Sinking Particle Fluxes at the Jan Mayen Hydrothermal Vent Field Area from Short-Term Sediment Traps
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Observations and Sample Collection
2.3. Processing and Analysis of Samples
2.4. Satellite Research
3. Results
3.1. Environmental Conditions at the Mooring Sites
3.2. Suspended Particulate Matter and Chlorophyll a
3.3. Mass Fluxes and Major Element Composition
3.3.1. Total Particle Fluxes
3.3.2. Major Phase Composition of Particles Including POC, PIC (CaCO3), bSiO2, and Lithogenic Matter
3.3.3. Electron Microprobe Analysis of Particles
Troll Wall
- Gypsum microcrystallites up to ~140 µm in size formed by free growth were characterized by a columnar habitus with well-formed, flattened, elongated prismatic faces showing dissolution shapes (Figure S1b). The chemical composition of the gypsum was close to the stoichiometric composition and no significant concentrations of isomorphic impurities were found in the gypsum (Table S2).
- Barite aggregates ~120 µm in size have lamellar and tabular habitus (Figure S1c). Flat barite crystals > 10 µm with a crosscutting tabular shape of hexagonal type were identified in the aggregates. The tabular crystals formed well-shaped rosette structures at both vent sites. According to the EDS data (Table S2), the barites demonstrated a minor substitution of barium by strontium and calcium. Barite aggregates formed a stable mineral association with sulfides.
- Iron, copper, and zinc sulfide minerals formed porous as bud-shaped masses with individual spherulites ≤ 0.5 µm in size, often of complex chemical composition with impurities (Figure S1d). Only pyrite formed regular octahedrons and cuboctahedrons up to 3 µm in size.
- Aggregates of non-crystalline Fe-Si oxyhydroxides of separate thin filaments of 0.5–1 µm diameter of isometric, sheaf, and whorl shapes characteristic of the quenching process under conditions of high temperature difference (Figure S1e). Microspheres up to 0.5 µm were embedded in the filaments of the whorls. The EDS data indicated that the SiO2 content of the aggregates ranged from 27 to 41 wt.% and that they exhibited a significant iron impurity (38–45 wt.%) as well as calcium (Table S3).
Soria Moria
- Barite aggregates up to 50 µm in size with a lamellar and tabular habitus (Figure S1g), and minor substitution of barium by strontium (Table S5);
- Sulfide minerals, represented by the well-formed octahedrons of pyrite and sphalerite up to 6 µm (Figure S1h), as well as sulfide phases of complex composition in the form of dendrites and solid masses (Figure S1i);
- Aggregates of noncrystalline Fe-Si oxyhydroxides from individual thin filaments of similar diameter and shape as in the TW field (Figure S1j). EDS data indicates that the content of SiO2 in aggregates is 32–34%. In addition to iron (34–37 wt.%) and calcium, they also contain a significant admixture of phosphorus (up to 3 wt.%) (Table S6).
3.3.4. Major and Trace Element Composition and REE
3.3.5. Trace Element Fluxes
4. Discussion
4.1. Environmental Conditions at the JMVFs Control Buoyant Hydrothermal Plume Transport
4.2. Comparative Study of Total Particle Flux and Major Particle Phase Composition at the JMVFs with Similar Available Data from Other Hydrothermal Systems
4.3. Characterization of Major and Trace Elements in Sinking Matter to Identify Hydrothermal Contribution
4.4. REE in Particle Fluxes as a Traces of Hydrotermaly Derived Particles
4.5. Fluxes of Hydrothermally Derived Elements and Specific Features of Studied Hydrothermal Buoyant Plumes
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baker, E.T.; German, C.R. On the Global Distribution of Hydrothermal Vent Fields. In Mid-Ocean Ridges: Hydrothermal Interactions Between the Lithosphere and Oceans; Geophysical Monograph Series; American Geophysical Union: Washington, DC, USA, 2004; Volume 148, pp. 245–266. [Google Scholar]
- Lein, A.Y.; Bogdanov, Y.A.; Lisitzin, A.P. Processes of Hydrothermal Ore Genesis in the World Ocean: The Results of 35 Years of Research. Dokl. Earth Sci. 2016, 466, 38–41. [Google Scholar] [CrossRef]
- Lupton, J.E.; Delaney, J.R.; Johnson, H.P.; Tivey, M.K. Entrainment and Vertical Transport of Deep-Ocean Water by Buoyant Hydrothermal Plumes. Nature 1985, 316, 621–623. [Google Scholar] [CrossRef]
- Speer, K.G.; Rona, P.A. A Model of an Atlantic and Pacific Hydrothermal Plume. J. Geophys. Res. Ocean. 1989, 94, 6213–6220. [Google Scholar] [CrossRef]
- Stensland, A.; Baumberger, T.; Lilley, M.D.; Okland, I.E.; Dundas, S.H.; Roerdink, D.L.; Thorseth, I.H.; Pedersen, R.B. Transport of Carbon Dioxide and Heavy Metals from Hydrothermal Vents to Shallow Water by Hydrate-Coated Gas Bubbles. Chem. Geol. 2019, 513, 120–132. [Google Scholar] [CrossRef]
- Gartman, A.; Findlay, A.J. Impacts of Hydrothermal Plume Processes on Oceanic Metal Cycles and Transport. Nat. Geosci. 2020, 13, 396–402. [Google Scholar] [CrossRef]
- Feely, R.A.; Gendron, J.F.; Baker, E.T.; Lebon, G.T. Hydrothermal Plumes along the East Pacific Rise, 8 40′ to 11 50′ N: Particle Distribution and Composition. Earth Planet. Sci. Lett. 1994, 128, 19–36. [Google Scholar] [CrossRef]
- Butterfield, D.A.; Massoth, G.J.; McDuff, R.E.; Lupton, J.E.; Lilley, M.D. Geochemistry of Hydrothermal Fluids from Axial Seamount Hydrothermal Emissions Study Vent Field, Juan de Fuca Ridge: Subseafloor Boiling and Subsequent Fluid-rock Interaction. J. Geophys. Res. Solid Earth 1990, 95, 12895–12921. [Google Scholar] [CrossRef]
- Gurvich, E.G. Metalliferous Sediments of the World Ocean: Fundamental Theory of Deep-Sea Hydrothermal Sedimentation; Springer: Berlin/Heidelberg, Germany, 2006; ISBN 3-540-27869-9. [Google Scholar]
- Klevenz, V.; Bach, W.; Schmidt, K.; Hentscher, M.; Koschinsky, A.; Petersen, S. Geochemistry of Vent Fluid Particles Formed during Initial Hydrothermal Fluid–Seawater Mixing along the Mid-Atlantic Ridge. Geochem. Geophys. Geosyst. 2011, 12, Q0AE05. [Google Scholar] [CrossRef]
- Lisitzin, A.P. Oceanic Sedimentation: Lithology and Geochemistry; American Geophysical Union: Washington, DC, USA, 1996. [Google Scholar]
- German, C.R.; Seyfried, W.E. Hydrothermal Processes. In Treatise on Geochemistry, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2014; Volume 8, pp. 191–233. ISBN 978-0-08-098300-4. [Google Scholar]
- Khripounoff, A.; Vangriesheim, A.; Crassous, P.; Segonzac, M.; Colaço, A.; Desbruyeres, D.; Barthelemy, R. Particle Flux in the Rainbow Hydrothermal Vent Field (Mid-Atlantic Ridge): Dynamics, Mineral and Biological Composition. J. Mar. Res. 2001, 59, 633–656. [Google Scholar] [CrossRef]
- German, C.R.; Sparks, R.S.J. Particle Recycling in the TAG Hydrothermal Plume. Earth Planet. Sci. Lett. 1993, 116, 129–134. [Google Scholar] [CrossRef]
- Khripounoff, A.; Comtet, T.; Vangriesheim, A.; Crassous, P. Near-Bottom Biological and Mineral Particle Flux in the Lucky Strike Hydrothermal Vent Area (Mid-Atlantic Ridge). J. Mar. Syst. 2000, 25, 101–118. [Google Scholar] [CrossRef]
- Thurnherr, A.M.; St. Laurent, L.C. Turbulence Observations in a Buoyant Hydrothermal Plume on the East Pacific Rise. Oceanography 2012, 25, 180–181. [Google Scholar] [CrossRef]
- Haymon, R.M.; Kastner, M. Hot Spring Deposits on the East Pacific Rise at 21 N: Preliminary Description of Mineralogy and Genesis. Earth Planet. Sci. Lett. 1981, 53, 363–381. [Google Scholar] [CrossRef]
- Baker, E.T.; Lavelle, J.W.; Massoth, G.J. Hydrothermal Particle Plumes over the Southern Juan de Fuca Ridge. Nature 1985, 316, 342–344. [Google Scholar] [CrossRef]
- Dymond, J.; Lyle, M. Particle Fluxes in the Ocean and Implications for Sources and Preservation of Ocean Sediments. In Material Fluxes on the Surface of the Earth; The National Academies Press: Washington, DC, USA, 1994; pp. 125–142. [Google Scholar]
- German, C.R.; Casciotti, K.A.; Dutay, J.-C.; Heimbürger, L.-E.; Jenkins, W.J.; Measures, C.I.; Mills, R.A.; Obata, H.; Schlitzer, R.; Tagliabue, A. Hydrothermal Impacts on Trace Element and Isotope Ocean Biogeochemistry. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 2016, 374, 20160035. [Google Scholar] [CrossRef] [PubMed]
- Edmonds, H.N.; German, C.R. Particle Geochemistry in the Rainbow Hydrothermal Plume, Mid-Atlantic Ridge. Geochim. Cosmochim. Acta 2004, 68, 759–772. [Google Scholar] [CrossRef]
- Toner, B.M.; Marcus, M.A.; Edwards, K.J.; Rouxel, O.; German, C.R. Measuring the Form of Iron in Hydrothermal Plume Particles. Oceanography 2012, 25, 209–212. [Google Scholar] [CrossRef]
- Von Damm, K.L. Seafloor Hydrothermal Activity: Black Smoker Chemistry and Chimneys. Annu. Rev. Earth Planet. Sci. 1990, 18, 173–204. [Google Scholar] [CrossRef]
- Guieu, C.; Bonnet, S.; Petrenko, A.; Menkes, C.; Chavagnac, V.; Desboeufs, K.; Maes, C.; Moutin, T. Iron from a Submarine Source Impacts the Productive Layer of the Western Tropical South Pacific (WTSP). Sci. Rep. 2018, 8, 9075. [Google Scholar] [CrossRef] [PubMed]
- Holmes, T.M.; Chase, Z.; van der Merwe, P.; Townsend, A.T.; Bowie, A.R. Detection, Dispersal and Biogeochemical Contribution of Hydrothermal Iron in the Ocean. Mar. Freshw. Res. 2017, 68, 2184–2204. [Google Scholar] [CrossRef]
- Horner, T.J.; Little, S.H.; Conway, T.M.; Farmer, J.R.; Hertzberg, J.E.; Janssen, D.J.; Lough, A.J.M.; McKay, J.L.; Tessin, A.; Galer, S.J. Bioactive Trace Metals and Their Isotopes as Paleoproductivity Proxies: An Assessment Using GEOTRACES-era Data. Glob. Biogeochem. Cycles 2021, 35, e2020GB006814. [Google Scholar] [CrossRef]
- Cobler, R.; Dymond, J. Sediment Trap Experiment on the Galapagos Spreading Center, Equatorial Pacific. Science 1980, 209, 801–803. [Google Scholar] [CrossRef]
- Lukashin, V.N.; Rusakov, V.Y.; Lisitzin, A.P.; Lein, A.Y.; Isaeva, A.B.; Serova, V.V.; Karpenko, A.A. Study of Particle Fluxes in the Broken Spur Hydrothermal Vent Field (29°N, Mid-Atlantic Ridge). Explor. Min. Geol 1999, 8, 341–353. [Google Scholar]
- Khripounoff, A.; Alberic, P. Settling of Particles in a Hydrothermal Vent Field (East Pacific Rise 13 N) Measured with Sediment Traps. Deep Sea Res. Part Oceanogr. Res. Pap. 1991, 38, 729–744. [Google Scholar] [CrossRef]
- Desbruyères, D.; Almeida, A.; Biscoito, M.; Comtet, T.; Khripounoff, A.; Le Bris, N.; Sarradin, P.M.; Segonzac, M. A Review of the Distribution of Hydrothermal Vent Communities along the Northern Mid-Atlantic Ridge: Dispersal vs. Environmental Controls. In Proceedings of the Island, Ocean and Deep-Sea Biology: Proceedings of the 34th European Marine Biology Symposium, Ponta Delgada, Azores, Portugal, 13–17 September 1999; Springer: Berlin/Heidelberg, Germany, 2000; pp. 201–216. [Google Scholar]
- German, C.; Colley, S.; Palmer, M.R.; Khripounoff, A.; Klinkhammer, G.P. Hydrothermal Plume-Particle Fluxes at 13 N on the East Pacific Rise. Deep Sea Res. Part Oceanogr. Res. Pap. 2002, 49, 1921–1940. [Google Scholar] [CrossRef]
- Beaulieu, S.E.; Mullineaux, L.S.; Adams, D.K.; Mills, S.W. Comparison of a Sediment Trap and Plankton Pump for Time-series Sampling of Larvae near Deep-sea Hydrothermal Vents. Limnol. Oceanogr. Methods 2009, 7, 235–248. [Google Scholar] [CrossRef]
- Sylvan, J.B.; Pyenson, B.C.; Rouxel, O.; German, C.R.; Edwards, K.J. Time-series Analysis of Two Hydrothermal Plumes at 9° 50′ N East Pacific Rise Reveals Distinct, Heterogeneous Bacterial Populations. Geobiology 2012, 10, 178–192. [Google Scholar] [CrossRef]
- Kiyokawa, S.; Ueshiba, T. Rapid Sedimentation of Iron Oxyhydroxides in an Active Hydrothermal Shallow Semi-Enclosed Bay at Satsuma Iwo-Jima Island, Kagoshima, Japan. Sediment. Geol. 2015, 319, 98–113. [Google Scholar] [CrossRef]
- Pedersen, R.B.; Thorseth, I.H.; Hellevang, B.; Schultz, A.; Taylor, P.; Knudsen, H.P.; Steinsbu, B.O. Two Vent Fields Discovered at the Ultraslow Spreading Arctic Ridge System. In AGU Fall Meeting Abstracts; American Geophysical Union: Washington, DC, USA, 2005; Volume 2005, p. OS21C-01. [Google Scholar]
- Pedersen, R.B.; Bjerkgård, T. Seafloor Massive Sulphides in Arctic Waters. In Mineral Resources in the Arctic; Geological Survey of Norway: Trondheim, Norway, 2016; Volume 1, pp. 209–216. [Google Scholar]
- Pedersen, R.B.; Thorseth, I.H.; Nygård, T.E.; Lilley, M.D.; Kelley, D.S. Hydrothermal Activity at the Arctic Mid-Ocean Ridges. Geophys. Monogr. Ser. 2010, 188, 67–89. [Google Scholar]
- Dahle, H.; Le Moine Bauer, S.; Baumberger, T.; Stokke, R.; Pedersen, R.B.; Thorseth, I.H.; Steen, I.H. Energy Landscapes in Hydrothermal Chimneys Shape Distributions of Primary Producers. Front. Microbiol. 2018, 9, 1570. [Google Scholar] [CrossRef] [PubMed]
- Kravchishina, M.D.; Lein, A.Y.; Boev, A.G.; Prokofiev, V.Y.; Starodymova, D.P.; Dara, O.M.; Novigatsky, A.N.; Lisitzin, A.P. Hydrothermal Mineral Assemblages at 71° N of the Mid-Atlantic Ridge (First Results). Oceanology 2019, 59, 941–959. [Google Scholar] [CrossRef]
- Juliani, C.; Ellefmo, S.L. Probabilistic Estimates of Permissive Areas for Undiscovered Seafloor Massive Sulfide Deposits on an Arctic Mid-Ocean Ridge. Ore Geol. Rev. 2018, 95, 917–930. [Google Scholar] [CrossRef]
- Blindheim, J.; Rey, F. Water-Mass Formation and Distribution in the Nordic Seas during the 1990s. ICES J. Mar. Sci. 2004, 61, 846–863. [Google Scholar] [CrossRef]
- Blindheim, J.; Osterhus, S. The Nordic Seas, Main Oceanographic Features. Geophys. Monogr.-Am. Geophys. Union 2005, 158, 11. [Google Scholar]
- Dick, H.J.; Lin, J.; Schouten, H. An Ultraslow-Spreading Class of Ocean Ridge. Nature 2003, 426, 405–412. [Google Scholar] [CrossRef] [PubMed]
- Kandilarov, A.; Mjelde, R.; Pedersen, R.-B.; Hellevang, B.; Papenberg, C.; Petersen, C.-J.; Planert, L.; Flueh, E. The Northern Boundary of the Jan Mayen Microcontinent, North Atlantic Determined from Ocean Bottom Seismic, Multichannel Seismic, and Gravity Data. Mar. Geophys. Res. 2012, 33, 55–76. [Google Scholar] [CrossRef]
- Johannessen, K.C.; Vander Roost, J.; Dahle, H.; Dundas, S.H.; Pedersen, R.B.; Thorseth, I.H. Environmental Controls on Biomineralization and Fe-Mound Formation in a Low-Temperature Hydrothermal System at the Jan Mayen Vent Fields. Geochim. Cosmochim. Acta 2017, 202, 101–123. [Google Scholar] [CrossRef]
- Elkins, L.J.; Hamelin, C.; Blichert-Toft, J.; Scott, S.R.; Sims, K.W.W.; Yeo, I.A.; Devey, C.W.; Pedersen, R.B. North Atlantic Hotspot-Ridge Interaction near Jan Mayen Island. Geochem. Perspect. Lett. 2016, 2, 55–67. [Google Scholar] [CrossRef]
- Geli, L.; Renard, V.; Rommevaux, C. Ocean Crust Formation Processes at Very Slow Spreading Centers: A Model for the Mohns Ridge, near 72° N, Based on Magnetic, Gravity, and Seismic Data. J. Geophys. Res. 1994, 99, 2995–3013. [Google Scholar] [CrossRef]
- Cherkashev, G.A.; Gusev, E.A.; Zhirnov, E.A.; Tamaki, K.; Kurevits, D.; Okino, K.; Sato, H.; Baranov, B.V.; Egorov, A.V.; German, K. The Knipovich Ridge Rift Zone: Evidence from the Knipovich-2000 Expedition. Dokl. Earth Sci. 2001, 378, 420–423. [Google Scholar]
- Kokhan, A.V.; Dubinin, E.P.; Grokholsky, A.L. Geodynamical Peculiarities of Structure-Forming in Arctic and Polar Atlantic Spreading Ridges. Bull. Kamchatka Reg. Assoc. 2012, 19, 59–77. [Google Scholar]
- Reimers, H. The Morphology of the Mohn’s Ridge-with Special Focus on Listric and Detachment Faults and Their Link to the Formation of Seafloor-Massive Sulfides. Master’s Thesis, NTNU, Trondheim, Norway, 2017. [Google Scholar]
- Klyuvitkin, A.A.; Kravchishina, M.D.; Nemirovskaya, I.A.; Baranov, B.V.; Kochenkova, A.I.; Lisitzin, A.P. Studies of Sediment Systems of the European Arctic during Cruise 75 of the R/V Akademik Mstislav Keldysh. Oceanology 2020, 60, 421–423. [Google Scholar] [CrossRef]
- Lukashin, V.N.; Klyuvitkin, A.A.; Lisitzin, A.P.; Novigatsky, A.N. The MSL-110 Small Sediment Trap. Oceanology 2011, 51, 699–703. [Google Scholar] [CrossRef]
- Stensland, A. Dissolved Gases in Hydrothermal Plumes from Artic Vent Fields. Master’s Thesis, The University of Bergen, Bergen, Norway, 2013. [Google Scholar]
- Klyuvitkin, A.A.; Novigatsky, A.N.; Politova, N.V.; Koltovskaya, E.V. Studies of Sedimentary Matter Fluxes along a Long-Term Transoceanic Transect in the North Atlantic and Arctic Interaction Area. Oceanology 2019, 59, 411–421. [Google Scholar] [CrossRef]
- Klyuvitkin, A.A.; Kravchishina, M.D.; Novigatsky, A.N.; Politova, N.V.; Bulokhov, A.V.; Gulev, S.K. First Data on Vertical Particle Fluxes and Environmental Conditions in the Northern Segment of the Mohns Ridge, Norwegian Sea. Dokl. Earth Sci. 2023, 513, 1204–1210. [Google Scholar] [CrossRef]
- Holm-Hansen, O.; Riemann, B. Chlorophyll a Determination: Improvements in Methodology. Oikos 1978, 30, 438–447. [Google Scholar] [CrossRef]
- Kravchishina, M.D.; Lisitsyn, A.P.; Klyuvitkin, A.A.; Novigatsky, A.N.; Politova, N.V.; Shevchenko, V.P. Suspended Particulate Matter as a Main Source and Proxy of the Sedimentation Processes. In Sedimentation Processes in the White Sea: The White Sea Environment Part II; Springer: Cham, Switzerland, 2018; pp. 13–48. [Google Scholar]
- Gelman, E.M.; Starobina, I.Z. Photometric Methods for Determining the Rock Forming Elements in Ores, Rocks and Minerals; GEOKHI AS USSR: Moscow, Russia, 1976; pp. 1–69. (In Russian) [Google Scholar]
- Rudnick, R.L.; Gao, S. Composition of the Continental Crust. In Treatise on Geochemistry, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2014; Volume 4. [Google Scholar] [CrossRef]
- Lukashin, V.N.; Krechik, V.A.; Klyuvitkin, A.A.; Starodymova, D.P. Geochemistry of Suspended Particulate Matter in the Marginal Filter of the Pregolya River (Baltic Sea). Oceanology 2018, 58, 856–869. [Google Scholar] [CrossRef]
- Honjo, S.; Krishfield, R.A.; Eglinton, T.I.; Manganini, S.J.; Kemp, J.N.; Doherty, K.; Hwang, J.; McKee, T.K.; Takizawa, T. Biological Pump Processes in the Cryopelagic and Hemipelagic Arctic Ocean: Canada Basin and Chukchi Rise. Prog. Oceanogr. 2010, 85, 137–170. [Google Scholar] [CrossRef]
- Starodymova, D.P.; Kotova, E.I.; Shevchenko, V.P.; Titova, K.V.; Lukyanova, O.N. Winter Atmospheric Deposition of Trace Elements in the Arkhangelsk Region (NW Russia): Insights into Environmental Effects. Atmos. Pollut. Res. 2024, 15, 102310. [Google Scholar] [CrossRef]
- Rollinson, H.R.; Pease, V. Using Geochemical Data: To Understand Geological Processes; Cambridge University Press: Cambridge, UK, 2021; ISBN 1-108-74584-9. [Google Scholar]
- Gromet, L.P.; Haskin, L.A.; Korotev, R.L.; Dymek, R.F. The “North American Shale Composite”: Its Compilation, Major and Trace Element Characteristics. Geochim. Cosmochim. Acta 1984, 48, 2469–2482. [Google Scholar] [CrossRef]
- Dubinin, A.V. Rare Earth Element Geochemistry in the Ocean; Nauka: Moscow, Russia, 2006; ISBN 5-02-033745-5. (In Russian) [Google Scholar]
- Kravchishina, M.D.; Prokofiev, V.Y.; Dara, O.M.; Baranov, B.V.; Klyuvitkin, A.A.; Iakimova, K.S.; Kalgin, V.Y.; Lein, A.Y. Fluid Inclusion Studies of Barite Disseminated in Hydrothermal Sediments of the Mohns Ridge. Minerals 2023, 13, 1117. [Google Scholar] [CrossRef]
- Boström, K.; Peterson, M.N.A.; Joensuu, O.; Fisher, D.E. Aluminum-poor Ferromanganoan Sediments on Active Oceanic Ridges. J. Geophys. Res. 1969, 74, 3261–3270. [Google Scholar] [CrossRef]
- Haase, K.M.; Devey, C.W.; Mertz, D.F.; Stoffers, P.; Garbe-Schönberg, D. Geochemistry of Lavas from Mohns Ridge, Norwegian-Greenland Sea: Implications for Melting Conditions and Magma Sources near Jan Mayen. Contrib. Mineral. Petrol. 1996, 123, 223–237. [Google Scholar] [CrossRef]
- Rimskaya-Korsakova, M.N.; Dubinin, A.V. Rare Earth Elements in Sulfides of Submarine Hydrothermal Vents of the Atlantic Ocean. Dokl. Earth Sci. 2003, 389, 432–436. [Google Scholar]
- Humphris, S.E. Rare Earth Element Composition of Anhydrite: Implications for Deposition and Mobility within the Active TAG Hydrothermal Mound. In Proceedings of the Ocean Drilling Program Scientific Results; National Science Foundation: Alexandria, VA, USA, 1998; pp. 143–162. [Google Scholar]
- Dymond, J.; Roth, S. Plume Dispersed Hydrothermal Particles: A Time-Series Record of Settling Flux from the Endeavour Ridge Using Moored Sensors. Geochim. Cosmochim. Acta 1988, 52, 2525–2536. [Google Scholar] [CrossRef]
- Desbruyères, D.; Biscoito, M.; Caprais, J.-C.; Colaço, A.; Comtet, T.; Crassous, P.; Fouquet, Y.; Khripounoff, A.; Le Bris, N.; Olu, K. Variations in Deep-Sea Hydrothermal Vent Communities on the Mid-Atlantic Ridge near the Azores Plateau. Deep Sea Res. Part Oceanogr. Res. Pap. 2001, 48, 1325–1346. [Google Scholar] [CrossRef]
- Rusakov, V.Y. Comparative Analysis of the Mineral and Chemical Compositions of Black Smoker Smoke at the TAG and Broken Spur Hydrothermal Fields, Mid-Atlantic Ridge. Geochem. Int. 2007, 45, 698–716. [Google Scholar] [CrossRef]
- Drits, A.V.; Klyuvitkin, A.A.; Kravchishina, M.D.; Karmanov, V.A.; Novigatsky, A.N. Fluxes of Sedimentary Material in the Lofoten Basin of the Norwegian Sea: Seasonal Dynamics and the Role of Zooplankton. Oceanology 2020, 60, 501–517. [Google Scholar] [CrossRef]
- Bauerfeind, E.; Bodungen, B.V.; Arndt, K.; Koeve, W. Particle Flux, and Composition of Sedimenting Matter, in the Greenland Sea. J. Mar. Syst. 1994, 5, 411–423. [Google Scholar] [CrossRef]
- von Bodungen, B.; Antia, A.; Bauerfeind, E.; Haupt, O.; Koeve, W.; Machado, E.; Peeken, I.; Peinert, R.; Reitmeier, S.; Thomsen, C. Pelagic Processes and Vertical Flux of Particles: An Overview of a Long-Term Comparative Study in the Norwegian Sea and Greenland Sea. Geol. Rundsch. 1995, 84, 11–27. [Google Scholar] [CrossRef]
- Peinert, R.; Antia, A.; Bauerfeind, E.; Bodungen, B.V.; Haupt, O.; Krumbholz, M.; Peeken, I.; Ramseier, R.O.; Voss, M.; Zeitzschel, B. Particle Flux Variability in the Polar and Atlantic Biogeochemical Provinces of the Nordic Seas. In The Northern North Atlantic: A Changing Environment; Springer: Berlin/Heidelberg, Germany, 2001; pp. 53–68. ISBN 3642631363. [Google Scholar]
- Mayot, N.; Matrai, P.A.; Arjona, A.; Bélanger, S.; Marchese, C.; Jaegler, T.; Ardyna, M.; Steele, M. Springtime Export of Arctic Sea Ice Influences Phytoplankton Production in the Greenland Sea. J. Geophys. Res. Ocean. 2020, 125, e2019JC015799. [Google Scholar] [CrossRef]
- Richardson, K.; Markager, S.; Buch, E.; Lassen, M.F.; Kristensen, A.S. Seasonal Distribution of Primary Production, Phytoplankton Biomass and Size Distribution in the Greenland Sea. Deep Sea Res. Part Oceanogr. Res. Pap. 2005, 52, 979–999. [Google Scholar] [CrossRef]
- Starodymova, D.P.; Kravchishina, M.D.; Kochenkova, A.I.; Lokhov, A.S.; Makhnovich, N.M.; Vazyulya, S.V. Elemental Composition of Particulate Matter in the Euphotic and Benthic Boundary Layers of the Barents and Norwegian Seas. J. Mar. Sci. Eng. 2023, 11, 65. [Google Scholar] [CrossRef]
- German, C.R.; Klinkhammer, G.P.; Edmond, J.M.; Mura, A.; Elderfield, H. Hydrothermal Scavenging of Rare-Earth Elements in the Ocean. Nature 1990, 345, 516–518. [Google Scholar] [CrossRef]
- Maaløe, S.; Sørensen, I.B.; Hertogen, J. The Trachybasaltic Suite of Jan Mayen. J. Petrol. 1986, 27, 439–466. [Google Scholar] [CrossRef]
- da Cruz, M.I.F.S. Mineralogy and Geochemistry of Contrasting Hydrothermal Systems on the Arctic Mid Ocean Ridge (AMOR): The Jan Mayen and Loki’s Castle Vent Fields. Ph.D. Thesis, Universidade de Lisboa, Lisbon, Portugal, 2015. [Google Scholar]
- Feely, R.A.; Lewison, M.; Massoth, G.J.; Robert-Baldo, G.; Lavelle, J.W.; Byrne, R.H.; Von Damm, K.L.; Curl, H.C., Jr. Composition and Dissolution of Black Smoker Particulates from Active Vents on the Juan de Fuca Ridge. J. Geophys. Res. Solid Earth 1987, 92, 11347–11363. [Google Scholar] [CrossRef]
- Kusakabe, M.; Mayeda, S.; Nakamura, E. S, O and Sr Isotope Systematics of Active Vent Materials from the Mariana Backarc Basin Spreading Axis at 18 N. Earth Planet. Sci. Lett. 1990, 100, 275–282. [Google Scholar] [CrossRef]
- Paytan, A.; Mearon, S.; Cobb, K.; Kastner, M. Origin of Marine Barite Deposits: Sr and S Isotope Characterization. Geology 2002, 30, 747–750. [Google Scholar] [CrossRef]
- Barrett, T.J.; Jarvis, I.; Hannington, M.D.; Thirlwall, M.F. Chemical Characteristics of Modern Deep-Sea Metalliferous Sediments in Closed versus Open Basins, with Emphasis on Rare-Earth Elements and Nd Isotopes. Earth-Sci. Rev. 2021, 222, 103801. [Google Scholar] [CrossRef]
- Hongo, Y.; Obata, H.; Gamo, T.; Nakaseama, M.; Ishibashi, J.; Konno, U.T.A.; Saegusa, S.; Ohkubo, S.; Tsunogai, U. Rare Earth Elements in the Hydrothermal System at Okinawa Trough Back-Arc Basin. Geochem. J. 2007, 41, 1–15. [Google Scholar] [CrossRef]
- Dubinin, A.V. Geochemistry of Rare Earth Elements in the Ocean. Lithol. Miner. Resour. 2004, 39, 289–307. [Google Scholar] [CrossRef]
- Klinkhammer, G.P.; Elderfield, H.; Edmond, J.M.; Mitra, A. Geochemical Implications of Rare Earth Element Patterns in Hydrothermal Fluids from Mid-Ocean Ridges. Geochim. Cosmochim. Acta 1994, 58, 5105–5113. [Google Scholar] [CrossRef]
- Gjerløw, E.; Haflidason, H.; Pedersen, R.B. Holocene Explosive Volcanism of the Jan Mayen (Island) Volcanic Province, North-Atlantic. J. Volcanol. Geotherm. Res. 2016, 321, 31–43. [Google Scholar] [CrossRef]
- Bogdanov, Y.A.; Lein, A.Y.; Lisitsyn, A.P. Polymetallic Ores in Rifts of the Mid-Atlantic Ridge (15–49 Degrees North Latitude): Mineralogy, Geochemistry, Origin; GEOS Moscow: Moscow, Russia, 2015; ISBN 978-5-89118-697-2. [Google Scholar]
- Wheeler, B.; Cannat, M.; Chavagnac, V.; Fontaine, F. Diffuse Venting and near Seafloor Hydrothermal Circulation at the Lucky Strike Vent Field, Mid-Atlantic Ridge. Geochem. Geophys. Geosyst. 2024, 25, e2023GC011099. [Google Scholar] [CrossRef]
Coordinates, Bottom Depth, Duration Time | Actual Trap Depth, m | Flux, mg/m2/day | Content, % | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Total | Si | Al | POC | PIC | CaCO3 | LM | bSiO2 | Chl-a | Si | Al | POC | PIC | CaCO3 | LM | bSiO2 | |||
Troll Wall | ||||||||||||||||||
71°17.883′ N 05°46.359′ W 550 m 101.7 h | 150 | 279.6 | 29.8 | 2.15 | 157.1 | 2.56 | 21.36 | 26.4 | 52.6 | 0.291 | 10.6 | 0.77 | 56.2 | 0.92 | 7.6 | 9.4 | 18.8 | |
350 | 100.5 | 14.5 | 1.31 | 43.8 | 1.08 | 9.00 | 16.0 | 24.3 | 0.134 | 14.4 | 1.3 | 43.6 | 1.08 | 9.0 | 16.0 | 24.2 | ||
450 | 85.6 | 12.2 | 1.20 | 29.9 | 1.32 | 11.00 | 14.7 | 20.0 | 0.166 | 14.3 | 1.4 | 34.9 | 1.54 | 12.9 | 17.2 | 23.4 | ||
520 | 103.6 | 14.2 | 1.26 | 48.0 | 2.25 | 18.73 | 15.5 | 23.9 | 0.260 | 13.7 | 1.22 | 46.3 | 2.17 | 18.1 | 15.0 | 23.1 | ||
Soria Moria | ||||||||||||||||||
71°15.677′ N 05°48.899′ W 670 m 95.5 h | 270 | 130.3 | 20.8 | 1.36 | 53.8 | 3.23 | 26.95 | 16.6 | 37.5 | 0.108 | 15.9 | 1.04 | 41.3 | 2.48 | 20.7 | 12.8 | 28.7 | |
470 | 97.5 | 12.9 | 1.11 | 13.6 | 21.9 | 0.193 | 13.2 | 1.14 | 14.0 | 22.5 | ||||||||
570 | 90.2 | 13.6 | 1.61 | 19.7 | 20.8 | 0.156 | 15.1 | 1.78 | 21.8 | 23.1 | ||||||||
640 | 103.9 | 14.6 | 1.43 | 17.6 | 23.9 | 0.094 | 14.1 | 1.38 | 16.9 | 23.0 |
Depth, m | Fe | Al | P | Ti | V | Cr | Mn | Co | Ni | Cu | Zn | Ga | As | Rb | Sr | Zr | Nb | Mo | Cd | Cs | Ba | Hf | Ta | Tl | Pb | Th | U |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
% | % | % | ppm | ||||||||||||||||||||||||
Troll Wall | |||||||||||||||||||||||||||
150 | 0.50 | 0.77 | 0.37 | 785 | 21.4 | 16.7 | 347 | 2.87 | 20.35 | 41.1 | 1147 | 1.85 | 6.36 | 4.98 | 486 | 14.84 | 4.16 | 1.081 | 2.34 | 0.106 | 330.1 | 0.345 | 0.540 | 0.013 | 31.9 | 0.418 | 2.048 |
350 | 0.88 | 1.30 | 0.32 | 1685 | 36.1 | 34.4 | 854 | 5.42 | 43.05 | 269 | 1149 | 1.78 | 11.08 | 6.66 | 552 | 27.97 | 8.28 | 2.482 | 1.12 | 0.008 | 332.3 | 0.492 | 0.877 | ND | 52.2 | 0.416 | 1.192 |
450 | 1.30 | 1.40 | 0.23 | 1619 | 49.8 | 44.9 | 1472 | 7.17 | 42.34 | 256 | 1382 | 3.60 | 44.59 | 11.30 | 521 | 33.98 | 8.34 | 3.182 | 1.83 | 1.265 | 1187 | 0.558 | 0.886 | 0.143 | 81.5 | 0.824 | 1.320 |
520 | 1.60 | 1.22 | 0.2 | 1494 | 49.0 | 31.4 | 873 | 6.76 | 39.40 | 575 | 3170 | 3.39 | 12.41 | 8.34 | 2553 | 25.31 | 7.30 | 4.276 | 17.32 | 0.074 | 4921 | 0.480 | 0.802 | 0.535 | 100.3 | 0.514 | 1.350 |
Soria Moria | |||||||||||||||||||||||||||
270 | 0.76 | 1.04 | 0.25 | 1361 | 29.2 | 22.5 | 556 | 4.19 | 27.19 | 116.1 | 1223 | 2.05 | 12.35 | 6.15 | 827.9 | 24.92 | 6.82 | 1.719 | 0.88 | 0.127 | 531 | 0.460 | 0.616 | 0.013 | 49.82 | 0.431 | 1.075 |
470 | 0.84 | 1.14 | 0.26 | 1536 | 37.3 | 33.1 | 1103 | 5.44 | 35.37 | 138.2 | 1222 | 2.55 | 13.11 | 7.40 | 445.7 | 26.78 | 7.51 | 1.798 | 3.74 | 0.124 | 558 | 0.472 | 0.721 | 0.031 | 50.83 | 0.534 | 1.012 |
570 | 1.16 | 1.78 | 0.21 | 1960 | 47.0 | 33.5 | 745 | 6.38 | 48.27 | 208.1 | 1058 | 2.90 | 6.83 | 8.94 | 504.2 | 34.71 | 9.69 | 1.763 | 0.61 | 0.106 | 612 | 0.794 | 1.006 | 0.017 | 74.78 | 0.652 | 0.978 |
640 | 1.09 | 1.38 | 0.19 | 1764 | 45.6 | 57.9 | 698 | 6.76 | 42.42 | 515.6 | 11,740 | 3.55 | 18.82 | 8.25 | 2857 | 28.61 | 9.44 | 6.864 | 18.37 | 0.111 | 12,435 | 0.574 | 1.030 | 4.843 | 163.17 | 0.599 | 1.037 |
Depth, m | Sc | Y | La | Ce | Pr | Nd | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ppm | ||||||||||||||||
Troll Wall | ||||||||||||||||
150 | 1.9 | 2.9 | 4.3 | 7.9 | 1.02 | 3.9 | 0.68 | 0.22 | 0.74 | 0.09 | 0.58 | 0.11 | 0.32 | 0.03 | 0.27 | 0.04 |
350 | 2.3 | 3.7 | 6.1 | 11.5 | 1.50 | 5.8 | 1.20 | 0.33 | 1.12 | 0.13 | 0.87 | 0.16 | 0.54 | 0.05 | 0.37 | 0.07 |
450 | 3.6 | 4.9 | 12.8 | 28.3 | 2.07 | 8.9 | 1.79 | 0.52 | 1.24 | 0.19 | 1.22 | 0.19 | 1.42 | 0.06 | 0.47 | 0.08 |
520 | 3.5 | 3.8 | 6.9 | 13.0 | 1.45 | 6.1 | 1.38 | 0.46 | 1.08 | 0.14 | 0.86 | 0.13 | 0.39 | 0.05 | 0.27 | 0.06 |
Soria Moria | ||||||||||||||||
270 | 2.4 | 3.5 | 5.9 | 10.7 | 1.38 | 6.1 | 0.98 | 0.27 | 1.07 | 0.13 | 0.79 | 0.13 | 0.46 | 0.03 | 0.31 | 0.05 |
470 | 2.8 | 4.0 | 7.0 | 13.9 | 1.87 | 7.3 | 1.22 | 0.34 | 1.07 | 0.13 | 0.84 | 0.12 | 0.58 | 0.05 | 0.41 | 0.05 |
570 | 3.0 | 4.8 | 9.4 | 17.2 | 1.93 | 8.0 | 1.48 | 0.39 | 1.28 | 0.18 | 0.99 | 0.18 | 0.60 | 0.05 | 0.44 | 0.05 |
640 | 2.6 | 4.2 | 7.6 | 14.9 | 1.83 | 6.7 | 1.36 | 0.40 | 1.34 | 0.13 | 1.01 | 0.16 | 0.51 | 0.06 | 0.44 | 0.07 |
Location/ Depth, m | Feex | Mn | ΣREE | Cean | Euan | (La/Yb)N | (La/Sm)N | (LREE/ HREE)N |
---|---|---|---|---|---|---|---|---|
% | ppm | |||||||
Troll Wall | ||||||||
150 | 0.13 | 0.03 | 20.3 | 0.82 | 1.35 | 1.55 | 1.12 | 1.52 |
350 | 0.25 | 0.09 | 29.8 | 0.83 | 1.23 | 1.59 | 0.91 | 1.44 |
450 | 0.63 | 0.15 | 59.3 | 1.17 | 1.50 | 2.66 | 1.27 | 1.84 |
520 | 1.01 | 0.09 | 32.3 | 0.89 | 1.64 | 2.45 | 0.89 | 1.81 |
Soria Moria | ||||||||
270 | 0.26 | 0.06 | 28.3 | 0.82 | 1.14 | 1.85 | 1.08 | 1.59 |
470 | 0.29 | 0.11 | 34.8 | 0.83 | 1.30 | 1.64 | 1.03 | 1.80 |
570 | 0.30 | 0.07 | 42.2 | 0.87 | 1.23 | 2.06 | 1.13 | 1.95 |
640 | 0.43 | 0.07 | 36.5 | 0.87 | 1.29 | 1.68 | 1.00 | 1.64 |
Mohns Ridge basalts [68] | ||||||||
0.09–0.12 | 25.4–69.3 | 0.87–0.89 | 1.36–1.50 | 0.11–0.47 | 0.20–0.60 | 0.20–0.53 | ||
Jan Mayen alkaline basalts [68] | ||||||||
0.12–0.16 | 131–209 | 0.90–0.91 | 1.38–1.50 | 1.19–2.49 | 0.77–1.14 | 1.21–2.35 | ||
Atlantic hydrothermal vent fields sulfides [69] | ||||||||
75–451 | 0.50–0.87 | 0.6–21 | 0.21–6.40 | 0.39–7.32 | 0.44–1.84 | |||
TAG vent field anhydrites [70] | ||||||||
2930–21,290 | 0.85–0.88 | 2.25–13.2 | 0.97–2.68 | 0.17–0.47 | 4.00–6.59 |
Depth, m | Fluid T, °C | Bottom Depth, m | Total Flux | Fe | P | Cu | Zn | Sr | Mo | Cd | Ba | Tl | Pb | Mn | Rb | Cs | V | Cr | Co | Ni | Ga | As | La | Eu |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
mg/m2/day | µg/m2/Day | |||||||||||||||||||||||
Troll Wall | ||||||||||||||||||||||||
150 | 279.6 | 1.40 | 1034.5 | 11.49 | 320.73 | 136.12 | 0.302 | 0.653 | 92.3 | 0.0037 | 8.93 | 97.1 | 1.392 | 0.0297 | 5.99 | 4.66 | 0.801 | 5.69 | 0.518 | 1.778 | 1.203 | 0.0495 | ||
350 | 100.5 | 0.88 | 321.6 | 27.06 | 115.48 | 55.49 | 0.249 | 0.112 | 33.4 | ND | 5.25 | 85.9 | 0.670 | 0.0008 | 3.63 | 3.46 | 0.545 | 4.33 | 0.179 | 1.113 | 0.618 | 0.0264 | ||
450 | 85.6 | 1.11 | 196.9 | 21.95 | 118.32 | 44.65 | 0.272 | 0.156 | 101.6 | 0.0123 | 6.98 | 126.0 | 0.967 | 0.1083 | 4.27 | 3.84 | 0.614 | 3.62 | 0.308 | 3.816 | 1.096 | 0.0356 | ||
520 | 270 * 119–276 ** | 550 | 103.6 | 1.66 | 207.3 | 59.6 | 328.5 | 264.6 | 0.443 | 1.795 | 510 | 0.0555 | 10.40 | 90.5 | 0.865 | 0.0077 | 5.08 | 3.25 | 0.700 | 4.08 | 0.351 | 1.286 | 0.715 | 0.0381 |
**** | 520/450 | 1.2 | 1.5 | 1.05 | 2.7 | 2.8 | 5.9 | 1.6 | 11.5 | 5.0 | 4.5 | 1.5 | 0.7 | 0.9 | 0.1 | 1.19 | 0.85 | 1.14 | 1.13 | 1.14 | 0.34 | 0.65 | 0.0279 | |
Soria Moria | ||||||||||||||||||||||||
270 | 130.3 | 0.99 | 325.7 | 15.12 | 159.44 | 107.87 | 0.224 | 0.115 | 69.2 | 0.0017 | 6.49 | 72.5 | 0.802 | 0.0165 | 3.80 | 2.93 | 0.546 | 3.54 | 0.267 | 1.609 | 0.771 | 0.0265 | ||
470 | 97.5 | 0.82 | 253.6 | 13.48 | 119.26 | 43.48 | 0.175 | 0.365 | 54.5 | 0.0031 | 4.96 | 107.7 | 0.722 | 0.0121 | 3.64 | 3.23 | 0.531 | 3.45 | 0.249 | 1.279 | 0.683 | 0.0280 | ||
570 | 90.2 | 1.05 | 189.4 | 18.76 | 95.47 | 45.47 | 0.159 | 0.055 | 55.2 | 0.0015 | 6.74 | 67.2 | 0.806 | 0.0095 | 4.24 | 3.02 | 0.576 | 4.35 | 0.261 | 0.616 | 0.850 | 0.0333 | ||
640 | 270 * | 670 | 103.9 | 1.13 | 197.5 | 53.6 | 1220.3 | 297.0 | 0.713 | 1.910 | 1293 | 0.5034 | 16.96 | 72.6 | 0.857 | 0.0115 | 4.74 | 6.02 | 0.703 | 4.41 | 0.369 | 1.956 | 0.789 | 0.0495 |
**** | 640/570 | 1.2 | 1.1 | 1.04 | 2.9 | 12.8 | 6.5 | 4.5 | 34.6 | 23.4 | 330.6 | 2.5 | 1.1 | 1.1 | 1.2 | 1.12 | 2.00 | 1.22 | 1.01 | 1.41 | 3.18 | 0.93 | 2.6 | |
Endeavor Ridge, Juan de Fuca Ridge, N–E Pacific [71] | ||||||||||||||||||||||||
2050–2700 | 124–283 | 2200 | 754 | 119.6 | 9096 | 7808 | 1370 | 4137 | 196.1 | |||||||||||||||
Totem, 13° N East Pacific Rise [31] | ||||||||||||||||||||||||
2600 | 380 | 2600 | 11,589 | 2318 | 849 | 8685 | 10,658 | 16,219 | 1726 | 290 | ||||||||||||||
13° N East Pacific Rise [29] | ||||||||||||||||||||||||
2600 | 380 | 2600 | 667 | 103 | 2535 | 13,000 | 5336 | |||||||||||||||||
Menez-Gwen, 37°50′ N Mid-Atlantic Ridge [72] | ||||||||||||||||||||||||
847–871 | 265–284 *** | 850 | 640 | 8.3 | 3200 | 10,880 | ||||||||||||||||||
Lucky Strike, 37°50′ N Mid-Atlantic Ridge [15] | ||||||||||||||||||||||||
1618–1730 | 152–333 *** | 1700 | 264 | 16.3 | 2455 | 8422 | ||||||||||||||||||
Rainbow, 36°14′ N Mid-Atlantic Ridge [13] | ||||||||||||||||||||||||
2270–2320 | 360–365 *** | 2320 | 6900 | 496.8 | 345,000 | 17,250 | ||||||||||||||||||
Broken Spur, 29°10′ N Mid-Atlantic Ridge [28] | ||||||||||||||||||||||||
~3000 | 356–364 *** | 3090 | 1800 | 668 | 12,600 | 12,600 | 660 | |||||||||||||||||
TAG, 26°08′ N Mid-Atlantic Ridge [73] | ||||||||||||||||||||||||
3670 | 270–363 *** | 3650 | 5200 | 1820 | 52,000 | 44,000 | 4732 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klyuvitkin, A.A.; Kravchishina, M.D.; Starodymova, D.P.; Bulokhov, A.V.; Lein, A.Y. Sinking Particle Fluxes at the Jan Mayen Hydrothermal Vent Field Area from Short-Term Sediment Traps. J. Mar. Sci. Eng. 2024, 12, 2339. https://doi.org/10.3390/jmse12122339
Klyuvitkin AA, Kravchishina MD, Starodymova DP, Bulokhov AV, Lein AY. Sinking Particle Fluxes at the Jan Mayen Hydrothermal Vent Field Area from Short-Term Sediment Traps. Journal of Marine Science and Engineering. 2024; 12(12):2339. https://doi.org/10.3390/jmse12122339
Chicago/Turabian StyleKlyuvitkin, Alexey A., Marina D. Kravchishina, Dina P. Starodymova, Anton V. Bulokhov, and Alla Yu. Lein. 2024. "Sinking Particle Fluxes at the Jan Mayen Hydrothermal Vent Field Area from Short-Term Sediment Traps" Journal of Marine Science and Engineering 12, no. 12: 2339. https://doi.org/10.3390/jmse12122339
APA StyleKlyuvitkin, A. A., Kravchishina, M. D., Starodymova, D. P., Bulokhov, A. V., & Lein, A. Y. (2024). Sinking Particle Fluxes at the Jan Mayen Hydrothermal Vent Field Area from Short-Term Sediment Traps. Journal of Marine Science and Engineering, 12(12), 2339. https://doi.org/10.3390/jmse12122339