the extinction of living organisms. However, the current study leaves several questions unanswered. What was the sequence of geological events? Are the global records of these events synchronized? What is the causal relationship between these events? This study discusses the sedimentary responses to various geological events using biofossils, fluid inclusion, carbon isotopic analysis, and astrochronological analysis. The results reflect the following: (i) Mantle plumes: Mantle plumes act as pathways for heated fluids to ascend from the Earth’s interior. The mantle plume reached the Moho surface in the mid-Wordian and affected the magnetic field at the Earth’s surface; (ii) Magnetic pole anomalies: The anomaly of the Earth’s magnetic poles appeared in the mid-Wordian stage, causing the originally stable plates to begin to split. The sea level changes dramatically, and the ancient landform pattern changes dramatically; (iii) Plate rupture: The rifting of plates accelerated the activity of deep hydrothermal fluids; the hydrothermal fluid gradually infiltrated the paleo-ocean after the J. altudaensis zone; (iv) Emeishan LIP: The volcano erupted at 260 Ma, and eventually led to the mass extinction. We aim to identify the initial triggers of various geological events by analyzing the sedimentary record. Full article
Show Figures

Figure 1

Back to TopTop