Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,673)

Search Parameters:
Keywords = hydrogenation impact

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 19715 KiB  
Article
Microstructure, Mechanical Properties, and Magnetic Properties of 430 Stainless Steel: Effect of Critical Cold Working Rate and Heat Treatment Atmosphere
by Che-Wei Lu, Fei-Yi Hung and Tsung-Wei Chang
Metals 2025, 15(8), 868; https://doi.org/10.3390/met15080868 (registering DOI) - 2 Aug 2025
Abstract
430 stainless steel exhibits soft magnetic properties, excellent formability, and corrosion resistance, making it widely used in industrial applications. This study investigates the effects of different cold working rates on the properties of 430 stainless steel subjected to various magnetic annealing atmospheres (F-1.5Si, [...] Read more.
430 stainless steel exhibits soft magnetic properties, excellent formability, and corrosion resistance, making it widely used in industrial applications. This study investigates the effects of different cold working rates on the properties of 430 stainless steel subjected to various magnetic annealing atmospheres (F-1.5Si, F-1.5Si-10%, F-1.5Si-40%, F-1.5Si-10% (MA), F-1.5Si-40% (MA), F-1.5Si-10% (H2), and F-1.5Si-40% (H2)). The results indicate that increasing the cold working rate improves the material’s mechanical properties; however, it negatively impacts its magnetic and corrosion resistance properties. Additionally, the magnetic annealing process improves the mechanical properties, while atmospheric magnetic annealing optimizes the overall magnetic performance. In contrast, magnetic annealing in a hydrogen atmosphere does not enhance the magnetic properties as effectively as atmospheric magnetic annealing. Still, it promotes the formation of a protective layer, preserving the mechanical properties and providing better corrosion resistance. Furthermore, regardless of whether magnetic annealing is conducted in an atmospheric or hydrogen environment, materials with 10% cold work rate (F-1.5Si-10% (MA) and F-1.5Si-10% (H2)) exhibit the lowest coercive force (286 and 293 A/m in the 10 Hz test condition), making them ideal for electromagnetic applications. Full article
(This article belongs to the Special Issue Heat Treatment and Mechanical Behavior of Steels and Alloys)
Show Figures

Graphical abstract

24 pages, 2863 KiB  
Article
An Integrated–Intensified Adsorptive-Membrane Reactor Process for Simultaneous Carbon Capture and Hydrogen Production: Multi-Scale Modeling and Simulation
by Seckin Karagoz
Gases 2025, 5(3), 17; https://doi.org/10.3390/gases5030017 (registering DOI) - 2 Aug 2025
Abstract
Minimizing carbon dioxide emissions is crucial due to the generation of energy from fossil fuels. The significance of carbon capture and storage (CCS) technology, which is highly successful in mitigating carbon emissions, has increased. On the other hand, hydrogen is an important energy [...] Read more.
Minimizing carbon dioxide emissions is crucial due to the generation of energy from fossil fuels. The significance of carbon capture and storage (CCS) technology, which is highly successful in mitigating carbon emissions, has increased. On the other hand, hydrogen is an important energy carrier for storing and transporting energy, and technologies that rely on hydrogen have become increasingly promising as the world moves toward a more environmentally friendly approach. Nevertheless, the integration of CCS technologies into power production processes is a significant challenge, requiring the enhancement of the combined power generation–CCS process. In recent years, there has been a growing interest in process intensification (PI), which aims to create smaller, cleaner, and more energy efficient processes. The goal of this research is to demonstrate the process intensification potential and to model and simulate a hybrid integrated–intensified adsorptive-membrane reactor process for simultaneous carbon capture and hydrogen production. A comprehensive, multi-scale, multi-phase, dynamic, computational fluid dynamics (CFD)-based process model is constructed, which quantifies the various underlying complex physicochemical phenomena occurring at the pellet and reactor levels. Model simulations are then performed to investigate the impact of dimensionless variables on overall system performance and gain a better understanding of this cyclic reaction/separation process. The results indicate that the hybrid system shows a steady-state cyclic behavior to ensure flexible operating time. A sustainability evaluation was conducted to illustrate the sustainability improvement in the proposed process compared to the traditional design. The results indicate that the integrated–intensified adsorptive-membrane reactor technology enhances sustainability by 35% to 138% for the chosen 21 indicators. The average enhancement in sustainability is almost 57%, signifying that the sustainability evaluation reveals significant benefits of the integrated–intensified adsorptive-membrane reactor process compared to HTSR + LTSR. Full article
Show Figures

Figure 1

22 pages, 5123 KiB  
Article
Tailored Effects of Plasma-Activated Water on Hair Structure Through Comparative Analysis of Nitrate-Rich and Peroxide-Rich Formulations Across Different Hair Types
by Antonia de Souza Leal, Michaela Shiotani Marcondes, Ariane Leite, Douglas Leite, Clodomiro Alves Junior, Laurita dos Santos and Rodrigo Pessoa
Appl. Sci. 2025, 15(15), 8573; https://doi.org/10.3390/app15158573 (registering DOI) - 1 Aug 2025
Viewed by 27
Abstract
Plasma-activated water (PAW), enriched with reactive oxygen and nitrogen species (RONS), presents oxidative and antimicrobial characteristics with potential in cosmetic applications. This study examined the effects of two PAW formulations—nitrate-rich (PAW-N) and peroxide-rich (PAW-P)—on human hair types classified as straight (Type 1), wavy [...] Read more.
Plasma-activated water (PAW), enriched with reactive oxygen and nitrogen species (RONS), presents oxidative and antimicrobial characteristics with potential in cosmetic applications. This study examined the effects of two PAW formulations—nitrate-rich (PAW-N) and peroxide-rich (PAW-P)—on human hair types classified as straight (Type 1), wavy (Type 2), and coily/kinky (Type 4). The impact of PAW on hair structure and chemistry was evaluated using Fourier-transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), UV–Vis spectrophotometry, and physicochemical analyses of the liquids (pH, ORP, conductivity, and TDS). PAW-N, with high nitrate content (~500 mg/L), low pH (2.15), and elevated conductivity (6244 µS/cm), induced significant damage to porous hair types, including disulfide bond cleavage, protein oxidation, and lipid degradation, as indicated by FTIR and EDS data. SEM confirmed severe cuticle disruption. In contrast, PAW-P, containing >25 mg/L of hydrogen peroxide and exhibiting milder acidity and lower ionic strength, caused more localized and controlled oxidation with minimal morphological damage. Straight hair showed greater resistance to both treatments, while coily and wavy hair were more susceptible, particularly to PAW-N. These findings suggest that the formulation and ionic profile of PAW should be matched to hair porosity for safe oxidative treatments, supporting the use of PAW-P as a gentler alternative in hair care technologies. Full article
Show Figures

Figure 1

33 pages, 949 KiB  
Article
Evaluating Freshwater, Desalinated Water, and Treated Brine as Water Feed for Hydrogen Production in Arid Regions
by Hamad Ahmed Al-Ali and Koji Tokimatsu
Energies 2025, 18(15), 4085; https://doi.org/10.3390/en18154085 (registering DOI) - 1 Aug 2025
Viewed by 28
Abstract
Hydrogen production is increasingly vital for global decarbonization but remains a water- and energy-intensive process, especially in arid regions. Despite growing attention to its climate benefits, limited research has addressed the environmental impacts of water sourcing. This study employs a life cycle assessment [...] Read more.
Hydrogen production is increasingly vital for global decarbonization but remains a water- and energy-intensive process, especially in arid regions. Despite growing attention to its climate benefits, limited research has addressed the environmental impacts of water sourcing. This study employs a life cycle assessment (LCA) approach to evaluate three water supply strategies for hydrogen production: (1) seawater desalination without brine treatment (BT), (2) desalination with partial BT, and (3) freshwater purification. Scenarios are modeled for the United Arab Emirates (UAE), Australia, and Spain, representing diverse electricity mixes and water stress conditions. Both electrolysis and steam methane reforming (SMR) are evaluated as hydrogen production methods. Results show that desalination scenarios contribute substantially to human health and ecosystem impacts due to high energy use and brine discharge. Although partial BT aims to reduce direct marine discharge impacts, its substantial energy demand can offset these benefits by increasing other environmental burdens, such as marine eutrophication, especially in regions reliant on carbon-intensive electricity grids. Freshwater scenarios offer lower environmental impact overall but raise water availability concerns. Across all regions, feedwater for SMR shows nearly 50% lower impacts than for electrolysis. This study focuses solely on the environmental impacts associated with water sourcing and treatment for hydrogen production, excluding the downstream impacts of the hydrogen generation process itself. This study highlights the trade-offs between water sourcing, brine treatment, and freshwater purification for hydrogen production, offering insights for optimizing sustainable hydrogen systems in water-stressed regions. Full article
(This article belongs to the Special Issue Advances in Hydrogen Production in Renewable Energy Systems)
18 pages, 3360 KiB  
Article
Hydrogen Sulfide Has a Minor Impact on Human Gut Microbiota Across Age Groups
by Linshu Liu, Johanna M. S. Lemons, Jenni Firrman, Karley K. Mahalak, Venkateswari J. Chetty, Adrienne B. Narrowe, Stephanie Higgins, Ahmed M. Moustafa, Aurélien Baudot, Stef Deyaert and Pieter Van den Abbeele
Sci 2025, 7(3), 102; https://doi.org/10.3390/sci7030102 (registering DOI) - 1 Aug 2025
Viewed by 48
Abstract
Hydrogen sulfide (H2S) can be produced from the metabolism of foods containing sulfur in the gastrointestinal tract (GIT). At low doses, H2S regulates the gut microbial community and supports GIT health, but depending on dose, age, and individual health [...] Read more.
Hydrogen sulfide (H2S) can be produced from the metabolism of foods containing sulfur in the gastrointestinal tract (GIT). At low doses, H2S regulates the gut microbial community and supports GIT health, but depending on dose, age, and individual health conditions, it may also contribute to inflammatory responses and gut barrier dysfunction. Controlling H2S production in the GIT is important for maintaining a healthy gut microbiome. However, research on this subject is limited due to the gaseous nature of the chemical and the difficulty of accessing the GIT in situ. In the present ex vivo experiment, we used a single-dose sodium sulfide preparation (SSP) as a H2S precursor to test the effect of H2S on the human gut microbiome across different age groups, including breastfed infants, toddlers, adults, and older adults. Metagenomic sequencing and metabolite measurements revealed that the development of the gut microbial community and the production of short-chain fatty-acids (SCFAs) were age-dependent; that the infant and the older adult groups were more sensitive to SSP exposure; that exogeneous SSP suppressed SCFA production across all age groups, except for butyrate in the older adult group, suggesting that H2S selectively favors specific gut microbial processes. Full article
(This article belongs to the Section Biology Research and Life Sciences)
Show Figures

Figure 1

14 pages, 654 KiB  
Article
Effects of Natural Fermentation Time on Chemical Composition, Antioxidant Activities, and Phenolic Profile of Cassava Root Flour
by Oluwaseun Peter Bamidele
Appl. Sci. 2025, 15(15), 8494; https://doi.org/10.3390/app15158494 (registering DOI) - 31 Jul 2025
Viewed by 102
Abstract
This study aimed to determine the impact of natural fermentation time on the chemical composition and antioxidant activities of cassava flour. Samples of flour were fermented for intervals of 12, 24, and 48 h and compared with the control (0 h). The results [...] Read more.
This study aimed to determine the impact of natural fermentation time on the chemical composition and antioxidant activities of cassava flour. Samples of flour were fermented for intervals of 12, 24, and 48 h and compared with the control (0 h). The results indicated clear differences in the chemical composition of these samples. The pH value was reduced, TTA increased, and TSS decreased. This is due to the action of lactic acid bacteria during fermentation. The TPC value also increased with fermentation time, achieving 2.95 mg GAE/g after 48 h, compared to 1.35 mg GAE/g initially. Antioxidant activities improved significantly; total antioxidant capacity surged from 23.50 µmol TE/g to 69.81 µmol TE/g over the 48 h fermentation period, based on ABTS, DPPH, and FRAP assays. Protein content also improved significantly, increasing from 1.82% to 3.10%, while the hydrogen cyanide content declined from 25.14 mg/100 g to 5.34 mg/100 g, signifying reduced nutritional risk. An increase in minerals was also noted, with calcium showing the highest concentration of 41.35 mg/100 g after 48 h of fermentation. These findings demonstrate the effectiveness of fermenting cassava flour by enhancing its chemical composition and antioxidant properties while lowering antinutrients, which improves its value in functional foods. Full article
Show Figures

Figure 1

17 pages, 4077 KiB  
Article
The Impact of Sm Promoter on the Catalytic Performance of Ni/Al2O3-SiO2 in Methane Partial Oxidation for Enhanced H2 Production
by Salwa B. Alreshaidan, Rasha S. A. Alanazi, Omalsad H. Odhah, Ahmed A. Ibrahim, Fekri Abdulraqeb Ahmed Ali, Naif Alarifi, Khaled M. Banabdwin, Sivalingam Ramesh and Ahmed S. Al-Fatesh
Catalysts 2025, 15(8), 721; https://doi.org/10.3390/catal15080721 (registering DOI) - 29 Jul 2025
Viewed by 277
Abstract
This study investigates the effects of samarium (Sm) promotion on the catalytic activity of 5 weight percent Ni catalysts for partial oxidation of methane (POM)-based hydrogen production supported on a Si-Al mixed oxide (10SiO2+90Al2O3) system. Several 5% [...] Read more.
This study investigates the effects of samarium (Sm) promotion on the catalytic activity of 5 weight percent Ni catalysts for partial oxidation of methane (POM)-based hydrogen production supported on a Si-Al mixed oxide (10SiO2+90Al2O3) system. Several 5% Ni-based catalysts supported on silica–alumina was used to test the POM at 600 °C. Sm additions ranged from 0 to 2 wt.%. Impregnation was used to create these catalysts, which were then calcined at 500 °C and examined using BET, H2-TPR, XRD, FTIR, TEM, Raman spectroscopy, and TGA methods. Methane conversion (57.85%) and hydrogen yield (56.89%) were greatly increased with an ideal Sm loading of 1 wt.%, indicating increased catalytic activity and stability. According to catalytic tests, 1 wt.% Sm produced high CH4 conversion and H2 production, as well as enhanced stability and resistance to carbon deposition. Nitrogen physisorption demonstrated a progressive decrease in pore volume and surface area with the addition of Sm, while maintaining mesoporosity. At moderate Sm loadings, H2-TPR and XRD analyses showed changes in crystallinity and increased NiO reducibility. Sm incorporation into the support and its impact on the ordering of carbon species were indicated by FTIR and Raman spectra. The optimal conditions to maximize H2 yield were successfully identified through optimization of the best catalyst, and there was good agreement between the theoretical predictions (87.563%) and actual results (88.39%). This displays how successfully the optimization approach achieves the intended outcome. Overall, this study demonstrates that the performance and durability of Ni-based catalysts for generating syngas through POM are greatly enhanced by the addition of a moderate amount of Sm, particularly 1 wt.%. Full article
(This article belongs to the Section Industrial Catalysis)
Show Figures

Figure 1

38 pages, 6652 KiB  
Review
Remote Sensing Perspective on Monitoring and Predicting Underground Energy Sources Storage Environmental Impacts: Literature Review
by Aleksandra Kaczmarek and Jan Blachowski
Remote Sens. 2025, 17(15), 2628; https://doi.org/10.3390/rs17152628 - 29 Jul 2025
Viewed by 273
Abstract
Geological storage is an integral element of the green energy transition. Geological formations, such as aquifers, depleted reservoirs, and hard rock caverns, are used mainly for the storage of hydrocarbons, carbon dioxide and increasingly hydrogen. However, potential adverse effects such as ground movements, [...] Read more.
Geological storage is an integral element of the green energy transition. Geological formations, such as aquifers, depleted reservoirs, and hard rock caverns, are used mainly for the storage of hydrocarbons, carbon dioxide and increasingly hydrogen. However, potential adverse effects such as ground movements, leakage, seismic activity, and environmental pollution are observed. Existing research focuses on monitoring subsurface elements of the storage, while on the surface it is limited to ground movement observations. The review was carried out based on 191 research contributions related to geological storage. It emphasizes the importance of monitoring underground gas storage (UGS) sites and their surroundings to ensure sustainable and safe operation. It details surface monitoring methods, distinguishing geodetic surveys and remote sensing techniques. Remote sensing, including active methods such as InSAR and LiDAR, and passive methods of multispectral and hyperspectral imaging, provide valuable spatiotemporal information on UGS sites on a large scale. The review covers modelling and prediction methods used to analyze the environmental impacts of UGS, with data-driven models employing geostatistical tools and machine learning algorithms. The limited number of contributions treating geological storage sites holistically opens perspectives for the development of complex approaches capable of monitoring and modelling its environmental impacts. Full article
(This article belongs to the Special Issue Advancements in Environmental Remote Sensing and GIS)
Show Figures

Figure 1

27 pages, 5196 KiB  
Article
Impact of Hydrogen Release on Accidental Consequences in Deep-Sea Floating Photovoltaic Hydrogen Production Platforms
by Kan Wang, Jiahui Mi, Hao Wang, Xiaolei Liu and Tingting Shi
Hydrogen 2025, 6(3), 52; https://doi.org/10.3390/hydrogen6030052 - 29 Jul 2025
Viewed by 195
Abstract
Hydrogen is a potential key component of a carbon-neutral energy carrier and an input to marine industrial processes. This study examines the consequences of coupled hydrogen release and marine environmental factors during floating photovoltaic hydrogen production (FPHP) system failures. A validated three-dimensional numerical [...] Read more.
Hydrogen is a potential key component of a carbon-neutral energy carrier and an input to marine industrial processes. This study examines the consequences of coupled hydrogen release and marine environmental factors during floating photovoltaic hydrogen production (FPHP) system failures. A validated three-dimensional numerical model of FPHP comprehensively characterizes hydrogen leakage dynamics under varied rupture diameters (25, 50, 100 mm), transient release duration, dispersion patterns, and wind intensity effects (0–20 m/s sea-level velocities) on hydrogen–air vapor clouds. FLACS-generated data establish the concentration–dispersion distance relationship, with numerical validation confirming predictive accuracy for hydrogen storage tank failures. The results indicate that the wind velocity and rupture size significantly influence the explosion risk; 100 mm ruptures elevate the explosion risk, producing vapor clouds that are 40–65% larger than 25 mm and 50 mm cases. Meanwhile, increased wind velocities (>10 m/s) accelerate hydrogen dilution, reducing the high-concentration cloud volume by 70–84%. Hydrogen jet orientation governs the spatial overpressure distribution in unconfined spaces, leading to considerable shockwave consequence variability. Photovoltaic modules and inverters of FPHP demonstrate maximum vulnerability to overpressure effects; these key findings can be used in the design of offshore platform safety. This study reveals fundamental accident characteristics for FPHP reliability assessment and provides critical insights for safety reinforcement strategies in maritime hydrogen applications. Full article
Show Figures

Figure 1

17 pages, 2178 KiB  
Article
Enabling Early Prediction of Side Effects of Novel Lead Hypertension Drug Molecules Using Machine Learning
by Takudzwa Ndhlovu and Uche A. K. Chude-Okonkwo
Drugs Drug Candidates 2025, 4(3), 35; https://doi.org/10.3390/ddc4030035 - 29 Jul 2025
Viewed by 220
Abstract
Background: Hypertension is a serious global health issue affecting over one billion adults and leading to severe complications if left unmanaged. Despite medical advancements, only a fraction of patients effectively have their hypertension under control. Among the factors that hinder adherence to [...] Read more.
Background: Hypertension is a serious global health issue affecting over one billion adults and leading to severe complications if left unmanaged. Despite medical advancements, only a fraction of patients effectively have their hypertension under control. Among the factors that hinder adherence to hypertensive drugs are the debilitating side effects of the drugs. The lack of adherence results in poorer patient outcomes as patients opt to live with their condition, instead of having to deal with the side effects. Hence, there is a need to discover new hypertension drug molecules with better side effects to increase patient treatment options. To this end, computational methods such as artificial intelligence (AI) have become an exciting option for modern drug discovery. AI-based computational drug discovery methods generate numerous new lead antihypertensive drug molecules. However, predicting their potential side effects remains a significant challenge because of the complexity of biological interactions and limited data on these molecules. Methods: This paper presents a machine learning approach to predict the potential side effects of computationally synthesised antihypertensive drug molecules based on their molecular properties, particularly functional groups. We curated a dataset combining information from the SIDER 4.1 and ChEMBL databases, enriched with molecular descriptors (logP, PSA, HBD, HBA) using RDKit. Results: Gradient Boosting gave the most stable generalisation, with a weighted F1 of 0.80, and AUC-ROC of 0.62 on the independent test set. SHAP analysis over the cross-validation folds showed polar surface area and logP contributing the largest global impact, followed by hydrogen bond counts. Conclusions: Functional group patterns, augmented with key ADMET descriptors, offer a first-pass screen for identifying side-effect risks in AI-designed antihypertensive leads. Full article
(This article belongs to the Section In Silico Approaches in Drug Discovery)
Show Figures

Figure 1

36 pages, 7410 KiB  
Review
The Influence of Hydrogen Bonding in Wood and Its Modification Methods: A Review
by Ting Zhang, Yudong Hu, Yanyan Dong, Shaohua Jiang and Xiaoshuai Han
Polymers 2025, 17(15), 2064; https://doi.org/10.3390/polym17152064 - 29 Jul 2025
Viewed by 280
Abstract
Construction wood has a high economic value, and its construction waste also has multiple consumption values. Natural wood has many advantages, such as thermal, environmental, and esthetic properties; however, wood sourced from artificial fast-growing forests is found to be deficient in mechanical strength. [...] Read more.
Construction wood has a high economic value, and its construction waste also has multiple consumption values. Natural wood has many advantages, such as thermal, environmental, and esthetic properties; however, wood sourced from artificial fast-growing forests is found to be deficient in mechanical strength. This shortcoming makes it less competitive in certain applications, leading many markets to remain dominated by non-renewable materials. To address this issue, various modification methods have been explored, with a focus on enhancing the plasticity and strength of wood. Studies have shown that hydrogen bonds in the internal structure of wood have a significant impact on its operational performance. Whether it is organic modification, inorganic modification, or a combination thereof, these methods will lead to a change in the shape of the hydrogen bond network between the components of the wood or will affect the process of its breaking and recombination, while increasing the formation of hydrogen bonds and related molecular synergistic effects and improving the overall operational performance of the wood. These modification methods not only increase productivity and meet the needs of efficient use and sustainable environmental protection but also elevate the wood industry to a higher level of technological advancement. This paper reviews the role of hydrogen bonding in wood modification, summarizes the mechanisms by which organic, inorganic, and composite modification methods regulate hydrogen bond networks, discusses their impacts on wood mechanical properties, dimensional stability, and environmental sustainability, and provides an important resource for future research and development. Full article
(This article belongs to the Special Issue Recent Progress on Lignocellulosic-Based Polymeric Materials)
Show Figures

Figure 1

29 pages, 8216 KiB  
Article
Research on the Diaphragm Movement Characteristics and Cavity Profile Optimization of a Dual-Stage Diaphragm Compressor for Hydrogen Refueling Applications
by Chongzhou Sun, Zhilong He, Dantong Li, Xiaoqian Chen, Jie Tang, Manguo Yan and Xiangjie Kang
Appl. Sci. 2025, 15(15), 8353; https://doi.org/10.3390/app15158353 - 27 Jul 2025
Viewed by 285
Abstract
The large-scale utilization of hydrogen energy is currently hindered by challenges in low-cost production, storage, and transportation. This study focused on investigating the impact of the diaphragm cavity profile on the movement behavior and stress distribution of a dual-stage diaphragm compressor. Firstly, an [...] Read more.
The large-scale utilization of hydrogen energy is currently hindered by challenges in low-cost production, storage, and transportation. This study focused on investigating the impact of the diaphragm cavity profile on the movement behavior and stress distribution of a dual-stage diaphragm compressor. Firstly, an experimental platform was established to test the gas mass flowrate and fluid pressures under various preset conditions. Secondly, a simulation path integrating the finite element method simulation, theoretical stress model, and movement model was developed and experimentally validated to analyze the diaphragm stress distribution and deformation characteristics. Finally, comparative optimization analyses were conducted on different types of diaphragm cavity profiles. The results indicated that the driving pressure differences at the top dead center position reached 85.58 kPa for the first-stage diaphragm and 75.49 kPa for the second-stage diaphragm. Under experimental conditions of 1.6 MPa suction pressure, 8 MPa second-stage discharge pressure, and 200 rpm rotational speed, the first-stage and second-stage diaphragms reached the maximum center deflections of 4.14 mm and 2.53 mm, respectively, at the bottom dead center position. Moreover, the cavity profile optimization analysis indicated that the double-arc profile (DAP) achieved better cavity volume and diaphragm stress characteristics. The first-stage diaphragm within the optimized DAP-type cavity exhibited 173.95 MPa maximum principal stress with a swept volume of 0.001129 m3, whereas the second-stage optimized configuration reached 172.57 MPa stress with a swept volume of 0.0003835 m3. This research offers valuable insights for enhancing the reliability and performance of diaphragm compressors. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

19 pages, 3224 KiB  
Article
Supramolecular Co-Assembled Fmoc-FRGDF/Hyaluronic Acid Hydrogel for Quercetin Delivery: Multifunctional Bioactive Platform
by Xian-Ni Su, Yu-Yang Wang, Muhammed Fahad Khan, Li-Na Zhu, Zhong-Liang Chen, Zhuo Wang, Bing-Bing Song, Qiao-Li Zhao, Sai-Yi Zhong and Rui Li
Foods 2025, 14(15), 2629; https://doi.org/10.3390/foods14152629 - 26 Jul 2025
Viewed by 330
Abstract
Background: During food processing and storage, traditional protein-based delivery systems encounter significant challenges in maintaining the structural and functional integrity of bioactive compounds, primarily due to their temporal instability. Methods: In this study, a nanocomposite hydrogel was prepared through the co-assembly of a [...] Read more.
Background: During food processing and storage, traditional protein-based delivery systems encounter significant challenges in maintaining the structural and functional integrity of bioactive compounds, primarily due to their temporal instability. Methods: In this study, a nanocomposite hydrogel was prepared through the co-assembly of a self-assembling peptide, 9-Fluorenylmethoxycarbonyl-phenylalanine-arginine-glycine-aspartic acid-phenylalanine (Fmoc-FRGDF), and hyaluronic acid (HA). The stability of this hydrogel as a quercetin (Que) delivery carrier was systematically investigated. Furthermore, the impact of Que co-assembly on the microstructural evolution and physicochemical properties of the hydrogel was characterized. Concurrently, the encapsulation efficiency (EE%) and controlled release kinetics of Que were quantitatively evaluated. Results: The findings indicated that HA significantly reduced the storage modulus (G′) from 256.5 Pa for Fmoc-FRGDF to 21.1 Pa with the addition of 0.1 mg/mL HA. Despite this reduction, HA effectively slowed degradation rates; specifically, residue rates of 5.5% were observed for Fmoc-FRGDF alone compared to 14.1% with 0.5 mg/mL HA present. Notably, Que enhanced G′ within the ternary complex, increasing it from 256.5 Pa in Fmoc-FRGDF to an impressive 7527.0 Pa in the Que/HA/Fmoc-FRGDF hydrogel containing 0.1 mg/mL HA. The interactions among Que, HA, and Fmoc-FRGDF involved hydrogen bonding, electrostatic forces, and hydrophobic interactions; furthermore, the co-assembly process strengthened the β-sheet structure while significantly promoting supramolecular ordering. Interestingly, the release profile of Que adhered to the Korsmeyer–Peppas pharmacokinetic equations. Conclusions: Overall, this study examines the impact of polyphenol on the rheological properties, microstructural features, secondary structure conformation, and supramolecular ordering within peptide–polysaccharide–polyphenol ternary complexes, and the Fmoc-FRGDF/HA hydrogel system demonstrates a superior performance as a delivery vehicle for maintaining quercetin’s bioactivity, thereby establishing a multifunctional platform for bioactive agent encapsulation and controlled release. Full article
Show Figures

Figure 1

14 pages, 1607 KiB  
Article
Three-Dimensional Distribution of Titanium Hydrides After Degradation of Magnesium/Titanium Hybrid Implant Material—A Study by X-Ray Diffraction Contrast Tomography
by Vasil M. Garamus, D. C. Florian Wieland, Julian P. Moosmann, Felix Beckmann, Lars Lottermoser, Maria Serdechnova, Carsten Blawert, Mohammad Fazel, Eshwara P. S. Nidadavolu, Wolfgang Limberg, Thomas Ebel, Regine Willumeit-Römer and Berit Zeller-Plumhoff
J. Compos. Sci. 2025, 9(8), 396; https://doi.org/10.3390/jcs9080396 - 26 Jul 2025
Viewed by 279
Abstract
Hybrid implants composed of magnesium and titanium are a promising direction in orthopaedics, as these implants combine the stability of titanium with the biological activity of magnesium. These partly soluble implants require careful investigation, as the degradation of magnesium releases hydrogen, which can [...] Read more.
Hybrid implants composed of magnesium and titanium are a promising direction in orthopaedics, as these implants combine the stability of titanium with the biological activity of magnesium. These partly soluble implants require careful investigation, as the degradation of magnesium releases hydrogen, which can enter the Ti matrix and thus alter the mechanical properties. To investigate this scenario and quantify the hydrogen uptake along with its structural impacts, we employed inert gas fusion, scanning electron microscopy, X-ray diffraction, and a combination of synchrotron absorption and X-ray diffraction tomography. These techniques enabled us to investigate the concentration and distribution of hydrogen and the formation of hydrides in the samples. Titanium hydride formation was observed in a region approximately 120 µm away from the titanium surface and correlates with the amount of absorbed hydrogen. We speculate that the degradation of magnesium at the magnesium/titanium implant interface leads to the penetration of hydrogen due to a combination of electrochemical and gaseous charging. Full article
Show Figures

Figure 1

17 pages, 1594 KiB  
Article
Molecular-Level Insights into Meta-Phenylenediamine and Sulfonated Zinc Phthalocyanine Interactions for Enhanced Polyamide Membranes: A DFT and TD-DFT Study
by Ameni Gargouri and Bassem Jamoussi
Polymers 2025, 17(15), 2019; https://doi.org/10.3390/polym17152019 - 24 Jul 2025
Viewed by 277
Abstract
Access to clean water is a pressing global concern and membrane technologies play a vital role in addressing this challenge. Thin-film composite membranes prepared via interfacial polymerization (IPol) using meta-phenylenediamine (MPD) and trimesoyl chloride (TMC) exhibit excellent separation performance, but face limitations such [...] Read more.
Access to clean water is a pressing global concern and membrane technologies play a vital role in addressing this challenge. Thin-film composite membranes prepared via interfacial polymerization (IPol) using meta-phenylenediamine (MPD) and trimesoyl chloride (TMC) exhibit excellent separation performance, but face limitations such as fouling and low hydrophilicity. This study investigated the interaction between MPD and sulfonated zinc phthalocyanine, Zn(SO2)4Pc, as a potential strategy for enhancing membrane properties. Using Density Functional Theory (DFT) and Time-Dependent DFT (TD-DFT), we analyzed the optimized geometries, electronic structures, UV–Vis absorption spectra, FT-IR vibrational spectra, and molecular electrostatic potentials of MPD, Zn(SO2)4Pc, and their complexes. The results show that MPD/Zn(SO2)4Pc exhibits reduced HOMO-LUMO energy gaps and enhanced charge delocalization, particularly in aqueous environments, indicating improved stability and reactivity. Spectroscopic features confirmed strong interactions via hydrogen bonding and π–π stacking, suggesting that Zn(SO2)4Pc can act as a co-monomer or additive during IPol to improve polyamide membrane functionality. A conformational analysis of MPD/Zn(SO2)4Pc was conducted using density functional theory (DFT) to evaluate the impact of dihedral rotation on molecular stability. The 120° conformation was identified as the most stable, due to favorable π–π interactions and intramolecular hydrogen bonding. These findings offer computational evidence for the design of high-performance membranes with enhanced antifouling, selectivity, and structural integrity for sustainable water treatment applications. Full article
(This article belongs to the Special Issue Nanocomposite Polymer Membranes for Advanced Water Treatment)
Show Figures

Figure 1

Back to TopTop