Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (181)

Search Parameters:
Keywords = hydrogen-sensitive film

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 4656 KiB  
Article
High-Speed and Hysteresis-Free Near-Infrared Optical Hydrogen Sensor Based on Ti/Pd Bilayer Thin Films
by Ashwin Thapa Magar, Tu Anh Ngo, Hoang Mai Luong, Thi Thu Trinh Phan, Minh Tuan Trinh, Yiping Zhao and Tho Duc Nguyen
Nanomaterials 2025, 15(14), 1105; https://doi.org/10.3390/nano15141105 - 16 Jul 2025
Viewed by 513
Abstract
Palladium (Pd) and titanium (Ti) exhibit opposite dielectric responses upon hydrogenation, with stronger effects observed in the near-infrared (NIR) region. Leveraging this contrast, we investigated Ti/Pd bilayer thin films as a platform for NIR hydrogen sensing—particularly at telecommunication-relevant wavelengths, where such devices have [...] Read more.
Palladium (Pd) and titanium (Ti) exhibit opposite dielectric responses upon hydrogenation, with stronger effects observed in the near-infrared (NIR) region. Leveraging this contrast, we investigated Ti/Pd bilayer thin films as a platform for NIR hydrogen sensing—particularly at telecommunication-relevant wavelengths, where such devices have remained largely unexplored. Ti/Pd bilayers coated with Teflon AF (TAF) and fabricated via sequential electron-beam and thermal evaporation were characterized using optical transmission measurements under repeated hydrogenation cycles. The Ti (5 nm)/Pd (x = 2.5 nm)/TAF (30 nm) architecture showed a 2.7-fold enhancement in the hydrogen-induced optical contrast at 1550 nm compared to Pd/TAF reference films, attributed to the hydrogen ion exchange between the Ti and Pd layers. The optimized structure, with a Pd thickness of x = 1.9 nm, exhibited hysteresis-free sensing behavior, a rapid response time (t90 < 0.35 s at 4% H2), and a detection limit below 10 ppm. It also demonstrated excellent selectivity with negligible cross-sensitivity to CO2, CH4, and CO, as well as high durability, showing less than 6% signal degradation over 135 hydrogenation cycles. These findings establish a scalable, room-temperature NIR hydrogen sensing platform with strong potential for deployment in automotive, environmental, and industrial applications. Full article
Show Figures

Figure 1

19 pages, 3806 KiB  
Article
Electroactive Poly(amic acid) Films Grafted with Pendant Aniline Tetramer for Hydrogen Sulfide Gas Sensing Applications
by Kun-Hao Luo, Yun-Ting Chen, Hsuan-Yu Wu, Zong-Kai Ni and Jui-Ming Yeh
Polymers 2025, 17(14), 1915; https://doi.org/10.3390/polym17141915 - 11 Jul 2025
Viewed by 381
Abstract
Hydrogen sulfide (H2S) is a highly toxic and corrosive gas generated in numerous industrial and environmental processes; rapid, sensitive detection at low ppm levels is therefore crucial for ensuring occupational safety and protecting public health. This work explores the effect of [...] Read more.
Hydrogen sulfide (H2S) is a highly toxic and corrosive gas generated in numerous industrial and environmental processes; rapid, sensitive detection at low ppm levels is therefore crucial for ensuring occupational safety and protecting public health. This work explores the effect of grafting various loadings of pendant aniline tetramer pendants (PEDA) onto electroactive poly(amic acid) (EPAA) films and evaluates their performance as H2S gas sensors. Comprehensive characterization including ion trap mass spectrometry (Ion trap MS), Fourier-transform infrared spectroscopy (FTIR), cyclic voltammetry (CV), and four-probe conductivity measurements, confirmed successful PEDA incorporation and revealed enhanced electrical conductivity with increasing PEDA content. Gas sensing tests revealed that EPAA3 (3 wt% PEDA) achieved the best overall performance toward 10 ppm H2S, producing a 591% response with a rapid 108 s response time. Selectivity studies showed that the response of EPAA3 to H2S exceeded those for SO2, NO2, NH3, and CO by factors of five to twelve, underscoring its excellent discrimination against common interferents. Repeatability tests over five successive cycles gave a relative standard deviation of just 7.4% for EPAA3, and long-term stability measurements over 16 days in ambient air demonstrated that EPAA3 retained over 80%. These findings establish that PEDA-grafted PAA films combine the processability of poly(amic acid) with the sharp, reversible redox behavior of pendant aniline tetramers, delivering reproducible, selective, and stable H2S sensing. EPAA3, in particular, represents a balanced composition that maximizes sensitivity and durability, offering a promising platform for practical environmental monitoring and industrial safety applications. Full article
(This article belongs to the Special Issue Development of Applications of Polymer-Based Sensors and Actuators)
Show Figures

Figure 1

19 pages, 4131 KiB  
Article
Development of Double-Film Composite Food Packaging with UV Protection and Microbial Protection for Cherry Preservation
by Han Wang, Yanjing Liao, Guida Zhu, Longwen Wang, Zihan Chen, Xue Li, Chao Wang, Jing Yu and Ping Song
Foods 2025, 14(13), 2283; https://doi.org/10.3390/foods14132283 - 27 Jun 2025
Viewed by 456
Abstract
This study develops a novel dual-layer chitosan (CS)/pectin film incorporating grape skin anthocyanin extract (GSAE) and lignin to address critical limitations in cherry preservation. Unlike traditional methods that leave harmful residues, this bilayer design separately integrates functional components: GSAE for targeted antioxidant/antibacterial action [...] Read more.
This study develops a novel dual-layer chitosan (CS)/pectin film incorporating grape skin anthocyanin extract (GSAE) and lignin to address critical limitations in cherry preservation. Unlike traditional methods that leave harmful residues, this bilayer design separately integrates functional components: GSAE for targeted antioxidant/antibacterial action and lignin for ultraviolet (UV) blocking. This targeted incorporation enables synergistic performance unattainable with single-layer or conventional approaches. The films, fabricated with lignin concentrations from 1% to 15% (w/v), demonstrated excellent mechanical integrity (assessed with structural characterization), optimized gas barrier performance, and effective UV attenuation (achieved via lignin incorporation). Antibacterial analyses confirmed substantial inhibition against Staphylococcus aureus and Escherichia coli. Crucially, cherry preservation tests showed that the 15% lignin film (PG/CL15%) reduced weight loss, preserved firmness, and extended shelf life by 8 days—a significant quantitative improvement over uncoated fruit. Structural characterization (TGA, FT-IR, and XRD) verified successful GSAE/lignin embedding via hydrogen bonding. Beyond cherries, this dual-layer, bio-based design offers a promising template for the active packaging of other perishable produce sensitive to oxidation, microbial spoilage, and UV degradation, which enhances its industrial relevance. Full article
(This article belongs to the Section Food Packaging and Preservation)
Show Figures

Figure 1

16 pages, 4395 KiB  
Article
Nanoporous Copper Films via Dynamic Hydrogen Bubbling: A Promising SERS Substrate for Sensitive Detection of Methylene Blue
by Noor Tayyaba, Stefano Zago, Andrea Giura, Gianluca Fiore, Luigi Ribotta, Federico Scaglione and Paola Rizzi
Nanomaterials 2025, 15(12), 945; https://doi.org/10.3390/nano15120945 - 18 Jun 2025
Viewed by 459
Abstract
Cu-based nanomaterials have received considerable attention as promising and cost-effective substrates for surface-enhanced Raman spectroscopy (SERS) applications despite their relatively low enhancement factor (EF) compared to noble metals like gold and silver. In this study, a fast and affordable synthesis route is proposed [...] Read more.
Cu-based nanomaterials have received considerable attention as promising and cost-effective substrates for surface-enhanced Raman spectroscopy (SERS) applications despite their relatively low enhancement factor (EF) compared to noble metals like gold and silver. In this study, a fast and affordable synthesis route is proposed to obtain a three-dimensional porous copper film (NPC) via an electrodeposition technique based on the dynamic hydrogen bubbling template (DHBT). Two sets of NPC film were synthesized, one without additives and the other with cetyltrimethylammonium bromide (CTAB). The impacts of deposition time on the NPCs’ porous morphology, thickness, and SERS performance were systematically investigated. With the optimal deposition time, the nanopore sizes could be tailored from 26.8 to 73 μm without additives and from 12.8 to 24 µm in the presence of CTAB. The optimal additive-free NPC film demonstrated excellent SERS performance at 180 s of deposition, while the CTAB-modified film showed strong enhancement at 120 s towards methylene blue (MB), a highly toxic dye, achieving a detection limit of 10−6 M. Additionally, the samples with CTAB showed better efficiency than those without CTAB. The calculated EF of NPC was found to be 5.9 × 103 without CTAB and 2.5 × 103 with the CTAB, indicating the potential of NPC as a cost-effective candidate for high-performance SERS substrates. This comprehensive study provides insights into optimizing the structural morphology of the NPCs to maximize their SERS enhancement factor and improve their detection sensitivity toward MB, thus overcoming the limitations associated with conventional copper-based SERS substrates. Full article
(This article belongs to the Section Nanofabrication and Nanomanufacturing)
Show Figures

Graphical abstract

11 pages, 8115 KiB  
Article
Early Detection of Hydrogen Leakage Using Fiber Optic Hydrogen Sensor Based on WO3-PdPt-Pt Nanocomposite Films
by Jixiang Dai, Zhangning Chen, Rundong Yang, Zhouyang Wu, Zhengan Tang, Wenbin Hu, Cheng Cheng, Xuewen Wang and Minghong Yang
Nanomaterials 2025, 15(11), 836; https://doi.org/10.3390/nano15110836 - 30 May 2025
Viewed by 469
Abstract
Quickly detecting hydrogen leakage is crucial to provide early warning for taking emergency measures to avoid personnel casualties and explosion accidents in hydrogen energy fields. Here, a compact optical fiber hydrogen sensing system with high sensitivity and quick response rate is proposed in [...] Read more.
Quickly detecting hydrogen leakage is crucial to provide early warning for taking emergency measures to avoid personnel casualties and explosion accidents in hydrogen energy fields. Here, a compact optical fiber hydrogen sensing system with high sensitivity and quick response rate is proposed in this work. A laser diode (LD) and two photodetectors (PD) are employed as light source and optical signal transformation devices, respectively. This sensing system employs single-mode optical fiber deposited with WO3-PdPt-Pt nanocomposite film system as sensing element. Under irrigating power of 6 mW, the sensing probe exhibits an ultra-fast response to hydrogen concentrations of 4000 ppm and 10,000 ppm, with response times of 0.44 s and 0.34 s, respectively. In addition, detection limit of 3 ppm can be achieved by using this sensing system. The sensor also shows good repeatability during hydrogen exposure of 3~10,000 ppm, demonstrating its great potential application for hydrogen leakage in hydrogen energy facilities. Full article
Show Figures

Graphical abstract

17 pages, 1644 KiB  
Review
Hydrogen Sensors Based on Pd-Based Materials: A Review
by Shubin Yan, Yuhao Cao, Yiru Su, Biyi Huang, Changxin Chen, Xianfeng Yu, Aiwei Xu and Taiquan Wu
Sensors 2025, 25(11), 3402; https://doi.org/10.3390/s25113402 - 28 May 2025
Cited by 1 | Viewed by 1013
Abstract
Hydrogen is receiving a lot of attention from researchers as a clean energy source and one of the most promising sources of energy for the future. Detection of hydrogen before it reaches explosive conditions is a central issue in the safe use of [...] Read more.
Hydrogen is receiving a lot of attention from researchers as a clean energy source and one of the most promising sources of energy for the future. Detection of hydrogen before it reaches explosive conditions is a central issue in the safe use of hydrogen. Hydrogen sensors are devices that detect the hydrogen concentration in the environment and are capable of outputting an electrical signal proportional to the magnitude of the hydrogen concentration. Palladium (Pd) has become one of the preferred materials for the preparation of hydrogen sensors due to its strong hydrogen absorbing ability. In this paper, the intrinsic mechanism of hydrogen absorption by Pd metal is revealed, and the performance of various types of Pd-based hydrogen sensors is reviewed. Full article
(This article belongs to the Section Sensor Materials)
Show Figures

Figure 1

15 pages, 2677 KiB  
Article
Enzyme-Based Solid-Phase Electrochemiluminescence Sensors with Stable, Anchored Emitters for Sensitive Glucose Detection
by Chunyin Wei, Yanyan Zheng, Fei Yan and Lifang Xu
Biosensors 2025, 15(5), 332; https://doi.org/10.3390/bios15050332 - 21 May 2025
Cited by 2 | Viewed by 614
Abstract
Glucose (Glu) detection, as a fundamental analytical technique, has applications in medical diagnostics, clinical testing, bioanalysis and environmental monitoring. In this work, a solid-phase electrochemiluminescence (ECL) enzyme sensor was developed by immobilizing the ECL emitter in a stable manner within bipolar silica nanochannel [...] Read more.
Glucose (Glu) detection, as a fundamental analytical technique, has applications in medical diagnostics, clinical testing, bioanalysis and environmental monitoring. In this work, a solid-phase electrochemiluminescence (ECL) enzyme sensor was developed by immobilizing the ECL emitter in a stable manner within bipolar silica nanochannel array film (bp-SNA), enabling sensitive glucose detection. The sensor was constructed using an electrochemical-assisted self-assembly (EASA) method with various siloxane precursors to quickly modify the surface of indium tin oxide (ITO) electrodes with a bilayer SNA of different charge properties. The inner layer, including negatively charged SNA (n-SNA), attracted the positively charged ECL emitter tris(2,2′-bipyridyl)ruthenium(II) (Ru(bpy)32+) via electrostatic interaction, while the outer layer, including positively charged SNA (p-SNA), repelled it, forming a barrier that efficiently concentrated the Ru(bpy)32+ emitter in a stable manner. After modifying the amine groups on the p-SNA surface with aldehyde groups, glucose oxidase (GOx) was covalently immobilized, forming the enzyme electrode. In the presence of glucose, GOx catalyzed the conversion of glucose to hydrogen peroxide (H2O2), which acted as a quencher for the Ru(bpy)32+/triethanolamine (TPA) system, reducing the ECL signal and enabling quantitative glucose analysis. The sensor exhibited a wide linear range from 10 μM to 7.0 mM and a limit of detection (LOD) of 1 μM (S/N = 3). Glucose detection in fetal bovine serum was realized. By replacing the enzyme type on the electrode surface, this sensing strategy holds the potential to provide a universal platform for the detection of different metabolites. Full article
(This article belongs to the Special Issue Recent Developments in Nanomaterial-Based Electrochemical Biosensors)
Show Figures

Figure 1

15 pages, 11950 KiB  
Article
A Fast and Efficient Hydrogen Chloride Sensor Based on a Polymer Composite Film Using a Novel Schiff-Based Triphenylamine Molecule as the Probe
by Hao Lv, Yaning Guo, Yinfeng Han, Jiaxin Ye, Jian Xiao and Xiaobing Hu
Materials 2025, 18(10), 2291; https://doi.org/10.3390/ma18102291 - 15 May 2025
Viewed by 405
Abstract
Hydrogen chloride (HCl) is one of the most hazardous air pollutants and can cause significant damage to human health and the environment. Therefore, the continuous quantitative monitoring of HCl is of great practical importance. In this work, a novel triphenylamine derivative, named TPTc-DBD, [...] Read more.
Hydrogen chloride (HCl) is one of the most hazardous air pollutants and can cause significant damage to human health and the environment. Therefore, the continuous quantitative monitoring of HCl is of great practical importance. In this work, a novel triphenylamine derivative, named TPTc-DBD, with a Schiff base structure was synthesized. The molecular structure of TPTc-DBD was determined by NMR analysis, FTIR analysis and single crystal diffraction analysis. On this basis, a porous polyvinylidene fluoride (PVDF) film containing TPTc-DBD was then prepared by a spin-coating method, and its sensitivity to HCl was evaluated by naked eye and ultraviolet-visible absorption spectrum, respectively. The detection limit of the composite porous film for HCl molecules was determined to be 5.8 mg/m3. Interestingly, the composite films absorbing HCl can be reactivated by NH3, which provides a cycle detection ability for HCl. After five testing cycles, the detection error remained below 1%. Furthermore, the microstructure of the film remained unchanged, highlighting its exceptional detection performance for HCl. Full article
Show Figures

Graphical abstract

13 pages, 4135 KiB  
Article
Uncooled Microbolometers Based on Nitrogen-Doped Hydrogenated Amorphous Silicon-Germanium (a-SiGe:H,N)
by Oscar Velandia, Alfonso Torres, Alfredo Morales, Luis Hernández, Alberto Luna, Karim Monfil, Javier Flores, Gustavo M. Minquiz, Ricardo Jiménez and Mario Moreno
Inorganics 2025, 13(4), 126; https://doi.org/10.3390/inorganics13040126 - 20 Apr 2025
Viewed by 767
Abstract
An uncooled microbolometer is a thermal sensor consisting of a membrane suspended from the substrate to provide thermal insulation. Typically, the membrane is composed of a stack of three films integrated by a supporting film, an IR sensing film, and an IR absorbing [...] Read more.
An uncooled microbolometer is a thermal sensor consisting of a membrane suspended from the substrate to provide thermal insulation. Typically, the membrane is composed of a stack of three films integrated by a supporting film, an IR sensing film, and an IR absorbing film. However, the above increases the thickness of the device and affects its mechanical stability and thermal mass, thereby reducing its performance. One solution is to use a single film as a membrane with both IR sensing and IR absorbing properties. In this regard, this work presents the fabrication and evaluation of uncooled microbolometers using nitrogen-doped hydrogenated amorphous silicon-germanium (a-SiGe:H,N) as a single IR-absorber/IR sensing membrane. The films were deposited via low frequency Plasma Enhanced Chemical Vapor Deposition (PECVD) at 200 °C. Three microbolometer configurations were fabricated using a-SiGe:H,N films deposited from a SiH4, GeH4, N2, and H2 gas mixture with different SiH4 and GeH4 flow rates and, consequently, with different properties, such as temperature coefficient of resistance (TCR) and conductivity at room temperature. The microbolometer that exhibited the best performance achieved a voltage responsivity of 7.26 × 105 V/W and a NETD of 22.35 mK at 140 Hz, which is comparable to state-of-the-art uncooled infrared (IR) sensors. These results confirm that the optimization of the deposition parameters of the a-SiGe:H,N films significantly affects the microbolometers final performance, enabling an optimal balance between thermal sensitivity (TCR) and conductivity. Full article
(This article belongs to the Special Issue Recent Research and Application of Amorphous Materials)
Show Figures

Figure 1

18 pages, 4156 KiB  
Article
Influence of P(V3D3-co-TFE) Copolymer Coverage on Hydrogen Detection Performance of a TiO2 Sensor at Different Relative Humidity for Industrial and Biomedical Applications
by Mihai Brinza, Lynn Schwäke, Lukas Zimoch, Thomas Strunskus, Thierry Pauporté, Bruno Viana, Tayebeh Ameri, Rainer Adelung, Franz Faupel, Stefan Schröder and Oleg Lupan
Chemosensors 2025, 13(4), 150; https://doi.org/10.3390/chemosensors13040150 - 19 Apr 2025
Viewed by 745
Abstract
The detection of hydrogen gas is crucial for both industrial fields, as a green energy carrier, and biomedical applications, where it is a biomarker for diagnosis. TiO2 nanomaterials are stable and sensitive to hydrogen gas, but their gas response can be negatively [...] Read more.
The detection of hydrogen gas is crucial for both industrial fields, as a green energy carrier, and biomedical applications, where it is a biomarker for diagnosis. TiO2 nanomaterials are stable and sensitive to hydrogen gas, but their gas response can be negatively affected by external factors such as humidity. Therefore, a strategy is required to mitigate these influences. The utilization of organic–inorganic hybrid gas sensors, specifically metal oxide gas sensors coated with ultra-thin copolymer films, is a relatively novel approach in this field. In this study, we examined the performance and long-term stability of novel TiO2-based sensors that were coated with poly(trivinyltrimethylcyclotrisiloxane-co-tetrafluoroethylene) (P(V3D3-co-TFE)) co-polymers. The P(V3D3-co-TFE)/TiO2 hybrid sensors exhibit high reliability even for more than 427 days. They exhibit excellent hydrogen selectivity, particularly in environments with high humidity. An optimum operating temperature of 300 °C to 350 °C was determined. The highest recorded response to H2 was approximately 153% during the initial set of measurements at a relative humidity of 10%. The developed organic–inorganic hybrid structures open wide opportunities for gas sensor tuning and customization, paving the way for innovative applications in industry and biomedical fields, such as exhaled breath analysis, etc. Full article
(This article belongs to the Special Issue Advanced Chemical Sensors for Gas Detection)
Show Figures

Figure 1

11 pages, 2582 KiB  
Article
N-Doped Porous Graphene Film Decorated with Palladium Nanoparticles for Enhanced Electrochemical Detection of Hydrogen Peroxide
by Yue Zhang, Shi Zheng, Jian Xiao and Jiangbo Xi
Catalysts 2025, 15(4), 298; https://doi.org/10.3390/catal15040298 - 21 Mar 2025
Viewed by 609
Abstract
Graphene film has excellent electrical conductivity and flexibility, with which it can be used as a versatile substrate to load active species to construct free-standing electrochemical sensors. In this work, Pd nanoparticle-decorated N-doped porous graphene film (Pd/NPGF) was prepared by a simple and [...] Read more.
Graphene film has excellent electrical conductivity and flexibility, with which it can be used as a versatile substrate to load active species to construct free-standing electrochemical sensors. In this work, Pd nanoparticle-decorated N-doped porous graphene film (Pd/NPGF) was prepared by a simple and mild strategy to enhance the electrochemical behavior of graphene film-based free-standing electrodes. The morphological structure and surface component of the Pd/NPGF were characterized by scanning electron microscopy, transmission electron microscopy, Raman spectra and X-ray photoelectron spectroscopy measurements. The results revealed that the Pd/NPGF contained abundant pores and uniformly dispersed Pd nanoparticles, which could bring a favorable electrochemical response. Due to the synergetic effects of abundant pores, uniform Pd nanoparticles and the substitutional doping of the graphene framework with N, the novel free-standing Pd/NPGF electrode provides a high active site exposure, a high specific area and fast electron/mass diffusion during electrochemical reactions. Considering the favorable flexibility and excellent electrical conductivity of Pd/NPGF, we selected hydrogen peroxide, a significant biomarker, as a model to investigate its electrochemical performance in neutral conditions. The electrochemical biosensor based on the Pd/NPGF electrode exhibited enhanced activity relative to the NPGF and porous graphene film (PGF) with different concentrations of H2O2. The Pd/NPGF electrode displayed a high sensitivity (176.7 μA·mM−1·cm−2), a large linear range from 5 μM to 36.3 mM, a low limit of detection (LOD) of 2.3 μM, excellent stability and a short response time, all of which qualify the Pd/NPGF electrode for a promising sensor for H2O2 sensing. Full article
(This article belongs to the Section Electrocatalysis)
Show Figures

Graphical abstract

30 pages, 5838 KiB  
Review
Natural Mineral Materials for Enhanced Performance in Aqueous Zinc-Ion Batteries
by Peilin Chen, Qinwen Zheng, Ke Wang and Yingmo Hu
Minerals 2025, 15(4), 328; https://doi.org/10.3390/min15040328 - 21 Mar 2025
Viewed by 795
Abstract
Aqueous zinc-ion batteries (AZIBs) have emerged as promising candidates for large-scale energy storage due to their inherent safety, cost-effectiveness, and environmental compatibility. However, challenges such as zinc -dendrite growth, hydrogen evolution reactions, and cathode dissolution hinder their practical application. To tackle these issues, [...] Read more.
Aqueous zinc-ion batteries (AZIBs) have emerged as promising candidates for large-scale energy storage due to their inherent safety, cost-effectiveness, and environmental compatibility. However, challenges such as zinc -dendrite growth, hydrogen evolution reactions, and cathode dissolution hinder their practical application. To tackle these issues, a wide range of investigative approaches have been conducted to improve the performance of AZIBs. Recently, much attention has been paid to the application of natural mineral materials in AZIBs, since these low-cost minerals align well with the high sensitivity of battery costs in large-scale energy storage. This review systematically explores the application of natural mineral materials to address these issues across battery components, including protective layers on anodes and cathodes, functional films of separators, additives in electrolytes, etc. A multitude of minerals, such as halloysite, montmorillonite, attapulgite, diatomite, and dickite, are highlighted for their unique structural and physicochemical properties, including hierarchical porosity, ion-selective channels, and surface charge regulation. Finally, prospects for future research are discussed to construct AZIBs with a combination of excellent performance and cost efficiency and to bridge laboratory innovations with commercial viability. Full article
(This article belongs to the Section Clays and Engineered Mineral Materials)
Show Figures

Figure 1

20 pages, 2903 KiB  
Article
Green Plasticizers from Dimer Acids with Selected Esters Classified Through the Nile Red [E(NR)] Polarity Scale
by Franco Cataldo
Liquids 2025, 5(1), 6; https://doi.org/10.3390/liquids5010006 - 10 Mar 2025
Viewed by 1316
Abstract
Dimer and trimer acids are interesting viscous liquids produced from fatty acids derived from renewable sources. The chemical structures of dimer and trimer acids are known and quite complex and are presented here, discussed and further elucidated through electronic absorption spectroscopy, FT-IR and [...] Read more.
Dimer and trimer acids are interesting viscous liquids produced from fatty acids derived from renewable sources. The chemical structures of dimer and trimer acids are known and quite complex and are presented here, discussed and further elucidated through electronic absorption spectroscopy, FT-IR and Raman spectroscopy. Dimer and trimer acids have a number of applications in their original form or in the form of derivatives. In the present study, a series of esters of dimer and trimer acids with alcohols from renewable sources were synthesized for use as plasticizers for rubber and plastics. The polarity of the dimer and trimer acids as well as their esters with alcohols from renewable sources (dimerates and trimerates) were systematically studied using a Nile red solvatochromic probe. The resulting E(NR) values were compared with the E(NR) values of the most common types of rubber and plastics. Compatibility and other physical properties expected from the E(NR) scale were studied and successfully confirmed in tire tread rubber compound formulations and in nitrile rubber and PVC matrices, confirming once again the sensitivity and the validity of the Nile red solvatochromic polarity scale for the development of new plasticizers. The validity of the liquids polarity measured with the Nile Red dye is supported by the correlation found between the E(NR) scale and the dielectric constants (ε) of carboxylic acids (including dimer and trimer acids, hydrogenated dimer acids and isostearic acid) and alcohols. A correlation was even found linking the E(NR) values the with the ε values of thin solid films of rubbers and plastics. In the case of the esters the correlation of their E(NR) values was found with the length of the aliphatic chains of the alcohols used in the esterification. Full article
Show Figures

Figure 1

27 pages, 3101 KiB  
Article
Development of a Sustainable Flexible Humidity Sensor Based on Tenebrio molitor Larvae Biomass-Derived Chitosan
by Ezekiel Edward Nettey-Oppong, Riaz Muhammad, Emmanuel Ackah, Hojun Yang, Ahmed Ali, Hyun-Woo Jeong, Seong-Wan Kim, Young-Seek Seok and Seung Ho Choi
Sensors 2025, 25(2), 575; https://doi.org/10.3390/s25020575 - 20 Jan 2025
Cited by 2 | Viewed by 1819
Abstract
This study presents the fabrication of a sustainable flexible humidity sensor utilizing chitosan derived from mealworm biomass as the primary sensing material. The chitosan-based humidity sensor was fabricated by casting chitosan and polyvinyl alcohol (PVA) films with interdigitated copper electrodes, forming a laminate [...] Read more.
This study presents the fabrication of a sustainable flexible humidity sensor utilizing chitosan derived from mealworm biomass as the primary sensing material. The chitosan-based humidity sensor was fabricated by casting chitosan and polyvinyl alcohol (PVA) films with interdigitated copper electrodes, forming a laminate composite suitable for real-time, resistive-type humidity detection. Comprehensive characterization of the chitosan film was performed using Fourier-transform infrared (FTIR) spectroscopy, contact angle measurements, and tensile testing, which confirmed its chemical structure, wettability, and mechanical stability. The developed sensor exhibited a broad range of measurements from 6% to 97% relative humidity (RH), a high sensitivity of 2.43 kΩ/%RH, and a rapid response time of 18.22 s with a corresponding recovery time of 22.39 s. Moreover, the chitosan-based humidity sensor also demonstrated high selectivity for water vapor when tested against various volatile organic compounds (VOCs). The superior performance of the sensor is attributed to the structural properties of chitosan, particularly its ability to form reversible hydrogen bonds with water molecules. This mechanism was further elucidated through molecular dynamics simulations, revealing that the conductivity in the sensor is modulated by proton mobility, which operates via the Grotthuss mechanism under high-humidity and the packed-acid mechanism under low-humidity conditions. Additionally, the chitosan-based humidity sensor was further seamlessly integrated into an Internet of Things (IoT) framework, enabling wireless humidity monitoring and real-time data visualization on a mobile device. Comparative analysis with existing polymer-based resistive-type sensors further highlighted the superior sensing range, rapid dynamic response, and environmental sustainability of the developed sensor. This eco-friendly, biomass-derived, eco-friendly sensor shows potential for applications in environmental monitoring, smart agriculture, and industrial process control. Full article
(This article belongs to the Special Issue Humidity Sensors Based on Spectroscopy)
Show Figures

Figure 1

15 pages, 2526 KiB  
Article
Development of Robust MWCNT Hydrogel Electrochemical Biosensor for Pyocyanin Detection by Phosphotungstic Acid Modification
by Ting Xue, Lei Gao, Xianying Dai, Shenhui Ma, Yuyu Bu and Yi Wan
Sensors 2025, 25(2), 557; https://doi.org/10.3390/s25020557 - 19 Jan 2025
Viewed by 950
Abstract
The trace detection of pyocyanin (PCN) is crucial for infection control, and electrochemical sensing technology holds strong potential for application in this field. A pivotal challenge in utilizing carbon materials within electrochemical sensors lies in constructing carbon-based films with robust adhesion. To address [...] Read more.
The trace detection of pyocyanin (PCN) is crucial for infection control, and electrochemical sensing technology holds strong potential for application in this field. A pivotal challenge in utilizing carbon materials within electrochemical sensors lies in constructing carbon-based films with robust adhesion. To address this issue, a novel composite hydrogel consisting of multi-walled carbon nanotubes/polyvinyl alcohol/phosphotungstic acid (MWCNTs/PVA/PTA) was proposed in this study, resulting in the preparation of a highly sensitive and stable PCN electrochemical sensor. The sensor is capable of achieving stable and continuous detection of PCN within the range of 5–100 μM across a variety of complex electrolyte environments. The limit of detection (LOD) is as low as 1.67 μM in PBS solution, 2.71 μM in LB broth, and 3.63 μM in artificial saliva. It was demonstrated that the introduction of PTA can complex with PVA through hydrogen bonding to form a stabilized hydrogel architecture, effectively addressing issues related to inadequate film adhesion and unstable sensing characteristics observed with MWCNTs/PVA alone. By adjusting the content of PTA within the hydrogel, an increase followed by a subsequent decrease in sensing current response was observed, elucidating how PTA regulates the active sites and conductive network of MWCNTs on the sensor surface. This study provides a new strategy for constructing stable carbon-based electrochemical sensors and offers feasible assistance towards advancing PCN electrochemical sensors for practical applications. Full article
(This article belongs to the Section Chemical Sensors)
Show Figures

Graphical abstract

Back to TopTop