Geochemical Characteristics of Seabed Sediments in the Xunmei Hydrothermal Field (26°S), Mid-Atlantic Ridge: Implications for Hydrothermal Activity
Abstract
1. Introduction
2. Geological Setting
3. Materials and Methods
4. Results
4.1. Major Elements
4.2. Trace Elements
4.3. Rare Earth Elements
5. Discussion
5.1. Sediment Compositions
5.2. Distribution Characteristics of Hydrothermal-Derived Elements in Sediments
5.2.1. Cu, Zn, Fe, Co
5.2.2. Mn, V, Mo, U, P
5.3. Geochemical Characteristics of Hydrothermal Activities in Different Area in Xunmei HF
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hannington, M.; Jamieson, J.; Monecke, T.; Petersen, S.; Beaulieu, S. The abundance of seafloor massive sulfide deposits. Geology 2011, 39, 1155–1158. [Google Scholar] [CrossRef]
- Luo, H.; Han, X.; Wang, Y.; Wu, X.; Cai, Y.; Yang, M. Exploring the Mechanism and Resource Prospects of Strategic Metal Enrichment in Global Modern Seafloor Massive Sulfides. Earth Sci. J. China Univ. Geosci. 2021, 46, 3123–3138. [Google Scholar] [CrossRef]
- Tao, C.; Li, H.; Yang, Y.; Ni, J.; Cui, R.; Chen, Y.; Li, J.; He, Y.; Huang, W.; Lei, J.; et al. Two hydrothermal fields found on the Southern Mid-Atlantic Ridge. Sci. China Earth Sci. 2011, 54, 1302–1303. [Google Scholar] [CrossRef]
- Tao, C.; Li, H.; Jin, X.; Zhou, J.; Wu, T.; He, Y.; Deng, X.; Gu, C.; Zhang, G.; Liu, W. Seafloor hydrothermal activity and polymetallic sulfide exploration on the southwest Indian ridge. Chin. Sci. Bull. 2014, 59, 2266–2276. [Google Scholar] [CrossRef]
- Chen, S.; Tao, C.; Zhou, J.; Zhang, G.; Qin, H.; Wang, Y.; Chen, D. Distribution characteristics of hydrothermal plumes on the mid-ocean ridge and their indicative role in polymetallic sulfide exploration. Acta Oceanol. Sin. 2019, 41, 1–12. [Google Scholar] [CrossRef]
- Liao, S.; Tao, C.; Li, H.; Zhang, G.; Liang, J.; Yang, W.; Wang, Y. Surface sediment geochemistry and hydrothermal activity indicators in the Dragon Horn area on the Southwest Indian Ridge. Mar. Geol. 2018, 398, 22–34. [Google Scholar] [CrossRef]
- Gurvich, E.G. Metalliferous Sediments of the World Ocean: Fundamental Theory of Deep Sea Hydrothermal Sedimentation; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Dymond, J.; Corliss, J.B.; Heath, G.R.; Field, C.W.; Dasch, E.J.; Veeh, H.H. Origin of Metalliferous Sediments from the Pacific Ocean. Geol. Soc. Am. Bull. 1973, 84, 3355–3372. [Google Scholar] [CrossRef]
- Mills, R.; Elderfield, H.; Thomson, J. A dual origin for the hydrothermal component in a metalliferous sediment core from the Mid-Atlantic Ridge. J. Geophys. Res. 1993, 98, 9671–9681. [Google Scholar] [CrossRef]
- Hrischeva, E.; Scott, S.D. Geochemistry and morphology of metalliferous sediments and oxyhydroxides from the Endeavour segment, Juan de Fuca Ridge. Geochim. Cosmochim. Acta 2007, 71, 3476–3497. [Google Scholar] [CrossRef]
- Bodeï, S.; Buatier, M.; Steinmann, M.; Adatte, T.; Wheat, C.G. Characterization of metalliferous sediment from a low-temperature hydrothermal environment on the Eastern Flank of the East Pacific Rise. Mar. Geol. 2008, 250, 128–141. [Google Scholar] [CrossRef]
- Dekov, V.M.; Cuadros, J.; Kamenov, G.D.; Weiss, D.; Arnold, T.; Basak, C.; Rochette, P. Metalliferous sediments from the H.M.S. Challenger voyage (1872–1876). Geochim. Cosmochim. Acta 2010, 74, 5019–5038. [Google Scholar] [CrossRef]
- Feely, R.A.; Lewison, M.; Massoth, G.J.; Robert-Baldo, G.; Lavelle, J.W.; Byrne, R.H.; Von Damm, K.L.; Curl, H.C. Composition and dissolution of black smoker particulates from active vents on the Juan de Fuca Ridge. J. Geophys. Res. Solid Earth 1987, 92, 11347–11363. [Google Scholar] [CrossRef]
- Blanc, G.; Anschutz, P.; Pierret, M.-C. Metalliferous sedimentation in the Atlantis II Deep: A geochemical insight. In Sedimentation and Tectonics in Rift Basins Red Sea Gulf of Aden; Purser, B.H., Bosence, D.W.J., Eds.; Springer: Dordrecht, The Netherlands, 1998; pp. 505–520. [Google Scholar]
- Feely, R.A.; Massoth, G.J.; Baker, E.T.; Lebon, G.T.; Geiselman, T.L. Tracking the dispersal of hydrothermal plumes from the Juan de Fuca Ridge using suspended matter compositions. J. Geophys. Res. Solid Earth 1992, 97, 3457–3468. [Google Scholar] [CrossRef]
- Boström, K.; Kraemer, T.; Gartner, S. Provenance and accumulation rates of opaline silica, Al, Ti, Fe, Mn, Cu, Ni and Co in Pacific pelagic sediments. Chem. Geol. 1973, 11, 123–148. [Google Scholar] [CrossRef]
- Boström, K.; Peterson, M.N.A.; Joensuu, O.; Fisher, D.E. Aluminum-poor ferromanganoan sediments on active oceanic ridges. J. Geophys. Res. 1969, 74, 3261–3270. [Google Scholar] [CrossRef]
- Barrett, T.J.; Jarvis, I.; Hannington, M.D.; Thirlwall, M.F. Chemical characteristics of modern deep-sea metalliferous sediments in closed versus open basins, with emphasis on rare-earth elements and Nd isotopes. Earth Sci. Rev. 2021, 222, 103801. [Google Scholar] [CrossRef]
- German, C.R. Hydrothermal activity on the eastern SWIR (50°–70° E): Evidence from core-top geochemistry, 1887 and 1998. Geochem. Geophys. Geosystems 2003, 4. [Google Scholar] [CrossRef]
- Yu, Z.; Li, H.; Li, M.; Zhai, S. Hydrothermal signature in the axial-sediments from the Carlsberg Ridge in the northwest Indian Ocean. J. Mar. Syst. 2018, 180, 173–181. [Google Scholar] [CrossRef]
- Yang, B.; Liu, J.; Shi, X.; Zhang, H.; Wang, X.; Wu, Y.; Fang, X. Mineralogy and sulfur isotope characteristics of metalliferous sediments from the Tangyin hydrothermal field in the southern Okinawa Trough. Ore Geol. Rev. 2020, 120, 103464. [Google Scholar] [CrossRef]
- Yang, B.; Wu, Y.; Wang, X.; Zhang, Y.; Cui, J.; Yu, M.; Dang, Y.; Shi, X.; Liu, J. Mineralogical and geochemical characteristics and ore-forming mechanism of hydrothermal sediments in the middle and southern Okinawa Trough. Mar. Geol. 2021, 437, 106501. [Google Scholar] [CrossRef]
- Kuhn, T.; Burger, H.; Castradori, D.; Halbach, P. Volcanic and hydrothermal history of ridge segments near the Rodrigues Triple Junction (Central Indian Ocean) deduced from sediment geochemistry. Mar. Geol. 2000, 169, 391–409. [Google Scholar] [CrossRef]
- Cave, R.R.; German, C.R.; Thomson, J.; Nesbitt, R.W. Fluxes to sediments underlying the Rainbow hydrothermal plume at 36°14′N on the Mid-Atlantic Ridge. Geochim. Cosmochim. Acta 2002, 66, 1905–1923. [Google Scholar] [CrossRef]
- Qiu, Z.; Han, X.; Li, M.; Wang, Y.; Chen, X.; Fan, W.; Zhou, Y.; Cui, R.; Wang, L. The temporal variability of hydrothermal activity of Wocan hydrothermal field, Carlsberg Ridge, northwest Indian Ocean. Ore Geol. Rev. 2021, 132, 103999. [Google Scholar] [CrossRef]
- Shearme, S.; Cronan, D.S.; Rona, P.A. Geochemistry of sediments from the TAG Hydrothermal Field, M.A.R. at latitude 26° N. Mar. Geol. 1983, 51, 269–291. [Google Scholar] [CrossRef]
- Liao, S.; Tao, C.; Dias, Á.A.; Su, X.; Yang, Z.; Ni, J.; Liang, J.; Yang, W.; Liu, J.; Li, W.; et al. Surface sediment composition and distribution of hydrothermal derived elements at the Duanqiao-1 hydrothermal field, Southwest Indian Ridge. Mar. Geol. 2019, 416, 105975. [Google Scholar] [CrossRef]
- Fan, L.; Wang, G.; Holzheid, A.; Zoheir, B.; Shi, X. Isocubanite-chalcopyrite intergrowths in the Mid-Atlantic Ridge 26°S hydrothermal vent sulfides. Geochemistry 2021, 81, 125795. [Google Scholar] [CrossRef]
- Fan, L.; Wang, G.; Holzheid, A.; Zoheir, B.; Shi, X. Sulfur and copper isotopic composition of seafloor massive sulfides and fluid evolution in the 26°S hydrothermal field, Southern Mid-Atlantic Ridge. Mar. Geol. 2021, 435, 106436. [Google Scholar] [CrossRef]
- Fan, L.; Wang, G.; Holzheid, A.; Zoheir, B.; Shi, X.; Lei, Q. Systematic variations in trace element composition of pyrites from the 26°S hydrothermal field, Mid-Atlantic Ridge. Ore Geol. Rev. 2022, 148, 105006. [Google Scholar] [CrossRef]
- Wang, S.; Li, C.; Li, B.; Dang, Y.; Ye, J.; Zhu, Z.; Zhang, L.; Shi, X. Constraints on fluid evolution and growth processes of black smoker chimneys by pyrite geochemistry: A case study of the Tongguan hydrothermal field, South Mid-Atlantic Ridge. Ore Geol. Rev. 2022, 140, 104410. [Google Scholar] [CrossRef]
- Wang, S.; Sun, W.; Huang, J.; Zhai, S.; Li, H. Coupled Fe-S isotope composition of sulfide chimneys dominated by temperature heterogeneity in seafloor hydrothermal systems. Sci. Bull. 2020, 65, 1767–1774. [Google Scholar] [CrossRef]
- Tao, C.; Chen, S.; Baker, E.T.; Li, H.; Liang, J.; Liao, S.; Chen, Y.J.; Deng, X.; Zhang, G.; Gu, C.; et al. Hydrothermal plume mapping as a prospecting tool for seafloor sulfide deposits: A case study at the Zouyu-1 and Zouyu-2 hydrothermal fields in the southern Mid-Atlantic Ridge. Mar. Geophys. Res. 2017, 38, 3–16. [Google Scholar] [CrossRef]
- Yang, B.; Liu, J.; Li, C.; Zhu, A.; Wang, H.; Cui, J.; Zhang, H.; Hu, Q.; Shi, X. Mineralogical and geochemical characteristics of near-vent metalliferous sediments: Implications for hydrothermal processes along the southern Mid-Atlantic ridge (12°S–28°S). Ore Geol. Rev. 2022, 148, 105003. [Google Scholar] [CrossRef]
- Carbotte, S.; Welch, S.M.; MacDonald, K.C. Spreading rates, rift propagation, and fracture zone offset histories during the past 5 my on the Mid-Atlantic Ridge; 25°–27°30′ S and 31°–34°30′ S. Mar. Geophys. Res. 1991, 13, 51–80. [Google Scholar] [CrossRef]
- James, R.H.; Elderfield, H. Chemistry of ore-forming fluids and mineral formation rates in an active hydrothermal sulfide deposit on the Mid-Atlantic Ridge. Geology 1996, 24, 1147–1150. [Google Scholar] [CrossRef]
- Niu, Y.; Batiza, R. Magmatic processes at a slow spreading ridge segment: 26°S Mid-Atlantic Ridge. J. Geophys. Res. Solid Earth 1994, 99, 19719–19740. [Google Scholar] [CrossRef]
- Regelous, M.; Niu, Y.; Abouchami, W.; Castillo, P.R. Shallow origin for South Atlantic Dupal Anomaly from lower continental crust: Geochemical evidence from the Mid-Atlantic Ridge at 26°S. Lithos 2009, 112, 57–72. [Google Scholar] [CrossRef]
- Fan, L.; Wang, G.; Shi, X.; Yang, Y.; Holzheid, A.; Zoheir, B.A. Geochemical characteristics and mantle source properties of basalt from the hydrothermal field along the Mid-Atlantic Ridge at 26°S. Minerol. Petrol. 2020, 40, 9–20. [Google Scholar]
- Li, T.; Yang, Y.; Wang, G.; Fan, L.; Wang, C.; Li, B. The Mineralogical Characteristics of Pyrite at 26°S Hydrothermal Field, South Mid-Atlantic Ridge. Acta Geol. Sin. Engl. Ed. 2014, 88, 179–180. [Google Scholar] [CrossRef]
- Shao, M.; Yang, Y.; Su, X.; Ye, J.; Shi, X. Mineralogical Study of Chimneys in the Southern Mid-Atlantic Ridge at 26°S. China Min. Mag. 2014, 23, 77–81. [Google Scholar]
- Dias, Á.S.; Barriga, F.J.A.S. Mineralogy and geochemistry of hydrothermal sediments from the serpentinite-hosted Saldanha hydrothermal field (36°34′ N; 33°26′ W) at MAR. Mar. Geol. 2006, 225, 157–175. [Google Scholar] [CrossRef]
- Sun, S.-s.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geol. Soc. Lond. Spec. Publ. 1989, 42, 313–345. [Google Scholar] [CrossRef]
- Bloemsma, M.R.; Zabel, M.; Stuut, J.B.W.; Tjallingii, R.; Collins, J.A.; Weltje, G.J. Modelling the joint variability of grain size and chemical composition in sediments. Sediment. Geol. 2012, 280, 135–148. [Google Scholar] [CrossRef]
- Hannington, M.D.; De Ronde, C.E.J.; Petersen, S.; Hedenquist, J.W.; Thompson, J.F.H.; Goldfarb, R.J.; Richards, J.P. Sea-Floor Tectonics and Submarine Hydrothermal Systems. In One Hundredth Anniversary Volume; Society of Economic Geologists: Littleton, CO, USA, 2005. [Google Scholar]
- Whattam, S.A.; Früh-Green, G.L.; Cannat, M.; De Hoog, J.C.M.; Schwarzenbach, E.M.; Escartin, J.; John, B.E.; Leybourne, M.I.; Williams, M.J.; Rouméjon, S.; et al. Geochemistry of serpentinized and multiphase altered Atlantis Massif peridotites (IODP Expedition 357): Petrogenesis and discrimination of melt-rock vs. fluid-rock processes. Chem. Geol. 2022, 594, 120681. [Google Scholar] [CrossRef]
- Mills, R.A.; Elderfield, H. Hydrothermal Activity and the Geochemistry of Metalliferous Sediment. Geophys. Monogr. Ser. 1995, 91, 392–407. [Google Scholar]
- Feely, R.A.; Trefry, J.H.; Lebon, G.T.; German, C.R. The relationship between P/Fe and V/Fe ratios in hydrothermal precipitates and dissolved phosphate in seawater. Geophys. Res. Lett. 1998, 25, 2253–2256. [Google Scholar] [CrossRef]
- German, C.R.; Campbell, A.C.; Edmond, J.M. Hydrothermal scavenging at the Mid-Atlantic Ridge: Modification of trace element dissolved fluxes. Earth Planet. Sci. Lett. 1991, 107, 101–114. [Google Scholar] [CrossRef]
- Edmonds, H.N.; German, C.R. Particle geochemistry in the Rainbow hydrothermal plume, Mid-Atlantic Ridge. Geochim. Cosmochim. Acta 2004, 68, 759–772. [Google Scholar] [CrossRef]
- Mottl, M.J.; McConachy, T.F. Chemical processes in buoyant hydrothermal plumes on the East Pacific Rise near 21°N. Geochim. Cosmochim. Acta 1990, 54, 1911–1927. [Google Scholar] [CrossRef]
- German, C.R.; Hergt, J.; Palmer, M.R.; Edmond, J.M. Geochemistry of a hydrothermal sediment core from the OBS vent-field, 21°N East Pacific Rise. Chem. Geol. 1999, 155, 65–75. [Google Scholar] [CrossRef]
- Metz, S.; Trefry, J.H. Field and laboratory studies of metal uptake and release by hydrothermal precipitates. J. Geophys. Res. Solid Earth 1993, 98, 9661–9666. [Google Scholar] [CrossRef]
- Mills, R.A.; Elderfield, H. Rare earth element geochemistry of hydrothermal deposits from the active TAG Mound, 26°N Mid-Atlantic Ridge. Geochim. Cosmochim. Acta 1995, 59, 3511–3524. [Google Scholar] [CrossRef]
- Emerson, S.R.; Huested, S.S. Ocean anoxia and the concentrations of molybdenum and vanadium in seawater. Mar. Chem. 1991, 34, 177–196. [Google Scholar] [CrossRef]
- Mills, R.A.; Thomson, J.; Elderfield, H.; Hinton, R.W.; Hyslop, E. Uranium enrichment in metalliferous sediments from the Mid-Atlantic Ridge. Earth Planet. Sci. Lett. 1994, 124, 35–47. [Google Scholar] [CrossRef]
- Ayupova, N.R.; Melekestseva, I.Y.; Maslennikov, V.V.; Tseluyko, A.S.; Blinov, I.A.; Beltenev, V.E. Uranium accumulation in modern and ancient Fe-oxide sediments: Examples from the Ashadze-2 hydrothermal sulfide field (Mid-Atlantic Ridge) and Yubileynoe massive sulfide deposit (South Urals, Russia). Sediment. Geol. 2018, 367, 164–174. [Google Scholar] [CrossRef]
- Hein, J.R.; Clague, D.A.; Koski, R.A.; Embley, R.W.; Dunham, R.E. Metalliferous Sediment and a Silica-Hematite Deposit within the Blanco Fracture Zone, Northeast Pacific. Mar. Georesour. Geotechnol. 2008, 26, 317–339. [Google Scholar] [CrossRef]
- Trefry, J.H.; Trocine, R.P.; Klinkhammer, G.P.; Rona, P.A. Iron and copper enrichment of suspended particles in dispersed hydrothermal plumes along the mid-Atlantic Ridge. Geophys. Res. Lett. 1985, 12, 506–509. [Google Scholar] [CrossRef]
- Rona, P.A.; Klinkhammer, G.; Nelsen, T.A.; Trefry, J.H.; Elderfield, H. Black smokers, massive sulphides and vent biota at the Mid-Atlantic Ridge. Nature 1986, 321, 33–37. [Google Scholar] [CrossRef]
- Rusakov, V.Y.; Shilov, V.V.; Ryzhenko, B.N.; Gablina, I.F.; Roshchina, I.A.; Kuz’mina, T.G.; Kononkova, N.N.; Dobretsova, I.G. Mineralogical and geochemical zoning of sediments at the Semenov cluster of hydrothermal fields, 13°31′–13°30′ N, Mid-Atlantic Ridge. Geochem. Int. 2013, 51, 646–669. [Google Scholar] [CrossRef]
- Cowen, J.P.; Massoth, G.J.; Feely, R.A. Scavenging rates of dissolved manganese in a hydrothermal vent plume. Deep Sea Res. Part A Oceanogr. Res. Pap. 1990, 37, 1619–1637. [Google Scholar] [CrossRef]
- German, C.R.; Higgs, N.C.; Thomson, J.; Mills, R.; Elderfield, H.; Blusztajn, J.; Fleer, A.P.; Bacon, M.P. A geochemical study of metalliferous sediment from the TAG Hydrothermal Mound, 26°08′ N, Mid-Atlantic Ridge. J. Geophys. Res. 1993, 98, 9683–9692. [Google Scholar] [CrossRef]
- Dias, Á.S.; Mills, R.A.; Taylor, R.N.; Ferreira, P.; Barriga, F.J.A.S. Geochemistry of a sediment push-core from the Lucky Strike hydrothermal field, Mid-Atlantic Ridge. Chem. Geol. 2008, 247, 339–351. [Google Scholar] [CrossRef]
- Popoola, S.O.; Han, X.; Wang, Y.; Qiu, Z.; Ye, Y.; Cai, Y. Mineralogical and Geochemical Signatures of Metalliferous Sediments in Wocan-1 and Wocan-2 Hydrothermal Sites on the Carlsberg Ridge, Indian Ocean. Minerals 2019, 9, 26. [Google Scholar] [CrossRef]
Elements | Xunmei (n = 16) | BGS (n = 10) | Basalts (n = 16) | Serpentinite (n = 16) | ||||
---|---|---|---|---|---|---|---|---|
Min | Max | Average | Median | SD | Average | Average | Average | |
Al2O3 | 0.18 | 11.70 | 4.60 | 3.73 | 4.14 | 4.27 | 14.94 | 1.14 |
SiO2 | 5.94 | 41.80 | 24.22 | 24.90 | 11.50 | 13.49 | 50.81 | 39.34 |
CaO | 0.33 | 37.10 | 10.31 | 4.61 | 12.22 | 38.95 | 12.00 | 0.51 |
Fe2O3 | 6.55 | 55.50 | 30.39 | 29.30 | 17.68 | 2.97 | 9.77 | 8.64 |
K2O | 0.12 | 0.90 | 0.27 | 0.17 | 0.23 | 0.34 | 0.11 | - |
MgO | 0.27 | 6.71 | 3.02 | 2.61 | 2.05 | 2.32 | 8.02 | 37.18 |
MnO | 0.05 | 31.40 | 3.76 | 0.44 | 9.09 | 0.15 | 0.16 | 0.12 |
Na2O | 0.62 | 2.85 | 1.82 | 1.86 | 0.56 | 1.70 | 2.54 | 0.11 |
P2O5 | 0.20 | 1.50 | 0.66 | 0.70 | 0.36 | 0.08 | 0.09 | --- |
TiO2 | 0.01 | 1.10 | 0.37 | 0.31 | 0.36 | 0.29 | 1.28 | 0.04 |
Ba | 31 | 1828 | 297 | 110 | 530 | 225 | 2.8 | - |
Sr | 11 | 1268 | 404 | 216 | 406 | 1251 | 113 | |
V | 74 | 806 | 331 | 317 | 190 | 63 | 266 | 39 |
Zn | 184 | 57,936 | 6922 | 3350 | 14,263 | 41 | 72 | 36 |
Zr | 2.5 | 57 | 25 | 25 | 20 | 28 | 82 | |
Co | 17 | 305 | 115 | 92 | 73 | 23 | 41 | 90 |
Cu | 806 | 58,286 | 16,431 | 11,514 | 16,817 | 56 | 72 | 12 |
Ni | 2.9 | 335 | 52 | 36 | 79 | 53 | 71 | 1947 |
Cr | 16.4 | 232 | 101 | 88 | 68 | 65 | 324 | 1238 |
Sc | 0.5 | 34 | 12 | 11 | 11 | 9 | 40 | |
U | 0.3 | 11 | 4.2 | 3.7 | 3.4 | 0.4 | 0.1 | |
Y | 0.9 | 29 | 14 | 15 | 9 | 14.6 | 27 | |
Mo | 3 | 394 | 122 | 86 | 128 | 1.1 | 0.5 | |
Zr | 2.5 | 62 | 25 | 25 | 20 | 31 | 82 | |
Metalliferous Sediment Index (MSI) | 0.32 | 42.08 | 14.26 | 10.30 | 14.33 | 44.09 | ||
∑REE | 1.6 | 52 | 28 | 33 | 17 | 50 | ||
LREE | 1 | 38 | 20 | 23 | 13 | 42 | ||
HREE | 0.6 | 15 | 8 | 9 | 5 | 8 | ||
L/H | 1.5 | 4.3 | 3 | 2.5 | 0.9 | 5 | ||
δEu | 0.9 | 4.5 | 1.6 | 1 | 1.1 | 0.8 | ||
δCe | 0.3 | 0.8 | 0.6 | 0.6 | 0.2 | 0.7 |
F1 | F2 | F3 | F4 | |
---|---|---|---|---|
Eigenvalue | 7.306 | 3.615 | 1.427 | 1.008 |
Cumulative% | 52.183 | 78.003 | 88.196 | 95.397 |
Al | 0.925 | −0.320 | −0.160 | −0.113 |
Fe | −0.427 | −0.182 | 0.757 | 0.354 |
Mn | −0.110 | 0.977 | −0.062 | −0.055 |
Zn | −0.301 | −0.067 | 0.064 | 0.935 |
Cu | −0.119 | −0.262 | 0.566 | 0.698 |
Mo | −0.356 | 0.794 | 0.420 | 0.088 |
U | −0.375 | −0.047 | 0.884 | −0.129 |
Ti | 0.925 | −0.303 | −0.194 | −0.091 |
Mg | 0.958 | 0.002 | −0.203 | −0.162 |
K | −0.249 | 0.926 | 0.084 | −0.148 |
Sc | 0.919 | −0.284 | −0.236 | −0.116 |
Y | 0.794 | −0.216 | −0.397 | −0.309 |
Ba | −0.176 | 0.943 | −0.146 | −0.082 |
Ca | 0.144 | −0.331 | −0.841 | −0.301 |
Element (Hydrothermal) | Cu | Fe | Zn | Co | Mn | P | V | Mo | U |
---|---|---|---|---|---|---|---|---|---|
wt.% | wt.% | wt.% | µg/g | wt.% | wt.% | µg/g | µg/g | µg/g | |
22II-TVG02 | 0.17 | 4.30 | 0.03 | 28.28 | 0.19 | 0.10 | 119.81 | 4.29 | 0.39 |
22II-TVG05 | 2.78 | 19.63 | 0.51 | 126.76 | 0.13 | 0.21 | 251.52 | 54.03 | 4.77 |
46II-TVG10 | 0.51 | 7.36 | 0.08 | 80.21 | 0.26 | 0.15 | 234.08 | 7.34 | 0.40 |
46II-TVG11 | 0.12 | 2.83 | 0.02 | --- | --- | --- | 139.38 | 0.40 | --- |
46II-TVG12 | 0.08 | 2.67 | 0.01 | 37.77 | 0.35 | 0.05 | 90.54 | 3.93 | 0.25 |
46II-TVG14 | 1.89 | 38.51 | 1.80 | 303.09 | 0.09 | 0.34 | 139.80 | 76.65 | 3.41 |
46II-TVG17 | 1.62 | 26.93 | 0.30 | 177.33 | 0.42 | 0.43 | 448.82 | 248.07 | 11.36 |
46II-TVG18 | 0.60 | 6.71 | 0.07 | 94.25 | 0.12 | 0.12 | 216.37 | 6.30 | 0.24 |
46II-TVG19 | 0.67 | 7.34 | 0.06 | 97.39 | 0.02 | 0.10 | 228.55 | 18.46 | 0.07 |
46II-TVG24 | 0.13 | 11.67 | 0.37 | 94.81 | 16.85 | 0.09 | 71.64 | 356.18 | 3.77 |
46II-TVG26 | 2.67 | 27.22 | 0.48 | 171.15 | 1.18 | 0.61 | 570.81 | 106.03 | 6.18 |
46II-TVG28 | 2.54 | 35.34 | 0.17 | 66.33 | 0.68 | 0.35 | 389.60 | 210.41 | 7.51 |
46II-TVG30 | 1.71 | 38.52 | 0.51 | 82.10 | 0.29 | 0.33 | 212.41 | 96.02 | 8.26 |
46III-TVG02 | 5.83 | 36.69 | 5.79 | 13.47 | 0.03 | 0.36 | 203.01 | 183.67 | 4.02 |
46III-TVG05 | 0.46 | 17.43 | 0.44 | 61.75 | 24.28 | 0.38 | 802.37 | 395.39 | 3.52 |
46III-TVG06 | 4.43 | 22.71 | 0.39 | 53.47 | --- | 0.37 | 204.08 | 162.62 | 6.62 |
Xunmei | Fe | Mn | Zn | Co | Cu | V | Mo | P | U |
---|---|---|---|---|---|---|---|---|---|
Fe Pearson correlation Significant(bilateral) N | 1 16 | −0.103 0.704 16 | 0.523 * 0.038 16 | 0.308 0.246 16 | 0.697 ** 0.003 16 | 0.259 0.332 16 | 0.370 0.158 16 | 0.782 ** 0.000 16 | 0.760 ** 0.001 16 |
Mn Pearson correlation Significant(bilateral) N | −0.103 0.704 16 | 1 16 | −0.083 0.760 16 | −0.182 0.501 16 | −0.297 0.263 16 | 0.483 0.058 16 | 0.781 ** 0.000 16 | 0.055 0.839 16 | 0.003 0.990 16 |
Zn Pearson correlation Significant(bilateral) N | 0.523 * 0.038 16 | −0.083 0.760 16 | 1 16 | −0.120 0.659 16 | 0.713 ** 0.002 16 | −0.078 0.773 16 | 0.176 0.515 16 | 0.301 0.257 16 | 0.104 0.701 16 |
Co Pearson correlation Significant(bilateral) N | 0.308 0.246 16 | −0.182 0.501 16 | −0.120 0.659 16 | 1 16 | 0.003 0.991 16 | 0.101 0.711 16 | −0.105 0.698 16 | 0.339 0.200 16 | 0.223 0.407 16 |
Cu Pearson correlation Significant(bilateral) N | 0.697 ** 0.003 16 | −0.297 0.263 16 | 0.713 ** 0.002 16 | 0.003 0.991 16 | 1 16 | 0.082 0.763 16 | 0.174 0.520 16 | 0.615 * 0.011 16 | 0.500 * 0.048 16 |
V Pearson correlation Significant(bilateral) N | 0.259 0.332 16 | 0.483 0.058 16 | −0.078 0.773 16 | 0.101 0.711 16 | 0.082 0.763 16 | 1 16 | 0.532 * 0.034 16 | 0.665 ** 0.005 16 | 0.401 0.124 16 |
Mo Pearson correlation Significant(bilateral) N | 0.370 0.158 16 | 0.781 ** 0.000 16 | 0.176 0.515 16 | −0.105 0.698 16 | 0.174 0.520 16 | 0.532 * 0.034 16 | 1 16 | 0.449 0.081 16 | 0.540 * 0.031 16 |
P Pearson correlation Significant(bilateral) N | 0.782 ** 0.000 16 | 0.055 0.839 16 | 0.301 0.257 16 | 0.339 0.200 16 | 0.615 * 0.011 16 | 0.665 ** 0.005 16 | 0.449 0.081 16 | 1 16 | 0.764 ** 0.001 16 |
U Pearson correlation Significant(bilateral) N | 0.760 ** 0.001 16 | 0.003 0.990 16 | 0.104 0.701 16 | 0.223 0.407 16 | 0.500 * 0.048 16 | 0.401 0.124 16 | 0.540 * 0.031 16 | 0.764 ** 0.001 16 | 1 16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, P.; Li, C.; Dang, Y.; Fan, L.; Yang, B.; Guan, Y.; Zhao, Q.; Du, D. Geochemical Characteristics of Seabed Sediments in the Xunmei Hydrothermal Field (26°S), Mid-Atlantic Ridge: Implications for Hydrothermal Activity. Minerals 2024, 14, 107. https://doi.org/10.3390/min14010107
Yang P, Li C, Dang Y, Fan L, Yang B, Guan Y, Zhao Q, Du D. Geochemical Characteristics of Seabed Sediments in the Xunmei Hydrothermal Field (26°S), Mid-Atlantic Ridge: Implications for Hydrothermal Activity. Minerals. 2024; 14(1):107. https://doi.org/10.3390/min14010107
Chicago/Turabian StyleYang, Peng, Chuanshun Li, Yuan Dang, Lei Fan, Baoju Yang, Yili Guan, Qiukui Zhao, and Dewen Du. 2024. "Geochemical Characteristics of Seabed Sediments in the Xunmei Hydrothermal Field (26°S), Mid-Atlantic Ridge: Implications for Hydrothermal Activity" Minerals 14, no. 1: 107. https://doi.org/10.3390/min14010107
APA StyleYang, P., Li, C., Dang, Y., Fan, L., Yang, B., Guan, Y., Zhao, Q., & Du, D. (2024). Geochemical Characteristics of Seabed Sediments in the Xunmei Hydrothermal Field (26°S), Mid-Atlantic Ridge: Implications for Hydrothermal Activity. Minerals, 14(1), 107. https://doi.org/10.3390/min14010107