Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (199)

Search Parameters:
Keywords = hydro-pumped storage

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 6167 KB  
Article
Study of Hydraulic Disturbance Transient Processes in Pumped-Storage Power Stations Considering Electro-Mechanical Coupling
by Chengpeng Liu, Zhigao Zhao, Xiuxing Yin and Jiandong Yang
Sensors 2026, 26(1), 311; https://doi.org/10.3390/s26010311 - 3 Jan 2026
Viewed by 282
Abstract
Pumped-storage power stations, as a critical resource for supporting secure and stable grid operation, typically adopt a ’single-tunnel-multiple-unit’ configuration, where hydraulic disturbance becomes a key operating condition affecting system security. Existing studies have primarily focused on the impact of the hydro-mechanical subsystem on [...] Read more.
Pumped-storage power stations, as a critical resource for supporting secure and stable grid operation, typically adopt a ’single-tunnel-multiple-unit’ configuration, where hydraulic disturbance becomes a key operating condition affecting system security. Existing studies have primarily focused on the impact of the hydro-mechanical subsystem on the normally operating units, while the influence of the electrical subsystem on hydraulic disturbance has been insufficiently addressed. To bridge this gap, this study develops a coupled model of a grid-connected pumped-storage power station incorporating a detailed representation of the power system. The model comprehensively captures the multi-domain interactions among the hydraulic, mechanical, electrical, and grid subsystems, and its accuracy is validated using data from a physical model test platform. On this basis, the hydraulic transient responses under two modeling conditions—detailed grid representation and conventional simplified grid modeling—are systematically compared. Key parameters from the hydraulic, mechanical, and electrical domains are further examined to quantify their impacts on the dynamic characteristics of hydraulic disturbance. The results demonstrate that detailed grid modeling reveals novel characteristics of the hydraulic disturbance that cannot be simulated by the conventional model. Under the detailed model, the normally operating units compensate for the power deficit caused by the tripping unit, leading to reduced hydraulic pressure fluctuations and a significant increase in the maximum output of the operating units. Meanwhile, hydro-mechanical parameters strongly influence the transient behaviors of unit output and net head, whereas the guide vane regulation of the operating unit remains predominantly driven by grid-frequency deviations. Overall, this study enhances the understanding of hydraulic disturbance dynamics in grid-connected pumped-storage systems and provides important insights for ensuring their secure and stable operation. Full article
(This article belongs to the Section Industrial Sensors)
Show Figures

Figure 1

20 pages, 2027 KB  
Article
Estimation of Reducing Unit Abrasion by Sediment Regulation Measures of Pumped Storage Power Stations on Sediment-Laden Rivers
by Qiumeng Xu and Xiaoming Zha
Sustainability 2025, 17(24), 11277; https://doi.org/10.3390/su172411277 - 16 Dec 2025
Viewed by 271
Abstract
Pumped storage power stations (PSPSs) are crucial regulators for accelerating the global energy structure transformation and developing a renewable energy-dominated power system. The sediment entering the reservoirs leads to capacity loss, while the fine-grained sediment carried by water during pumping and power generation [...] Read more.
Pumped storage power stations (PSPSs) are crucial regulators for accelerating the global energy structure transformation and developing a renewable energy-dominated power system. The sediment entering the reservoirs leads to capacity loss, while the fine-grained sediment carried by water during pumping and power generation can cause cavitation in penstocks and abrasion of turbine blades, which may lead to frequent shutdowns for overhaul. Taking a pumped storage power station as an example, whose lower reservoir is on a sediment-laden river, this study simulates the sediment concentration and its particle size through turbines under different sediment regulation measures. The unit abrasion rate and overhaul cycle are further predicted. The results indicate that the sediment concentration through turbines (SCT) and the suspended sediment transport rate entering the lower reservoir are positively correlated. The higher the SCT, the coarser the sediment particle size through turbines. For the lower reservoir with delta or conical sedimentation patterns, lowering the water level and shutting down pumping during sediment peak processes can free up the effective storage capacity, reduce the SCT by approximately 26%, and extend the overhaul cycle to 1.5 times. The study also systematically introduces a practical and feasible method for predicting SCT and turbine blade abrasion, servicing for the sustainability of PSPSs. Full article
(This article belongs to the Special Issue Sediment Movement, Sustainable Water Conservancy and Water Transport)
Show Figures

Figure 1

20 pages, 13784 KB  
Article
Modeling Water–Energy Autonomy on Remote Islands Through Hybrid RES, Pumped Hydro, and Hydrogen Storage Considering Low-Wind Conditions
by Athanasios-Foivos Papathanasiou and Evangelos Baltas
Hydropower 2026, 1(1), 2; https://doi.org/10.3390/hydropower1010002 - 15 Dec 2025
Viewed by 465
Abstract
The aim of this study is to evaluate the technical performance and resilience of a Hybrid Renewable Energy System (HRES), designed to achieve water and energy autonomy on a Skyros Island, Greece. The system integrates renewable energy sources with multiple storage technologies. A [...] Read more.
The aim of this study is to evaluate the technical performance and resilience of a Hybrid Renewable Energy System (HRES), designed to achieve water and energy autonomy on a Skyros Island, Greece. The system integrates renewable energy sources with multiple storage technologies. A high-resolution, 30-min simulation was developed, incorporating 10 years of historical weather data to model the operation of an HRES, which consists of wind turbines, photovoltaics, pumped hydro storage, and green hydrogen production. Reverse osmosis was used for desalination, and extended low-wind conditions were simulated to assess system resilience. Results indicate that the proposed system is, in fact, capable of meeting 89% of the annual energy demand and 99.99% of freshwater requirements by means of desalination. Wind power accounted for 53% of the total energy production, photovoltaics 2%, while pumped hydro and hydrogen storage contributed 17% and 6%, respectively. During artificially imposed windless periods, short-term deficits were addressed by the use of pumped hydro, while hydrogen ensured supply continuity in the final days, thereby demonstrating their complementary function. In this resilience stress-test, the system remained operational for 10 days during an artificial windless period, demonstrating the critical role of hybrid storage. The findings indicate that a combination of renewable energy with diversified storage and water management strategies can provide a reliable and self-sufficient water–energy nexus for remote islands. Finally, the novelty of this research work lies in the statistical analysis of calm-wind events and the development of the corresponding power-law relationship, conducted under the framework of the 30-min simulation. Full article
Show Figures

Graphical abstract

16 pages, 2182 KB  
Article
Optimal Scheduling of Hydro–Thermal–Wind–Solar–Pumped Storage Multi-Energy Complementary Systems Under Carbon-Emission Constraints: A Coordinated Model and SVBABC Algorithm
by Youping Li, Xiaojun Hua, Lei Wang, Rui Lv, Changhao Ouyang, Fangqing Zhang and Fang Yuan
Electronics 2025, 14(24), 4896; https://doi.org/10.3390/electronics14244896 - 12 Dec 2025
Viewed by 281
Abstract
This paper focuses on power system scheduling problems, aiming to enhance energy utilization efficiency through multi-energy complementarity. To support the “dual-carbon” strategic goals, this paper proposes a coordinated dispatch model for hydro–thermal–wind–solar–pumped storage integrated energy systems, aiming to enhance energy utilization efficiency and [...] Read more.
This paper focuses on power system scheduling problems, aiming to enhance energy utilization efficiency through multi-energy complementarity. To support the “dual-carbon” strategic goals, this paper proposes a coordinated dispatch model for hydro–thermal–wind–solar–pumped storage integrated energy systems, aiming to enhance energy utilization efficiency and system flexibility while reducing carbon emissions. To address issues such as premature convergence and low computational efficiency in traditional optimization algorithms for multi-energy complementary dispatch, an improved Artificial Bee Colony algorithm named Super-quality Variation Burst Artificial Bee Colony (SVBABC) is developed, which incorporates elite solution guidance and an explosion variation mechanism. Simulation results based on a regional practical power system demonstrate that compared to classical methods (e.g., Artificial Bee Colony, Fireworks Algorithm, and Ant Lion Optimizer), SVBABC exhibits significant advantages in global optimization capability and convergence stability. This study provides an innovative solution for efficient dispatch of multi-energy complementary systems. Through synergistic regulation of pumped storage and thermal power, the accommodation capability of renewable energy is effectively enhanced, thereby providing critical technical support for the development of new power systems. Full article
Show Figures

Figure 1

25 pages, 2653 KB  
Article
Sustainable Energy Management Through Optimized Hybrid Hydro–Solar Systems
by Michele Margoni, Pranav Dhawan and Maurizio Righetti
Energies 2025, 18(24), 6412; https://doi.org/10.3390/en18246412 - 8 Dec 2025
Viewed by 398
Abstract
This study investigates the optimization of Pumped Storage Hydropower (PSH) integrated with Floating Photovoltaic (FPV) systems, with a focus on sustainable energy management. A nonlinear programming framework combined with scenario analysis was applied to a real hydropower system in Trentino, Italy. The optimization [...] Read more.
This study investigates the optimization of Pumped Storage Hydropower (PSH) integrated with Floating Photovoltaic (FPV) systems, with a focus on sustainable energy management. A nonlinear programming framework combined with scenario analysis was applied to a real hydropower system in Trentino, Italy. The optimization maximizes revenues through energy arbitrage while accounting for water resource and environmental objectives. Upgrading the traditional hydropower plant to PSH operation increases revenues by 4–8% over two hydrological years. Multi-objective optimization further reveals large gains in water availability, confirming PSH’s dual role as energy storage and water management infrastructure. Different FPV configurations analyzed show a 2–3% increase in photovoltaic energy yield due to the water-cooling effect, while the overall hybrid PSH–FPV integration mainly reduces grid dependency and pumping-related emissions, with near-complete decarbonization achievable under optimized scheduling. Overall, PSH provides the primary economic and operational advantage, while FPV strengthens sustainability, enabling resilient hydro–solar operation and contributing to renewable integration and decarbonization in future energy systems. Full article
Show Figures

Figure 1

23 pages, 2544 KB  
Article
Optimal Power Flow-Assisted Unit Commitment with Multi-Level Load Variation Analysis in Renewable-Based Power Systems
by Ramdhan Halid Siregar, Akhyar Akhyar, Rakhmad Syafutra Lubis and Muhammad Nurul Hadi
Energies 2025, 18(23), 6340; https://doi.org/10.3390/en18236340 - 3 Dec 2025
Viewed by 355
Abstract
High penetration of distributed photovoltaic (PV) generation introduces operational challenges for thermal power plants, including increased cycling, higher losses, and reduced system flexibility. This study proposes an integrated optimization framework that combines Mixed Integer Nonlinear Programming (MINLP)-based Unit Commitment (UC) with a Particle [...] Read more.
High penetration of distributed photovoltaic (PV) generation introduces operational challenges for thermal power plants, including increased cycling, higher losses, and reduced system flexibility. This study proposes an integrated optimization framework that combines Mixed Integer Nonlinear Programming (MINLP)-based Unit Commitment (UC) with a Particle Swarm Optimization (PSO)-assisted Optimal Power Flow (OPF) solved using the Newton–Raphson method. Applied to the IEEE 30-bus system for a 24-h horizon, the UC stage schedules 3717.8 MW of thermal generation at a cost of $8771.14. Load flow validation indicates a required supply of 3793.7 MW due to network losses, increasing the cost to $9031.64 and causing several constraint violations. The PSO-assisted OPF resolves all violations and produces an adjusted total generation of 3778.5 MW, reducing losses and lowering the overall operating cost to $8912.47 through optimal redispatch and voltage regulation. To further evaluate system robustness, multiple load scenarios—including reduced, nominal, and increased demand—are analyzed. Across all scenarios, the OPF stage is able to eliminate operational violations, decrease real power losses, and maintain voltage profiles within acceptable limits, demonstrating consistent performance under varying system stress levels. Overall, the integrated UC–OPF framework enhances economic efficiency, operational reliability, and resilience under renewable variability and shifting load conditions. Full article
(This article belongs to the Section F1: Electrical Power System)
Show Figures

Figure 1

38 pages, 5289 KB  
Article
Forecasting Renewable Scenarios and Uncertainty Analysis in Microgrids for Self-Sufficiency and Reliability: Estimation of Extreme Scenarios for 2040 in El Hierro (Spain)
by Lucas Álvarez-Piñeiro, César Berna-Escriche, Paula Bastida-Molina and David Blanco-Muelas
Appl. Sci. 2025, 15(21), 11815; https://doi.org/10.3390/app152111815 - 5 Nov 2025
Viewed by 751
Abstract
This study evaluates the feasibility of fully renewable energy systems on El Hierro, the smallest and most isolated Canary Archipelago Island (Spain), contributing to the broader effort to decarbonize the European economy. By 2040, the island’s energy demand is projected to reach 80–110 [...] Read more.
This study evaluates the feasibility of fully renewable energy systems on El Hierro, the smallest and most isolated Canary Archipelago Island (Spain), contributing to the broader effort to decarbonize the European economy. By 2040, the island’s energy demand is projected to reach 80–110 GWh annually, assuming full economic decarbonization. Currently, El Hierro faces challenges due to its dependence on fossil fuels and inherent variability of renewable sources. To ensure system reliability, the study emphasizes the integration of renewable and storage technologies. Two scenarios are modeled using HOMER Pro 3.18.4 software with probabilistic methods to capture variability in generation and demand. The first scenario, BAU, represents the current system enhanced with electric vehicles. While the second, Efficiency, incorporates energy efficiency improvements and collective mobility policies. Both prioritize electrification and derive an optimal generation mix based on economic and technical constraints, to minimize Levelized Cost Of Energy (LCOE). The approach takes advantage of El Hierro’s abundant solar and wind resources, complemented by reversible pumped hydro storage and megabatteries. Fully renewable systems can meet demand reliably, producing about 30% energy surplus with an LCOE of roughly 10 c€/kWh. The final BAU scenario includes 53 MW of solar PV, 16 MW of wind, and a storage system of 40 MW–800 MWh. The Efficiency scenario has 42 MW of solar PV, 11.5 MW of wind, and 35 MW–550 MWh of storage. Uncertainty analysis indicates that maintaining system reliability requires an approximate 10% increase in both installed capacity and costs. This translates into an additional 7 MW of solar PV and 6 MW–23.5 MWh of batteries in the BAU, and 6 MW and 4 MW–16 MWh in the Efficiency. Full article
(This article belongs to the Special Issue Advanced Forecasting Techniques and Methods for Energy Systems)
Show Figures

Figure 1

23 pages, 5772 KB  
Article
Underground Pumped Hydroelectric Energy Storage in Salt Caverns in Southern Ontario, Canada: Impact of Operating Temperature on Cavern Stability and Interlayer Leakage
by Jingyu Huang, Yutong Chai, Jennifer Williams and Shunde Yin
Mining 2025, 5(4), 71; https://doi.org/10.3390/mining5040071 - 3 Nov 2025
Viewed by 578
Abstract
Underground pumped hydro storage (UPHS) in solution-mined salt caverns offers a promising approach to address the intermittency of renewable energy in flat geological regions such as Southern Ontario, Canada. This work presents the first fully coupled thermo-hydro-mechanical (THM) numerical model of a two-cavern [...] Read more.
Underground pumped hydro storage (UPHS) in solution-mined salt caverns offers a promising approach to address the intermittency of renewable energy in flat geological regions such as Southern Ontario, Canada. This work presents the first fully coupled thermo-hydro-mechanical (THM) numerical model of a two-cavern UPHS system in Southern Ontario, providing a foundational assessment of long-term cavern stability and brine leakage behavior under cyclic operation. The model captures the key interactions among deformation, leakage, and temperature effects governing cavern stability, evaluating cyclic brine injection–withdrawal at operating temperatures of 10 °C, 15 °C, and 20 °C over a five-year period. Results show that plastic deformation is constrained to localized zones at cavern–shale interfaces, with negligible risk of tensile failure. Creep deformation accelerates with temperature, yielding maximum strains of 2.6–3.2% and cumulative cavern closure of 1.8–2.6%, all within engineering safety thresholds. Leakage predominantly migrates through limestone interlayers, while shale contributes only local discharge pathways. Elevated temperature enhances leakage due to reduced brine viscosity, but cumulative volumes remain very low, confirming the sealing capacity of bedded salt. Overall, lower operating temperatures minimize both convergence and leakage, ensuring greater stability margins, indicating that UPHS operation should preferentially adopt lower brine temperatures to balance storage efficiency with long-term cavern stability. These findings highlight the feasibility of UPHS in Ontario’s salt formations and provide design guidance for balancing storage performance with geomechanical safety. Full article
Show Figures

Figure 1

41 pages, 4386 KB  
Article
A Two-Layer HiMPC Planning Framework for High-Renewable Grids: Zero-Exchange Test on Germany 2045
by Alexander Blinn, Joshua Bunner and Fabian Kennel
Energies 2025, 18(21), 5579; https://doi.org/10.3390/en18215579 - 23 Oct 2025
Viewed by 408
Abstract
High-renewables grids are planned in min but judged in milliseconds; credible studies must therefore resolve both horizons within a single model. Current adequacy tools bypass fast frequency dynamics, while detailed simulators lack multi-hour optimization, leaving investors without a unified basis for sizing storage, [...] Read more.
High-renewables grids are planned in min but judged in milliseconds; credible studies must therefore resolve both horizons within a single model. Current adequacy tools bypass fast frequency dynamics, while detailed simulators lack multi-hour optimization, leaving investors without a unified basis for sizing storage, shifting demand, or upgrading transfers. We present a two-layer Hierarchical Model Predictive Control framework that links 15-min scheduling with 1-s corrective action and apply it to Germany’s four TSO zones under a stringent zero-exchange stress test derived from the NEP 2045 baseline. Batteries, vehicle-to-grid, pumped hydro and power-to-gas technologies are captured through aggregators; a decentralized optimizer pre-positions them, while a fast layer refines setpoints as forecasts drift; all are subject to inter-zonal transfer limits. Year-long simulations hold frequency within ±2 mHz for 99.9% of hours and below ±10 mHz during the worst multi-day renewable lull. Batteries absorb sub-second transients, electrolyzers smooth surpluses, and hydrogen turbines bridge week-long deficits—none of which violate transfer constraints. Because the algebraic core is modular, analysts can insert new asset classes or policy rules with minimal code change, enabling policy-relevant scenario studies from storage mandates to capacity-upgrade plans. The work elevates predictive control from plant-scale demonstrations to system-level planning practice. It unifies adequacy sizing and dynamic-performance evaluation in a single optimization loop, delivering an open, scalable blueprint for high-renewables assessments. The framework is readily portable to other interconnected grids, supporting analyses of storage obligations, hydrogen roll-outs and islanding strategies. Full article
Show Figures

Figure 1

31 pages, 5934 KB  
Article
Techno-Economic Optimization of a Hybrid Renewable Energy System with Seawater-Based Pumped Hydro, Hydrogen, and Battery Storage for a Coastal Hotel
by Tuba Tezer
Processes 2025, 13(10), 3339; https://doi.org/10.3390/pr13103339 - 18 Oct 2025
Viewed by 1237
Abstract
This study presents the design and techno-economic optimization of a hybrid renewable energy system (HRES) for a coastal hotel in Manavgat, Türkiye. The system integrates photovoltaic (PV) panels, wind turbines (WT), pumped hydro storage (PHS), hydrogen storage (electrolyzer, tank, and fuel cell), batteries, [...] Read more.
This study presents the design and techno-economic optimization of a hybrid renewable energy system (HRES) for a coastal hotel in Manavgat, Türkiye. The system integrates photovoltaic (PV) panels, wind turbines (WT), pumped hydro storage (PHS), hydrogen storage (electrolyzer, tank, and fuel cell), batteries, a fuel cell-based combined heat and power (CHP) unit, and a boiler to meet both electrical and thermal demands. Within this broader optimization framework, six optimal configurations emerged, representing grid-connected and standalone operation modes. Optimization was performed in HOMER Pro to minimize net present cost (NPC) under strict reliability (0% unmet load) and renewable energy fraction (REF > 75%) constraints. The grid-connected PHS–PV–WT configuration achieved the lowest NPC ($1.33 million) and COE ($0.153/kWh), with a renewable fraction of ~96% and limited excess generation (~21%). Off-grid PHS-based and PHS–hydrogen configurations showed competitive performance with slightly higher costs. Hydrogen integration additionally provides complementary storage pathways, coordinated operation, waste heat utilization, and redundancy under component unavailability. Battery-only systems without PHS or hydrogen storage resulted in 37–39% higher capital costs and ~53% higher COE, confirming the economic advantage of long-duration PHS. Sensitivity analyses indicate that real discount rate variations notably affect NPC and COE, particularly for battery-only systems. Component cost sensitivity highlights PV and WT as dominant cost drivers, while PHS stabilizes system economics and the hydrogen subsystem contributes minimally due to its small scale. Overall, these results confirm the techno-economic and environmental benefits of combining seawater-based PHS with optional hydrogen and battery storage for sustainable hotel-scale applications. Full article
(This article belongs to the Special Issue 1st SUSTENS Meeting: Advances in Sustainable Engineering Systems)
Show Figures

Figure 1

26 pages, 12326 KB  
Article
A Study on Energy Loss and Transient Flow Characteristics of a Large Volute Centrifugal Pump During Power-Off Process Under Cavitation Conditions
by Qingzhao Pang, Desheng Zhang, Gang Yang, Xi Shen, Qiang Pan, Linlin Geng and Qinghui Lu
J. Mar. Sci. Eng. 2025, 13(10), 1973; https://doi.org/10.3390/jmse13101973 - 15 Oct 2025
Viewed by 608
Abstract
A novel pumped storage system using centrifugal pumps to transfer water between reservoirs in coastal hydropower plants has significantly mitigated grid instability. However, frequent start–stop operations of large vertical centrifugal pumps, which serve as the core equipment, severely affect the operational stability of [...] Read more.
A novel pumped storage system using centrifugal pumps to transfer water between reservoirs in coastal hydropower plants has significantly mitigated grid instability. However, frequent start–stop operations of large vertical centrifugal pumps, which serve as the core equipment, severely affect the operational stability of these systems. In this study, the intrinsic connection between the cavitating flow field and irreversible losses during the process was analyzed using the entropy production theory. The time–frequency characteristics of pressure pulsation in pump were analyzed by using the continuous wavelet transform. The results indicate that with the reduction in the flow rate and rotational speed, the sheet cavitation at the impeller inlet rapidly weakens until it vanishes. The cavity cavitation within the draft tube commences to emerge in the turbine mode. Separation vortices are formed due to the mismatch in the flow angle at the impeller outlet. These vortices induce local cavitation, causing both a rapid energy loss increase and high-amplitude, low-frequency pressure pulsations. During transient processes, flow instabilities induce high-amplitude, low-frequency pressure pulsations within the stay vane region, with maximum amplitude attained during runaway condition. The research results provide a theoretical foundation for the stable operation of centrifugal pumps. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

17 pages, 3460 KB  
Article
Integrating Pumped Hydro Storage into Zero Discharge Strategy for Wastewater: The Alicante Case Study
by Miguel Ángel Bofill, Francisco-Javier Sánchez-Romero, Francisco Zapata-Raboso, Helena M. Ramos and Modesto Pérez-Sánchez
Appl. Sci. 2025, 15(20), 10953; https://doi.org/10.3390/app152010953 - 12 Oct 2025
Viewed by 644
Abstract
The use of reclaimed water is crucial to prevent pollution from wastewater discharges and mitigate the water deficit faced by irrigation districts or other non-potable water users. Therefore, the zero-discharge strategy represents a significant challenge for coastal cities affected by marine pollution from [...] Read more.
The use of reclaimed water is crucial to prevent pollution from wastewater discharges and mitigate the water deficit faced by irrigation districts or other non-potable water users. Therefore, the zero-discharge strategy represents a significant challenge for coastal cities affected by marine pollution from effluents. In regions such as the Mediterranean arc, agricultural areas located near these cities are increasingly exposed to reduced water allocations or rising irrigation demands due to the impacts of climate change. To address this dual challenge, a circular system is proposed through the implementation of hybrid treatment technologies that enable zero wastewater discharge into the sea. This approach would contribute up to 30 hm3 of reclaimed water annually for irrigation, covering approximately 27,000 hectares of cropland in the province of Alicante. The proposed system integrates advanced techniques, such as reverse osmosis, to ensure irrigation water quality, while also considering partial blending strategies to optimize resource use. Additionally, constructed wetlands are incorporated to regulate and treat the reject streams produced by these processes, minimizing their environmental impact. This combined strategy enhances water reuse efficiency, strengthens agricultural resilience, and provides a sustainable model for managing water resources in coastal Mediterranean regions. Full article
(This article belongs to the Special Issue Water Pollution and Wastewater Treatment Chemistry)
Show Figures

Figure 1

24 pages, 2293 KB  
Article
The Path Towards Decarbonization: The Role of Hydropower in the Generation Mix
by Fabio Massimo Gatta, Alberto Geri, Stefano Lauria, Marco Maccioni and Ludovico Nati
Energies 2025, 18(19), 5248; https://doi.org/10.3390/en18195248 - 2 Oct 2025
Viewed by 577
Abstract
The evolution of the generation mix towards deep decarbonization poses pressing questions about the role of hydropower and its possible share in the future mix. Most technical–economic analyses of deeply decarbonized systems either rule out hydropower growth due to lack of additional hydro [...] Read more.
The evolution of the generation mix towards deep decarbonization poses pressing questions about the role of hydropower and its possible share in the future mix. Most technical–economic analyses of deeply decarbonized systems either rule out hydropower growth due to lack of additional hydro resources or take it into account in terms of additional reservoir capacity. This paper analyzes a generation mix made of photovoltaic, wind, open-cycle gas turbines, electrochemical storage and hydroelectricity, focusing on the optimal generation mix’s reaction to different methane gas prices, hydroelectricity availabilities, pumped hydro reservoir capacities, and mean filling durations for hydro reservoirs. The key feature of the developed model is the sizing of both optimal peak power and reservoir energy content for hydropower. The results of the study point out two main insights. The first one, rather widely accepted, is that cost-effective decarbonization requires the greatest possible amount of hydro reservoirs. The second one is that, even in the case of totally exploited reservoirs, there is a strong case for increasing hydro peak power. Application of the model to the Italian generation mix (with 9500 MWp and 7250 MWp of non-pumped and pumped hydro fleets, respectively) suggests that it is possible to achieve methane shares of less than 10% if the operating costs of open-cycle gas turbines exceed 160 EUR/MWh and with non-pumped and pumped hydro fleets of at least 9200 MWp and 28,400 MWp, respectively. Full article
Show Figures

Figure 1

20 pages, 3174 KB  
Article
Techno-Economic Optimization of a Grid-Connected Hybrid-Storage-Based Photovoltaic System for Distributed Buildings
by Tao Ma, Bo Wang, Cangbin Dai, Muhammad Shahzad Javed and Tao Zhang
Electronics 2025, 14(19), 3843; https://doi.org/10.3390/electronics14193843 - 28 Sep 2025
Viewed by 662
Abstract
With growing urban populations and rapid technological advancement, major cities worldwide are facing pressing challenges from surging energy demands. Interestingly, substantial unused space within residential buildings offers potential for installing renewable energy systems coupled with energy storage. This study innovatively proposes a grid-connected [...] Read more.
With growing urban populations and rapid technological advancement, major cities worldwide are facing pressing challenges from surging energy demands. Interestingly, substantial unused space within residential buildings offers potential for installing renewable energy systems coupled with energy storage. This study innovatively proposes a grid-connected photovoltaic (PV) system integrated with pumped hydro storage (PHS) and battery storage for residential applications. A novel optimization algorithm is employed to achieve techno-economic optimization of the hybrid system. The results indicate a remarkably short payback period of about 5 years, significantly outperforming previous studies. Additionally, a threshold is introduced to activate pumping and water storage during off-peak nighttime electricity hours, strategically directing surplus power to either the pump or battery according to system operation principles. This nighttime water storage strategy not only promises considerable cost savings for residents, but also helps to mitigate grid stress under time-of-use pricing schemes. Overall, this study demonstrates that, through optimized system sizing, costs can be substantially reduced. Importantly, with the nighttime storage strategy, the payback period can be shortened even further, underscoring the novelty and practical relevance of this research. Full article
(This article belongs to the Section Systems & Control Engineering)
Show Figures

Figure 1

24 pages, 11507 KB  
Review
A Review on Ecological and Environmental Impacts of Pumped Hydro Storage Based on CiteSpace Analysis
by Hailong Yin, Xuhong Zhao, Meixuan Chen, Zeding Fu, Yingchun Fang, Hui Wang, Meifang Li, Jiahao Luo, Peiyang Tan and Xiaohua Fu
Water 2025, 17(18), 2752; https://doi.org/10.3390/w17182752 - 17 Sep 2025
Viewed by 2557
Abstract
This study conducted a systematic review of 222 research articles (2014–2024) from the Web of Science Core Collection database to investigate the ecological and environmental impacts of pumped hydro storage (PHS). Utilizing CiteSpace 6.1R software for visual analysis, the research hotspots and evolutionary [...] Read more.
This study conducted a systematic review of 222 research articles (2014–2024) from the Web of Science Core Collection database to investigate the ecological and environmental impacts of pumped hydro storage (PHS). Utilizing CiteSpace 6.1R software for visual analysis, the research hotspots and evolutionary trends over the past decade were comprehensively examined. Key findings include the following: (1) Annual publication output exhibited sustained growth, with China contributing 29.7% of total publications, ranking first globally. (2) Research institutions demonstrated broad geographical distribution but weak collaborative networks, as the top 10 institutions accounted for only 21.6% of total publications, highlighting untapped potential for cross-regional cooperation. (3) Current research focuses on three domains: ecological–environmental benefit assessment, renewable energy synergistic integration, and power grid regulation optimization. Emerging trends emphasize multi-objective planning (e.g., economic–ecological trade-offs) and hybrid system design (e.g., solar–wind–PHS coordinated dispatch), providing critical support for green energy transitions. (4) Post-2020 research has witnessed novel thematic directions, including deepened studies on wind–PHS coupling and life-cycle assessment (LCA). Policy-driven renewable energy integration research entered an explosive growth phase, with PHS–photovoltaic–wind complementary technologies emerging as a core innovation pathway. Future research should prioritize strengthening institutional collaboration networks, exploring region-specific ecological impact mechanisms, and advancing policy–technology–environment multi-dimensional frameworks for practical applications. Full article
(This article belongs to the Section Hydraulics and Hydrodynamics)
Show Figures

Figure 1

Back to TopTop