Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (272)

Search Parameters:
Keywords = hydrogen fuel cell electric vehicles

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 77176 KiB  
Article
Advancing Energy Management Strategies for Hybrid Fuel Cell Vehicles: A Comparative Study of Deterministic and Fuzzy Logic Approaches
by Mohammed Essoufi, Mohammed Benzaouia, Bekkay Hajji, Abdelhamid Rabhi and Michele Calì
World Electr. Veh. J. 2025, 16(8), 444; https://doi.org/10.3390/wevj16080444 - 6 Aug 2025
Abstract
The increasing depletion of fossil fuels and their environmental impact have led to the development of fuel cell hybrid electric vehicles. By combining fuel cells with batteries, these vehicles offer greater efficiency and zero emissions. However, their energy management remains a challenge requiring [...] Read more.
The increasing depletion of fossil fuels and their environmental impact have led to the development of fuel cell hybrid electric vehicles. By combining fuel cells with batteries, these vehicles offer greater efficiency and zero emissions. However, their energy management remains a challenge requiring advanced strategies. This paper presents a comparative study of two developed energy management strategies: a deterministic rule-based approach and a fuzzy logic approach. The proposed system consists of a proton exchange membrane fuel cell (PEMFC) as the primary energy source and a lithium-ion battery as the secondary source. A comprehensive model of the hybrid powertrain is developed to evaluate energy distribution and system behaviour. The control system includes a model predictive control (MPC) method for fuel cell current regulation and a PI controller to maintain DC bus voltage stability. The proposed strategies are evaluated under standard driving cycles (UDDS and NEDC) using a simulation in MATLAB/Simulink. Key performance indicators such as fuel efficiency, hydrogen consumption, battery state-of-charge, and voltage stability are examined to assess the effectiveness of each approach. Simulation results demonstrate that the deterministic strategy offers a structured and computationally efficient solution, while the fuzzy logic approach provides greater adaptability to dynamic driving conditions, leading to improved overall energy efficiency. These findings highlight the critical role of advanced control strategies in improving FCHEV performance and offer valuable insights for future developments in hybrid-vehicle energy management. Full article
(This article belongs to the Special Issue Power and Energy Systems for E-Mobility, 2nd Edition)
Show Figures

Figure 1

28 pages, 4460 KiB  
Article
New Protocol for Hydrogen Refueling Station Operation
by Carlos Armenta-Déu
Future Transp. 2025, 5(3), 96; https://doi.org/10.3390/futuretransp5030096 - 1 Aug 2025
Viewed by 241
Abstract
This work proposes a new method to refill fuel cell electric vehicle hydrogen tanks from a storage system in hydrogen refueling stations. The new method uses the storage tanks in cascade to supply hydrogen to the refueling station dispensers. This method reduces the [...] Read more.
This work proposes a new method to refill fuel cell electric vehicle hydrogen tanks from a storage system in hydrogen refueling stations. The new method uses the storage tanks in cascade to supply hydrogen to the refueling station dispensers. This method reduces the hydrogen compressor power requirement and the energy consumption for refilling the vehicle tank; therefore, the proposed alternative design for hydrogen refueling stations is feasible and compatible with low-intensity renewable energy sources like solar photovoltaic, wind farms, or micro-hydro plants. Additionally, the cascade method supplies higher pressure to the dispenser throughout the day, thus reducing the refueling time for specific vehicle driving ranges. The simulation shows that the energy saving using the cascade method achieves 9% to 45%, depending on the vehicle attendance. The hydrogen refueling station design supports a daily vehicle attendance of 9 to 36 with a complete refueling process coverage. The carried-out simulation proves that the vehicle tank achieves the maximum attainable pressure of 700 bars with a storage system of six tanks. The data analysis shows that the daily hourly hydrogen demand follows a sinusoidal function, providing a practical tool to predict the hydrogen demand for any vehicle attendance, allowing the planners and station designers to resize the elements to fulfill the new requirements. The proposed system is also applicable to hydrogen ICE vehicles. Full article
Show Figures

Figure 1

26 pages, 3489 KiB  
Article
Techno-Economic Analysis of Hydrogen Hybrid Vehicles
by Dapai Shi, Jiaheng Wang, Kangjie Liu, Chengwei Sun, Zhenghong Wang and Xiaoqing Liu
World Electr. Veh. J. 2025, 16(8), 418; https://doi.org/10.3390/wevj16080418 - 24 Jul 2025
Viewed by 248
Abstract
Driven by carbon neutrality and peak carbon policies, hydrogen energy, due to its zero-emission and renewable properties, is increasingly being used in hydrogen fuel cell vehicles (H-FCVs). However, the high cost and limited durability of H-FCVs hinder large-scale deployment. Hydrogen internal combustion engine [...] Read more.
Driven by carbon neutrality and peak carbon policies, hydrogen energy, due to its zero-emission and renewable properties, is increasingly being used in hydrogen fuel cell vehicles (H-FCVs). However, the high cost and limited durability of H-FCVs hinder large-scale deployment. Hydrogen internal combustion engine hybrid electric vehicles (H-HEVs) are emerging as a viable alternative. Research on the techno-economics of H-HEVs remains limited, particularly in systematic comparisons with H-FCVs. This paper provides a comprehensive comparison of H-FCVs and H-HEVs in terms of total cost of ownership (TCO) and hydrogen consumption while proposing a multi-objective powertrain parameter optimization model. First, a quantitative model evaluates TCO from vehicle purchase to disposal. Second, a global dynamic programming method optimizes hydrogen consumption by incorporating cumulative energy costs into the TCO model. Finally, a genetic algorithm co-optimizes key design parameters to minimize TCO. Results show that with a battery capacity of 20.5 Ah and an H-FC peak power of 55 kW, H-FCV can achieve optimal fuel economy and hydrogen consumption. However, even with advanced technology, their TCO remains higher than that of H-HEVs. H-FCVs can only become cost-competitive if the unit power price of the fuel cell system is less than 4.6 times that of the hydrogen engine system, assuming negligible fuel cell degradation. In the short term, H-HEVs should be prioritized. Their adoption can also support the long-term development of H-FCVs through a complementary relationship. Full article
Show Figures

Figure 1

34 pages, 5374 KiB  
Review
Analysis of Infrastructure Requirements for Sustainable Transportation Technologies
by Richard A. Dunlap
Energies 2025, 18(13), 3556; https://doi.org/10.3390/en18133556 - 5 Jul 2025
Viewed by 759
Abstract
At present, transportation energy comes primarily from fossil fuels. In order to mitigate the effects of greenhouse gas emissions, it is necessary to transition to low-carbon transportation technologies. These technologies can include battery electric vehicles, fuel cell vehicles and biofuel vehicles. This transition [...] Read more.
At present, transportation energy comes primarily from fossil fuels. In order to mitigate the effects of greenhouse gas emissions, it is necessary to transition to low-carbon transportation technologies. These technologies can include battery electric vehicles, fuel cell vehicles and biofuel vehicles. This transition includes not only the development and production of suitable vehicles, but also the development of appropriate infrastructure. For example, in the case of battery electric vehicles, this infrastructure would include additional grid capacity for battery charging. For fuel cell vehicles, infrastructure could include facilities for the production of suitable electrofuels, which, again, would require additional grid capacity. In the present paper, we look at some specific examples of infrastructure requirements for battery electric vehicles and vehicles using hydrogen and other electrofuels in either internal combustion engines or fuel cells. Analysis includes the necessary additional grid capacity, energy storage requirements and land area associated with renewable energy generation by solar photovoltaics and wind. The present analysis shows that the best-case scenario corresponds to the use of battery electric vehicles powered by electricity from solar photovoltaics. This situation corresponds to a 47% increase in grid electricity generation and the utilization of 1.7% of current crop land. Full article
(This article belongs to the Special Issue The Future of Renewable Energy: 2nd Edition)
Show Figures

Figure 1

64 pages, 1174 KiB  
Article
Integrating Hydrogen into Power Systems: A Comprehensive Review
by Javier Barba, Miguel Cañas-Carretón, Miguel Carrión, Gabriel R. Hernández-Labrado, Carlos Merino, José Ignacio Muñoz and Rafael Zárate-Miñano
Sustainability 2025, 17(13), 6117; https://doi.org/10.3390/su17136117 - 3 Jul 2025
Viewed by 692
Abstract
Hydrogen is widely recognized as a versatile energy carrier with significant potential to support the decarbonization of the power, transport, and industrial sectors. This paper analyzes the integration of hydrogen into power systems and offers an overview of the operation of electrolyzers and [...] Read more.
Hydrogen is widely recognized as a versatile energy carrier with significant potential to support the decarbonization of the power, transport, and industrial sectors. This paper analyzes the integration of hydrogen into power systems and offers an overview of the operation of electrolyzers and fuel cells for readers with limited background in these technologies. Applications of hydrogen beyond the scope of power systems are not considered. Then, this paper explores the mathematical modeling of hydrogen-related technologies, including electrolyzers and fuel cells, to assess their impact on hydrogen production and electricity generation. The paper also reviews recent developments in electricity storage through power-to-gas systems and examines planning models for integrating hydrogen into power systems. Furthermore, the role of hydrogen facilities in power system operations is analyzed in depth. The integration of hydrogen vehicles into power grids is also discussed, emphasizing their diverse applications. Additionally, the paper examines the production of ammonia, which can be used as a fuel for electricity generation. Finally, the most important conclusions of the literature review are summarized, offering an overview of the main findings and identified research gaps. Full article
(This article belongs to the Special Issue The Role of Hydrogen in Future Renewable Power Systems)
Show Figures

Figure 1

33 pages, 2382 KiB  
Article
Systemic Scaling of Powertrain Models with Youla and H Driver Control
by Ricardo Tan, Siddhesh Yadav and Francis Assadian
Energies 2025, 18(12), 3126; https://doi.org/10.3390/en18123126 - 13 Jun 2025
Viewed by 324
Abstract
This paper presents a methodology for systematically scaling vehicle powertrain and other models and an approach for using model parameters and scaling variables to perform controller design. The parameter scaling method allows for high degrees of scaling while maintaining the target performance metrics, [...] Read more.
This paper presents a methodology for systematically scaling vehicle powertrain and other models and an approach for using model parameters and scaling variables to perform controller design. The parameter scaling method allows for high degrees of scaling while maintaining the target performance metrics, such as vehicle speed tracking, with minimal changes to the model code by the researcher. A comparison of proportional-integral, Youla parameterization, H, and hybrid Youla-H controllers is provided, along with the respective methods for maintaining controller performance metrics across degrees of model scaling factors. The application of the scaling and various control design methods to an existing model of a hydrogen fuel cell and a battery electric vehicle powertrain allows for the development of a representative scale model to be compared with experimental data generated by an actual scale vehicle. The comparison between scaled simulation and experimental data will eventually be used to inform the expected performance of the full-size electric vehicle based on full-size simulation results. Full article
(This article belongs to the Section E: Electric Vehicles)
Show Figures

Figure 1

23 pages, 705 KiB  
Article
Life Cycle Assessment Based on Whole Industry Chain Assessment of FCEVs
by Renzhi Lyu, Zhenpo Wang and Zhaosheng Zhang
Sustainability 2025, 17(12), 5431; https://doi.org/10.3390/su17125431 - 12 Jun 2025
Viewed by 635
Abstract
Fuel cell electric vehicles (FCEVs) offer a promising solution for energy saving and emission reduction in transportation. However, several challenges must be addressed for their application. This study conducts a full life cycle assessment (LCA) of FCEVs, dividing it into the fuel cycle [...] Read more.
Fuel cell electric vehicles (FCEVs) offer a promising solution for energy saving and emission reduction in transportation. However, several challenges must be addressed for their application. This study conducts a full life cycle assessment (LCA) of FCEVs, dividing it into the fuel cycle and vehicle cycle to separately assess energy consumption (EC) and emissions. The fuel cycle examined 18 hydrogen production–storage–transport pathways, while the vehicle cycle evaluates energy use and emissions associated with vehicle component production, assembly, disposal, battery production, and fluid consumption. Based on the GREET database, total energy consumption and emissions over a lifetime were calculated. Five environmental impact indicators were used for evaluation, and a comprehensive environmental assessment (CEA) indicator was established for different scenarios. Results indicate that nuclear thermochemical water splitting is the best hydrogen production method, and pipeline transportation is the most efficient for hydrogen transport. Additionally, water electrolysis for hydrogen production is only practical when paired with renewable energy. The study also identified that the Hydrogen production method, “Body”, “Proton Exchange Membrane Fuel Cells (PEMFCs) System”, “Chassis”, “Hydrogen Storage System” and lifetime significantly impact energy consumption and emissions. These stages or products represent high-impact leverage points for enhancing the lifecycle sustainability evaluation of FCEVs. Full article
Show Figures

Figure 1

25 pages, 823 KiB  
Review
Development and Prospects of Biomass-Based Fuels for Heavy-Duty Truck Applications: A Case Study in Oregon
by Asiful Alam, Robert J. Macias, John Sessions, Chukwuemeka Valentine Okolo, Swagat Attreya, Kevin Lyons and Andres Susaeta
Energies 2025, 18(11), 2747; https://doi.org/10.3390/en18112747 - 26 May 2025
Viewed by 604
Abstract
Decarbonizing Oregon’s heavy-duty trucking sector, which accounts for 24% of the state’s transportation emissions, is essential for meeting carbon reduction targets. Drop-in fuels such as renewable diesel, biodiesel, and synthetic fuels provide an immediate and effective solution, reducing emissions by up to 80% [...] Read more.
Decarbonizing Oregon’s heavy-duty trucking sector, which accounts for 24% of the state’s transportation emissions, is essential for meeting carbon reduction targets. Drop-in fuels such as renewable diesel, biodiesel, and synthetic fuels provide an immediate and effective solution, reducing emissions by up to 80% while utilizing the existing diesel infrastructure. In 2023, Oregon’s heavy-duty trucks consumed 450 million gallons of diesel, with drop-in fuels making up 15% of the fuel mix. Renewable diesel, which is growing at a rate of 30% annually, accounted for 10% of this volume, thanks to incentives from Oregon’s Clean Fuels Program. By 2030, drop-in fuels could capture 40% of the market, reducing CO2 emissions by 3.5 million metric tons annually, assuming continued policy support and advancements in feedstock sourcing. Meeting the projected demand of 200 million gallons annually and securing sustainable feedstock remain critical challenges. Advances in synthetic fuels, like Power-to-Liquids (PtL) from renewable energy, may further contribute to decarbonization, with costs expected to decrease by 20% over the next decade. Oregon aims for a 50% reduction in emissions from heavy-duty trucks by 2050, using a mix of drop-in fuels and emerging technologies. While hydrogen fuel cells and electric trucks face challenges, innovations in infrastructure and vehicle design will be key to the success of Oregon’s long-term decarbonization strategy. Full article
Show Figures

Figure 1

10 pages, 638 KiB  
Communication
New Heavy-Duty Sampling System for Hydrogen Refuelling Stations—Comparison of Impact of Light-Duty Versus Heavy-Duty Sampling Techniques on Hydrogen Fuel Quality
by Linga Reddy Enakonda, Thomas Bacquart, Shirin Khaki, Fangyu Zhang, Hannah Kerr, Benjamin Longhurst and Abigail S. O. Morris
Hydrogen 2025, 6(2), 35; https://doi.org/10.3390/hydrogen6020035 - 21 May 2025
Viewed by 1503
Abstract
The hydrogen fuel quality is critical to the efficiency and longevity of fuel cell electric vehicles (FCEVs), with ISO 14687:2019 grade D establishing stringent impurity limits. This study compared two different sampling techniques for assessing the hydrogen fuel quality, focusing on the National [...] Read more.
The hydrogen fuel quality is critical to the efficiency and longevity of fuel cell electric vehicles (FCEVs), with ISO 14687:2019 grade D establishing stringent impurity limits. This study compared two different sampling techniques for assessing the hydrogen fuel quality, focusing on the National Physical Laboratory hydrogen direct sampling apparatus (NPL DirSAM) from a 35 MPa heavy-duty (HD) dispenser and qualitizer sampling from a 70 MPa light-duty (LD) nozzle, both of which were deployed on the same day at a local hydrogen refuelling station (HRS). The collected samples were analysed as per the ISO 14687:2019 contaminants using the NPL H2-quality laboratory. The NPL DirSAM was able to sample an HD HRS, demonstrating the ability to realise such sampling on an HD nozzle. The comparison of the LD (H2 Qualitizer sampling) and HD (NPL DirSAM) devices showed good agreement but significant variation, especially for sulphur compounds, non-methane hydrocarbons and carbon dioxide. These variations may be related to the HRS difference between the LD and HD devices (e.g., flow path, refuelling conditions and precooling for light duty versus no precooling for heavy duty). Further study of HD and LD H2 fuel at HRSs is needed for a better understanding. Full article
Show Figures

Figure 1

28 pages, 4009 KiB  
Article
A Pricing Strategy for Key Customers: A Method Considering Disaster Outage Compensation and System Stability Penalty
by Seonghyeon Kim, Yongju Son, Hyeon Woo, Xuehan Zhang and Sungyun Choi
Sustainability 2025, 17(10), 4506; https://doi.org/10.3390/su17104506 - 15 May 2025
Viewed by 423
Abstract
When power system equipment fails due to disasters, resulting in the isolation of parts of the network, the loads within the isolated system cannot be guaranteed a continuous power supply. However, for critical loads—such as hospitals or data centers—continuous power supply is of [...] Read more.
When power system equipment fails due to disasters, resulting in the isolation of parts of the network, the loads within the isolated system cannot be guaranteed a continuous power supply. However, for critical loads—such as hospitals or data centers—continuous power supply is of utmost importance. While distributed energy resources (DERs) within the network can supply power to some loads, outages may lead to compensation and fairness issues regarding the unsupplied loads. In response, this study proposes a methodology to determine the appropriate power contract price for key customers by estimating the unsupplied power demand for critical loads in isolated networks and incorporating both outage compensation costs and voltage stability penalties. The microgrid under consideration comprises DERs—including electric vehicles (EVs), fuel cell electric vehicles (FCEVs), photovoltaic (PV) plants, and wind turbine (WT) plants—as well as controllable resources such as battery energy storage systems (BESS) and hydrogen energy storage systems (HESS). It serves both residential load clusters and critical loads associated with social infrastructure. The proposed methodology is structured in two stages. In normal operating conditions, optimal scheduling is simulated using second-order conic programming (SOCP). In the event of a fault, mixed-integer SOCP (MISOCP) is employed to determine the optimal load shedding strategy. A case study is conducted using the IEEE 123 bus test node system to simulate the outage compensation cost calculation and voltage penalty assessment processes. Based on this analysis, a contract price for key customers that considers both disaster-induced outages and voltage impacts is presented. Full article
Show Figures

Figure 1

14 pages, 3007 KiB  
Article
Deep Learning-Based Performance Modeling of Hydrogen Fuel Cells Using Artificial Neural Networks: A Comparative Study of Optimizers
by Hafsa Abbade, Hassan El Fadil, Abdellah Lassioui, Abdessamad Intidam, Ahmed Hamed, Yassine El Asri, Abdelouahad Fhail and Anwar Hasni
Processes 2025, 13(5), 1453; https://doi.org/10.3390/pr13051453 - 9 May 2025
Viewed by 708
Abstract
Today, hydrogen fuel cells occupy a crucial position in sustainable energy systems. However, a precise model of their performance is needed to improve their efficiency and integrate them into hydrogen electric vehicles. This paper presents a hydrogen fuel cell model based on artificial [...] Read more.
Today, hydrogen fuel cells occupy a crucial position in sustainable energy systems. However, a precise model of their performance is needed to improve their efficiency and integrate them into hydrogen electric vehicles. This paper presents a hydrogen fuel cell model based on artificial neural networks (ANNs) to predict its performance characteristics. Using experimental data from a PEMFC NEXA 1200 hydrogen fuel cell in the ISA laboratory, an ANN model optimized by deep learning was developed, integrating advanced training techniques. The model’s performance was evaluated on independent test sets, revealing predictive precision with a low mean squared error (MSE) of 0.0429, a low Mean Absolute Percentage Error (MAPE) of 1.05%, a low Root-Mean-Square Error (RMSE) of 0.2071, and a high coefficient of determination (R2) of 0.9071. The model’s development and evaluation will be reviewed here in order to visualize the training progress and the results of the simulation. The main advantages of the proposed ANN model lie in both its flexible architecture, which can capture complex relationships without the need for explicit physical models, and its predictive and optimization capability. Full article
(This article belongs to the Special Issue Sustainable Hydrogen Technologies and Their Value Chains)
Show Figures

Figure 1

18 pages, 5771 KiB  
Article
Optimizing Fuel Economy in Hybrid Electric Vehicles Using the Equivalent Consumption Minimization Strategy Based on the Arithmetic Optimization Algorithm
by Houssam Eddine Ghadbane and Ahmed F. Mohamed
Mathematics 2025, 13(9), 1504; https://doi.org/10.3390/math13091504 - 2 May 2025
Cited by 1 | Viewed by 610
Abstract
Due to their improved performance and advantages for the environment, fuel cell hybrid electric cars, or FCEVs, have garnered a lot of attention. Establishing an energy management strategy (EMS) for fuel cell electric vehicles (FCEVs) is essential for optimizing power distribution among various [...] Read more.
Due to their improved performance and advantages for the environment, fuel cell hybrid electric cars, or FCEVs, have garnered a lot of attention. Establishing an energy management strategy (EMS) for fuel cell electric vehicles (FCEVs) is essential for optimizing power distribution among various energy sources. This method addresses concerns regarding hydrogen utilization and efficiency. The Arithmetic Optimization Algorithm is employed in the proposed energy management system to enhance the strategy of maximizing external energy, leading to decreased hydrogen consumption and increased system efficiency. The performance of the proposed EMS is evaluated using the Federal Test Procedure (FTP-75) to replicate city driving situations and is compared with existing algorithms through a comparison co-simulation. The co-simulation findings indicate that the suggested EMS surpasses current approaches in reducing fuel consumption, potentially decreasing it by 59.28%. The proposed energy management strategy demonstrates an 8.43% improvement in system efficiency. This enhancement may reduce dependence on fossil fuels and mitigate the adverse environmental effects associated with automobile emissions. To assess the feasibility and effectiveness of the proposed EMS, the system is tested within a Processor-in-the-Loop (PIL) co-simulation environment using the C2000 launchxl-f28379d Digital Signal Processing (DSP) board. Full article
(This article belongs to the Special Issue Intelligence Optimization Algorithms and Applications)
Show Figures

Figure 1

25 pages, 6825 KiB  
Article
Embedded System for Monitoring Fuel Cell Power Supply System in Mobile Applications
by Miroslav Matejček, Mikuláš Šostronek, Eva Popardovská, Vladimír Popardovský and Marián Babjak
Electronics 2025, 14(9), 1803; https://doi.org/10.3390/electronics14091803 - 28 Apr 2025
Cited by 1 | Viewed by 559
Abstract
This study deals with a fuel-cell-based power supply system created from a fuel cell stack with a proton exchange membrane fuel cell (PEMFC) and controller monitoring system (Horizon Fuell Cell Technologies (HFCT)). In the fuel cell (FC) stack H60, the reactants are air [...] Read more.
This study deals with a fuel-cell-based power supply system created from a fuel cell stack with a proton exchange membrane fuel cell (PEMFC) and controller monitoring system (Horizon Fuell Cell Technologies (HFCT)). In the fuel cell (FC) stack H60, the reactants are air and hydrogen. Reactants are used for the generation of electricity. The reactants supply fuel cell stacks with hydrogen through the hydrogen supply valve, and redundant reactants are extruded from the region of the 20 fuel cells of the H60 stack through the purge valve, both controlled by an FC controller. The main contribution of this study is the proposal, practical design and integration of an embedded monitoring system into the function of a fuel-cell-based power supply system for monitoring its operation parameters in mobile applications (such as in UGVs—Unmanned Ground Vehicles). The next contribution is the usage of INA226 power monitors for the measurement of input/output parameters in selected parts of the fuel-cell-based power supply system for the evaluation of electrical efficiency or power loss in the system. The third contribution is the integration of Bluetooth technology for the transfer of data from a fuel-cell-based power supply system in a mobile platform to a smartphone or PC for monitoring and data processing. At the end of this study, the computed efficiency values of the fuel cell stack, controller and switching power supply outputs are analysed, and the advantages, disadvantages and practical experience are summarized. Full article
(This article belongs to the Special Issue New Advances in Embedded Software and Applications)
Show Figures

Figure 1

32 pages, 7003 KiB  
Article
Solar, Wind, Hydrogen, and Bioenergy-Based Hybrid System for Off-Grid Remote Locations: Techno-Economic and Environmental Analysis
by Roksana Yasmin, Md. Nurun Nabi, Fazlur Rashid and Md. Alamgir Hossain
Clean Technol. 2025, 7(2), 36; https://doi.org/10.3390/cleantechnol7020036 - 23 Apr 2025
Cited by 1 | Viewed by 2590
Abstract
Transitioning to clean energy in off-grid remote locations is essential to reducing fossil-fuel-generated greenhouse gas emissions and supporting renewable energy growth. While hybrid renewable energy systems (HRES), including multiple renewable energy (RE) sources and energy storage systems are instrumental, it requires technical reliability [...] Read more.
Transitioning to clean energy in off-grid remote locations is essential to reducing fossil-fuel-generated greenhouse gas emissions and supporting renewable energy growth. While hybrid renewable energy systems (HRES), including multiple renewable energy (RE) sources and energy storage systems are instrumental, it requires technical reliability with economic efficiency. This study examines the feasibility of an HRES incorporating solar, wind, hydrogen, and biofuel energy at a remote location in Australia. An electric vehicle charging load alongside a residential load is considered to lower transportation-based emissions. Additionally, the input data (load profile and solar data) is validated through statistical analysis, ensuring data reliability. HOMER Pro software is used to assess the techno-economic and environmental performance of the hybrid systems. Results indicate that the optimal HRES comprising of photovoltaic, wind turbines, fuel cell, battery, and biodiesel generators provides a net present cost of AUD 9.46 million and a cost of energy of AUD 0.183, outperforming diesel generator-inclusive systems. Hydrogen energy-based FC offered the major backup supply, indicating the potential role of hydrogen energy in maintaining reliability in off-grid hybrid systems. Sensitivity analysis observes the effect of variations in biodiesel price and electric load on the system performance. Environmentally, the proposed system is highly beneficial, offering zero carbon dioxide and sulfur dioxide emissions, contributing to the global net-zero target. The implications of this research highlight the necessity of a regional clean energy policy facilitating energy planning and implementation, skill development to nurture technology-intensive energy projects, and active community engagement for a smooth energy transition. Potentially, the research outcome advances the understanding of HRES feasibility for remote locations and offers a practical roadmap for sustainable energy solutions. Full article
Show Figures

Figure 1

23 pages, 1797 KiB  
Article
Robust Energy Management of Fuel Cell Hybrid Electric Vehicles Using Fuzzy Logic Integrated with H-Infinity Control
by Siddhesh Yadav and Francis Assadian
Energies 2025, 18(8), 2107; https://doi.org/10.3390/en18082107 - 19 Apr 2025
Cited by 2 | Viewed by 554
Abstract
Battery longevity and hydrogen consumption efficiency are primary optimization goals for EMS in high-performance fuel cell hybrid electric vehicles (FCHEVs). This article provides an overview of an FCHEV powertrain and a hierarchical control scheme that includes low-level controllers for key components. Finally, a [...] Read more.
Battery longevity and hydrogen consumption efficiency are primary optimization goals for EMS in high-performance fuel cell hybrid electric vehicles (FCHEVs). This article provides an overview of an FCHEV powertrain and a hierarchical control scheme that includes low-level controllers for key components. Finally, a higher-level control architecture for power management combines a fuzzy logic controller with an H-infinity controller to ensure reliable power management. The aim is to enhance EMS performance and overall robustness to uncertainties by implementing the higher-level control architecture. The effectiveness of the proposed strategy is demonstrated through simulations in the MATLAB/SIMULINK 2024a environment. Full article
(This article belongs to the Special Issue Optimization and Control of Electric and Hybrid Vehicles)
Show Figures

Figure 1

Back to TopTop