Development of Robust MWCNT Hydrogel Electrochemical Biosensor for Pyocyanin Detection by Phosphotungstic Acid Modification
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials and Instruments
2.2. Preparation of the MWCNTs/PVA/PTA Electrochemical Sensor
3. Results and Discussion
3.1. Optimization of the MWCNTs/PVA/PTA Electrochemical Sensor
3.2. Mechanism of Hydrogel Membrane Adhesion Enhancement of Electrochemical Sensor
3.3. Electrochemical Behavior of Electrochemical Sensor
3.4. Sensing Performance of the MWCNTs/PVA/PTA4 Sensor
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Qin, S.; Xiao, W.; Zhou, C.; Pu, Q.; Deng, X.; Lan, L.; Liang, H.; Song, X.; Wu, M. Pseudomonas aeruginosa: Pathogenesis, virulence factors, antibiotic resistance, interaction with host, technology advances and emerging therapeutics. Signal Transduct. Target. Ther. 2022, 7, 199. [Google Scholar] [CrossRef] [PubMed]
- Dietrich, L.E.P.; Price-Whelan, A.; Petersen, A.; Whiteley, M.; Newman, D.K. The phenazine pyocyanin is a terminal signalling factor in the quorum sensing network of Pseudomonas aeruginosa. Mol. Microbiol. 2006, 61, 1308–1321. [Google Scholar] [CrossRef]
- Banakar, M.; Hamidi, M.; Khurshid, Z.; Zafar, M.S.; Sapkota, J.; Azizian, R.; Rokaya, D. Electrochemical biosensors for pathogen detection: An updated review. Biosensors 2022, 12, 927. [Google Scholar] [CrossRef]
- Reszka, K.J.; O’Malley, Y.; McCormick, M.L.; Denning, G.M.; Britigan, B.E. Oxidation of pyocyanin, a cytotoxic product from Pseudomonas aeruginosa, by microperoxidase 11 and hydrogen peroxide. Free. Radic. Biol. Med. 2004, 36, 1448–1459. [Google Scholar] [CrossRef]
- Liu, X.; Huang, L.; Qian, K. Nanomaterial-based electrochemical sensors: Mechanism, preparation, and application in biomedicine. Adv. NanoBiomed Res. 2021, 1, 2000104. [Google Scholar] [CrossRef]
- Zhu, C.; Yang, G.; Li, H.; Du, D.; Lin, Y. Electrochemical sensors and biosensors based on nanomaterials and nanostructures. Anal. Chem. 2015, 87, 230–249. [Google Scholar] [CrossRef]
- Şensoy, K.G.; Akpınar, F.; Muti, M. Nanomaterial-based electrochemical biosensors. Curr. Nanosci. 2024, 20, 18–30. [Google Scholar] [CrossRef]
- Bagyalakshmi, S.; Sivakami, A.; Pal, K.; Sarankumar, R.; Mahendran, C. Manufacturing of electrochemical sensors via carbon nanomaterials novel applications: A systematic review. J. Nanoparticle Res. 2022, 24, 201. [Google Scholar] [CrossRef]
- Patil, V.B.; Malode, S.J.; Tuwar, S.M.; Alshehri, M.A.; Shetti, N.P. Development of a glycine-MWCNT nanohybrid via electropolymerization for enhanced electrochemical detection of diclofenac. J. Mol. Struct. 2025, 1319, 139535. [Google Scholar] [CrossRef]
- Lu, Y.; Guo, T.; Zong, S.-W.; Zhu, J.; Wang, Q.; Zhang, K.-L. New cosolvent-dependent electrochemical sensing behavior of a pair of isostructural ionic nickel(II) coordination polymers. J. Mol. Struct. 2025, 1319, 139569. [Google Scholar] [CrossRef]
- Adewunmi, A.A.; Ismail, S.; Sultan, A.S. Carbon Nanotubes (CNTs) Nanocomposite hydrogels developed for various applications: A critical review. J. Inorg. Organomet. Polym. Mater. 2016, 26, 717–737. [Google Scholar] [CrossRef]
- Yang, J.; Bai, R.; Chen, B.; Suo, Z. Hydrogel adhesion: A supramolecular synergy of chemistry, topology, and mechanics. Adv. Funct. Mater. 2020, 30, 1901693. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, Q.; Dai, Z.; Dai, Y.; Xia, F.; Zhang, X. Nanocomposite adhesive hydrogels: From design to application. J. Mater. Chem. B 2021, 9, 585–593. [Google Scholar] [CrossRef]
- Yuk, H.; Zhang, T.; Lin, S.; Parada, G.A.; Zhao, X. Tough bonding of hydrogels to diverse non-porous surfaces. Nat. Mater. 2016, 15, 190–196. [Google Scholar] [CrossRef]
- Yuk, H.; Zhang, T.; Parada, G.A.; Liu, X.; Zhao, X. Skin-inspired hydrogel–elastomer hybrids with robust interfaces and functional microstructures. Nat. Commun. 2016, 7, 12028. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Celiz, A.D.; Yang, J.; Yang, Q.; Wamala, I.; Whyte, W.; Seo, B.R.; Vasilyev, N.V.; Vlassak, J.J.; Suo, Z.; et al. Tough adhesives for diverse wet surfaces. Science 2017, 357, 378–381. [Google Scholar] [CrossRef]
- Yang, J.; Bai, R.; Suo, Z. Topological Adhesion of Wet Materials. Adv. Mater. 2018, 30, e1800671. [Google Scholar] [CrossRef] [PubMed]
- Rose, S.; Prevoteau, A.; Elzière, P.; Hourdet, D.; Marcellan, A.; Leibler, L. Nanoparticle solutions as adhesives for gels and biological tissues. Nature 2014, 505, 382–385. [Google Scholar] [CrossRef] [PubMed]
- Macht, J.; Janik, M.J.; Neurock, M.; Iglesia, E. Mechanistic consequences of composition in acid catalysis by polyoxometalate keggin clusters. J. Am. Chem. Soc. 2008, 130, 10369–10379. [Google Scholar] [CrossRef]
- Knaeble, W.J. Catalytic Consequences of Acid Strength and Site Proximity for Acid Chemistry on Solid Brønsted Acid Catalysts. Ph.D. Thesis, University of California, Berkeley, CA, USA, 2015. [Google Scholar]
- Zheng, Z.; Zhou, Q.; Li, M.; Yin, P. Poly(ethylene glycol) nanocomposites of sub-nanometer metal oxide clusters for dynamic semi-solid proton conductive electrolytes. Chem. Sci. 2019, 10, 7333–7339. [Google Scholar] [CrossRef] [PubMed]
- Jimenez, A.M.; Altorbaq, A.S.; Müller, A.J.; Kumar, S.K. Polymer crystallization under confinement by well-dispersed nanoparticles. Macromolecules 2020, 53, 10256–10266. [Google Scholar] [CrossRef]
- Chen, J.; Dong, Z.; Li, M.; Li, X.; Chen, K.; Yin, P. Ultra-strong and proton conductive aqua-based adhesives from facile blending of polyvinyl alcohol and tungsten oxide clusters. Adv. Funct. Mater. 2022, 32, 2111892. [Google Scholar] [CrossRef]
- Kim, Y.S.; Wang, F.; Hickner, M.; Zawodzinski, T.A.; McGrath, J.E. Fabrication and characterization of heteropolyacid (H3PW12O40)/directly polymerized sulfonated poly(arylene ether sulfone) copolymer composite membranes for higher temperature fuel cell applications. J. Membr. Sci. 2003, 212, 263–282. [Google Scholar] [CrossRef]
- Adelnia, H.; Ensandoost, R.; Moonshi, S.S.; Gavgani, J.N.; Vasafi, E.I.; Ta, H.T. Freeze/thawed polyvinyl alcohol hydrogels: Present, past and future. Eur. Polym. J. 2022, 164, 110974. [Google Scholar] [CrossRef]
- Chen, J.-H. Kinetics and Mechanism Studies on Dispersion of CNT in SDS Aqueous Solutions. J. Chin. Chem. Soc. 2014, 61, 481–489. [Google Scholar] [CrossRef]
- Popov, I.; Zhu, Z.; Young-Gonzales, A.R.; Sacci, R.L.; Mamontov, E.; Gainaru, C.; Paddison, S.J.; Sokolov, A.P. Search for a Grotthuss mechanism through the observation of proton transfer. Commun. Chem. 2023, 6, 77. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, H.; Wu, Q.; Xu, X.; Lu, S.; Xiang, Y. A poly(vinyl alcohol)-based composite membrane with immobilized phosphotungstic acid molecules for direct methanol fuel cells. Electrochim. Acta 2017, 224, 369–377. [Google Scholar] [CrossRef]
- Aziz, S.B.; Abdulwahid, R.T.; Rasheed, M.A.; Abdullah, O.G.; Ahmed, H.M. Polymer blending as a novel approach for tuning the SPR peaks of silver nanoparticles. Polymers 2017, 9, 486. [Google Scholar] [CrossRef]
- Vieira, N.C.S.; Fernandes, E.G.R.; de Queiroz, A.A.A.; Guimarães, F.E.G.; Zucolotto, V. Indium tin oxide synthesized by a low cost route as SEGFET pH sensor. Mater. Res.-Ibero-Am. J. Mater. 2013, 16, 1156–1160. [Google Scholar] [CrossRef]
- El Nemr, A.; Serag, E.; El-Maghraby, A.; Fathy, S.A.; Hamid, F.F.A. Manufacturing of pH sensitive PVA/PVP/MWCNT and PVA/PEG/MWCNT nanocomposites: An approach for significant drug release. J. Macromol. Sci. Part A-Pure Appl. Chem. 2019, 56, 781–793. [Google Scholar] [CrossRef]
- Oghli, A.H.; Soleymanpour, A. Polyoxometalate/reduced graphene oxide modified pencil graphite sensor for the electrochemical trace determination of paroxetine in biological and pharmaceutical media. Mater. Sci. Eng. C-Mater. Biol. Appl. 2020, 108, 110407. [Google Scholar] [CrossRef] [PubMed]
- Farag, O.F.; Abdel-Fattah, E. Synthesis and characterization PVA/plasma-functionalized MWCNTs nanocomposites films. J. Polym. Res. 2023, 30, 183. [Google Scholar] [CrossRef]
- Prado, L.A.S.d.A.; Ponce, M.; Funari, S.; Schulte, K.; Garamus, V.; Willumeit, R.; Nunes, S. SAXS/WAXS characterization of proton-conducting polymer membranes containing phosphomolybdic acid. J. Non-Cryst. Solids 2005, 351, 2194–2199. [Google Scholar] [CrossRef]
- Liao, W.; Qi, L.; Wang, Y.; Qin, J.; Liu, G.; Liang, S.; He, H.; Jiang, L. Interfacial engineering promoting electrosynthesis of ammonia over Mo/Phosphotungstic acid with high performance. Adv. Funct. Mater. 2021, 31, 2009151. [Google Scholar] [CrossRef]
- Xiong, B.; Zhao, W.; Chen, L.; Shi, J. One-step synthesis of W2C@N,P-C nanocatalysts for efficient hydrogen electrooxidation across the whole pH range. Adv. Funct. Mater. 2019, 29, 1902505. [Google Scholar] [CrossRef]
- Chen, Z.; Xu, Y.; Ding, D.; Song, G.; Gan, X.; Li, H.; Wei, W.; Chen, J.; Li, Z.; Gong, Z.; et al. Thermal migration towards constructing W-W dual-sites for boosted alkaline hydrogen evolution reaction. Nat. Commun. 2022, 13, 763. [Google Scholar] [CrossRef] [PubMed]
- Petkovska, S.; Gulaboski, R. Theoretical analysis of a surface catalytic mechanism associated with reversible chemical reaction under conditions of cyclic staircase voltammetry. Electroanalysis 2020, 32, 992–1004. [Google Scholar] [CrossRef]
- Elgrishi, N.; Rountree, K.J.; McCarthy, B.D.; Rountree, E.S.; Eisenhart, T.T.; Dempsey, J.L. A practical beginner’s guide to cyclic voltammetry. J. Chem. Educ. 2018, 95, 197–206. [Google Scholar] [CrossRef]
- Rashid, J.I.A.; Kannan, V.; Ahmad, M.H.; Mon, A.A.; Taufik, S.; Miskon, A.; Ong, K.K.; Yusof, N.A. An electrochemical sensor based on gold nanoparticles-functionalized reduced graphene oxide screen printed electrode for the detection of pyocyanin biomarker in Pseudomonas aeruginosa infection. Mater. Sci. Eng. C-Mater. Biol. Appl. 2021, 120, 111625. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiang, X.; Zhang, J.; Zhang, H.; Li, Y. Simultaneous voltammetric determination of acetaminophen and isoniazid using MXene modified screen-printed electrode. Biosens. Bioelectron. 2019, 130, 315–321. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.-S.; Lu, Y. The mystery of electrolyte concentration: From superhigh to ultralow. ACS Energy Lett. 2020, 5, 3633–3636. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhang, J.; Song, J.; Yang, J.; Du, Z.; Zhao, W.; Guo, H.; Wen, C.; Li, Q.; Sui, X.; et al. A multifunctional pro-healing zwitterionic hydrogel for simultaneous optical monitoring of pH and glucose in diabetic wound treatment. Adv. Funct. Mater. 2020, 30, 1905493. [Google Scholar] [CrossRef]
- Li, M.; Wang, T.; Liu, X.-L.; Bao, Z.-L.; Qian, P.-F.; Liu, K.; Shi, Y.; Ming, X.; Geng, H.-Z. Highly stable phosphotungstic acid/Au dual doped carbon nanotube transparent conductive films for transparent flexible heaters. Carbon 2023, 207, 219–229. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xue, T.; Gao, L.; Dai, X.; Ma, S.; Bu, Y.; Wan, Y. Development of Robust MWCNT Hydrogel Electrochemical Biosensor for Pyocyanin Detection by Phosphotungstic Acid Modification. Sensors 2025, 25, 557. https://doi.org/10.3390/s25020557
Xue T, Gao L, Dai X, Ma S, Bu Y, Wan Y. Development of Robust MWCNT Hydrogel Electrochemical Biosensor for Pyocyanin Detection by Phosphotungstic Acid Modification. Sensors. 2025; 25(2):557. https://doi.org/10.3390/s25020557
Chicago/Turabian StyleXue, Ting, Lei Gao, Xianying Dai, Shenhui Ma, Yuyu Bu, and Yi Wan. 2025. "Development of Robust MWCNT Hydrogel Electrochemical Biosensor for Pyocyanin Detection by Phosphotungstic Acid Modification" Sensors 25, no. 2: 557. https://doi.org/10.3390/s25020557
APA StyleXue, T., Gao, L., Dai, X., Ma, S., Bu, Y., & Wan, Y. (2025). Development of Robust MWCNT Hydrogel Electrochemical Biosensor for Pyocyanin Detection by Phosphotungstic Acid Modification. Sensors, 25(2), 557. https://doi.org/10.3390/s25020557