Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (38)

Search Parameters:
Keywords = hydrazone Schiff base

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2394 KiB  
Article
Two Dy2 Zero-Field Single-Molecule Magnets Derived from Hydrazone Schiff Base-Bridging Ligands and 1,3-Di(2-pyridyl)-1,3-propanedione
by Cai-Ming Liu
Magnetochemistry 2025, 11(7), 58; https://doi.org/10.3390/magnetochemistry11070058 - 2 Jul 2025
Viewed by 392
Abstract
Two hydrazone Schiff base-bridging ligands with different heterocycles {2-[(E)-(5-chloro-2-hydroxyphenyl)methylidene]diazanyl}(pyrazine-2-yl)methanone (H2LSchiff-1) and (E)-N′-(2-hydroxy-3-methoxybenzylidene)nicotinohydrazide (H2LSchiff-2) together with 1,3-di(2-pyridyl)-1,3-propanedione (Hdpp) were chosen to construct two new Dy2 complexes, [Dy2(L [...] Read more.
Two hydrazone Schiff base-bridging ligands with different heterocycles {2-[(E)-(5-chloro-2-hydroxyphenyl)methylidene]diazanyl}(pyrazine-2-yl)methanone (H2LSchiff-1) and (E)-N′-(2-hydroxy-3-methoxybenzylidene)nicotinohydrazide (H2LSchiff-2) together with 1,3-di(2-pyridyl)-1,3-propanedione (Hdpp) were chosen to construct two new Dy2 complexes, [Dy2(LSchiff-1)2(DMF)2(dpp)2]·0.5DMF (1) and [Dy2(LSchiff-2)2(DMF)2(dpp)2]·2DMF (2). Although the [N2O6] coordination spheres are observed for the Dy3+ ions in 1 and 2, their coordination configurations have some differences (both the biaugmented trigonal prism and the Snub diphenoid J84 in 1 and only the biaugmented trigonal prism in 2). Magnetic research revealed that both 1 and 2 possess ferromagnetic interactions between two Dy3+ ions and perform as zero-field single-molecule magnets, with Ueff/k values of 49.7 K at 0 Oe for 1 and 151.8 K at 0 Oe for 2. This work suggests that the heterocycle groups (pyrazine vs. pyridine) on the hydrazone Schiff base-bridging ligands have effects on the SMM properties of 1 and 2. Full article
Show Figures

Figure 1

15 pages, 5017 KiB  
Article
Constructing Hydrazone-Linked Chiral Covalent Organic Frameworks with Different Pore Sizes for Asymmetric Catalysis
by Haichen Huang, Kai Zhang, Yuexin Zheng, Hong Chen, Dexuan Cai, Shengrun Zheng, Jun Fan and Songliang Cai
Catalysts 2025, 15(7), 640; https://doi.org/10.3390/catal15070640 - 30 Jun 2025
Viewed by 327
Abstract
Chiral covalent organic frameworks (COFs) hold great promise in heterogeneous asymmetric catalysis due to their designable structures and well-defined chiral microenvironments. However, precise control over the pore size of chiral COFs to optimize asymmetric catalytic performance remains challenging. Herein, we designed a proline-derived [...] Read more.
Chiral covalent organic frameworks (COFs) hold great promise in heterogeneous asymmetric catalysis due to their designable structures and well-defined chiral microenvironments. However, precise control over the pore size of chiral COFs to optimize asymmetric catalytic performance remains challenging. Herein, we designed a proline-derived dihydrazide chiral monomer (L-DBP-Boc), which was subjected to Schiff-base reactions with two aromatic aldehydes of different lengths, 1,3,5-triformyl phloroglucinol (BTA) and 4,4′,4″-(1,3,5-triazine-2,4,6-triyl)tribenzaldehyde (TZ), to construct two hydrazone-linked chiral COFs with distinct pore sizes (L-DBP-BTA COF and L-DBP-TZ COF). Interestingly, the Boc protecting groups were removed in situ during COF synthesis. We systematically investigated the catalytic performance of these two chiral COFs in asymmetric aldol reactions and found that their pore sizes significantly influenced both catalytic activity and enantioselectivity. The large-pore L-DBP-TZ COF (pore size: 3.5 nm) exhibited superior catalytic performance under aqueous conditions at room temperature, achieving a yield of 98% and an enantiomeric excess (ee) value of 78%. In contrast, the small-pore L-DBP-BTA COF (pore size: 2.0 nm) showed poor catalytic performance. Compared to L-DBP-BTA COF, L-DBP-TZ COF demonstrated a 1.69-fold increase in yield and a 1.56-fold enhancement in enantioselectivity, possibly attributed to the facilitated diffusion and transport of substrates and products within the larger pore, thus improving the accessibility of active sites. This study presents a facile synthesis of pyrrolidine-functionalized chiral COFs and establishes the possible structure–activity relationship in their asymmetric catalysis, offering new insights for the design of efficient chiral COF catalysts. Full article
(This article belongs to the Special Issue Asymmetric Catalysis: Recent Progress and Future Perspective)
Show Figures

Graphical abstract

11 pages, 2358 KiB  
Communication
Quinaldehyde o-Nitrobenzoylhydrazone: Structure and Sensitization of HepG2 Cells to Anti-Cancer Drugs
by Valeri V. Mossine, Steven P. Kelley and Thomas P. Mawhinney
Compounds 2025, 5(3), 24; https://doi.org/10.3390/compounds5030024 - 25 Jun 2025
Viewed by 344
Abstract
A quinoline unit is present in many natural products and is an attractive pharmacophore for the development of clinical drugs, including antineoplastics. The title compound (QN) was synthesized via the condensation reaction between quinoline-2-carboxaldehyde and 2-nitrobenzhydrazide. QN’s structure was examined by X-ray diffraction [...] Read more.
A quinoline unit is present in many natural products and is an attractive pharmacophore for the development of clinical drugs, including antineoplastics. The title compound (QN) was synthesized via the condensation reaction between quinoline-2-carboxaldehyde and 2-nitrobenzhydrazide. QN’s structure was examined by X-ray diffraction and features extensive stacking interactions in the crystal. The compound is weakly toxic to HepG2 cells, with an IC50 exceeding 400 μM for 48 h exposure. QN at 50 μM, with the dose reduction index in the range of 1.9–4.4, potentiated the cytotoxicity of several clinical chemotherapeutic drugs, including doxorubicin and other topoisomerase inhibitors, vincristine, and carboplatin, but not cisplatin or 5-fluorouracil. The calculated ADME parameters predict satisfactory drug-like properties for QN. Full article
(This article belongs to the Special Issue Organic Compounds with Biological Activity)
Show Figures

Figure 1

20 pages, 9373 KiB  
Article
In Vitro Antibacterial Activities and Calf Thymus DNA–Bovine Serum Albumin Interactions of Tridentate NNO Hydrazone Schiff Base–Metal Complexes
by Maida Katherine Triviño-Rojas, Santiago José Jiménez-Lopez, Richard D’Vries, Alberto Aragón-Muriel and Dorian Polo-Cerón
Inorganics 2025, 13(7), 213; https://doi.org/10.3390/inorganics13070213 - 25 Jun 2025
Viewed by 882
Abstract
Their demonstrable bioactive characteristics, coupled with their wide structural diversity and coordination versatility, render Schiff bases and their coordination complexes biologically active compounds demonstrating outstanding properties. This research describes the synthesis and characterization of new Cu(II) and Ni(II) complexes with an NNO-donor hydrazone [...] Read more.
Their demonstrable bioactive characteristics, coupled with their wide structural diversity and coordination versatility, render Schiff bases and their coordination complexes biologically active compounds demonstrating outstanding properties. This research describes the synthesis and characterization of new Cu(II) and Ni(II) complexes with an NNO-donor hydrazone ligand (HL). The crystal structure of the HL ligand was determined through single-crystal X-ray diffraction studies. The in vitro antibacterial activities of the HL ligand and its metal(II) complexes against Gram-positive and Gram-negative bacteria demonstrated that the metal(II) complexes displayed greater antimicrobial activities compared to the free Schiff base ligand. Furthermore, the interaction of the ligand and the complexes with calf thymus DNA (CT-DNA) was explored through electronic absorption and viscosity measurements, suggesting intercalation as the most likely mode of binding. The compounds promoted oxidative DNA cleavage, as demonstrated by the strand breaks of the pmChery plasmid under oxidative stress conditions. Finally, fluorescence spectroscopy also revealed the strong binding affinity of these compounds for bovine serum albumin (BSA). Full article
Show Figures

Figure 1

12 pages, 1918 KiB  
Article
Assembly of Homochiral Magneto-Optical Dy6 Triangular Clusters by Fixing Carbon Dioxide in the Air
by Cai-Ming Liu, Xiang Hao and Xi-Li Li
Molecules 2024, 29(14), 3402; https://doi.org/10.3390/molecules29143402 - 19 Jul 2024
Cited by 7 | Viewed by 1589
Abstract
A new hydrazone Schiff base bridging ligand (H2LSchiff (E)-N′-((1-hydroxynaphthalen-2-yl)methylene)pyrazine-2-carbohydrazide) and L/D-proline were used to construct a pair of homochiral Dy6 cluster complexes, [Dy6(CO3)(L-Pro)6(LSchiff [...] Read more.
A new hydrazone Schiff base bridging ligand (H2LSchiff (E)-N′-((1-hydroxynaphthalen-2-yl)methylene)pyrazine-2-carbohydrazide) and L/D-proline were used to construct a pair of homochiral Dy6 cluster complexes, [Dy6(CO3)(L-Pro)6(LSchiff)4(HLSchiff)2]·5DMA·2H2O (L-1, L-HPro = L-proline; DMA = N,N-dimethylacetamide) and [Dy6(CO3)(D-Pro)6(LSchiff)4(HLSchiff)2]·5DMA·2H2O (D-1, D-HPro = D-proline), which show a novel triangular Dy6 topology. Notably, the fixation of CO2 in the air formed a carbonato central bridge, playing a key role in assembling L-1/D-1. Magnetic measurements revealed that L-1/D-1 displays intramolecular ferromagnetic coupling and magnetic relaxation behaviours. Furthermore, L-1/D-1 shows a distinct magneto-optical Faraday effect and has a second harmonic generation (SHG) response (1.0 × KDP) at room temperature. The results show that the immobilization of CO2 provides a novel pathway for homochiral multifunctional 4f cluster complexes. Full article
(This article belongs to the Special Issue Exclusive Feature Papers in Inorganic Chemistry, 2nd Edition)
Show Figures

Figure 1

20 pages, 1630 KiB  
Article
Novel Adamantane Derivatives: Synthesis, Cytotoxicity and Antimicrobial Properties
by Łukasz Popiołek, Wiktoria Janas, Anna Hordyjewska and Anna Biernasiuk
Appl. Sci. 2024, 14(9), 3700; https://doi.org/10.3390/app14093700 - 26 Apr 2024
Cited by 4 | Viewed by 3155
Abstract
Seventeen adamantane derivatives were synthesized according to facile condensation reaction protocols. Spectral analysis (1H NMR and 13C NMR) was applied to confirm the chemical structure of the obtained substances. The synthesized compounds were tested for in vitro antimicrobial activity against [...] Read more.
Seventeen adamantane derivatives were synthesized according to facile condensation reaction protocols. Spectral analysis (1H NMR and 13C NMR) was applied to confirm the chemical structure of the obtained substances. The synthesized compounds were tested for in vitro antimicrobial activity against a panel of Gram-positive and Gram-negative bacterial strains and towards fungi from Candida spp. Among them, four derivatives numbered 9, 14, 15 and 19 showed the highest antibacterial potential with MIC = 62.5–1000 µg/mL with respect to all Gram-positive bacteria. S. epidermidis ATCC 12228 was the most susceptible among the tested bacterial strains and C. albicans ATCC 10231 among fungi. Additionally, the cytotoxicity for three derivatives was measured with the use of the MTT test on A549, T47D, L929 and HeLa cell lines. Our cytotoxicity studies confirmed that the tested substances did not cause statistically significant changes in cell proliferation within the range of the tested doses. Full article
Show Figures

Figure 1

6 pages, 5236 KiB  
Communication
Transfer Hydrogenation of Vinyl Arenes and Aryl Acetylenes with Ammonia Borane Catalyzed by Schiff Base Cobalt(II) Complexes
by Maciej Skrodzki, Maciej Zaranek, Giuseppe Consiglio and Piotr Pawluć
Int. J. Mol. Sci. 2024, 25(8), 4363; https://doi.org/10.3390/ijms25084363 - 15 Apr 2024
Viewed by 1352
Abstract
A series of bench-stable Co(II) complexes containing hydrazone Schiff base ligands were evaluated in terms of their activity and selectivity in carbon-carbon multiple bond transfer hydrogenation. These cobalt complexes, especially a Co(II) precatalyst bearing pyridine-2-yl-N(Me)N=C-(1-methyl)imidazole-2-yl ligand, activated by LiHBEt3, were successfully [...] Read more.
A series of bench-stable Co(II) complexes containing hydrazone Schiff base ligands were evaluated in terms of their activity and selectivity in carbon-carbon multiple bond transfer hydrogenation. These cobalt complexes, especially a Co(II) precatalyst bearing pyridine-2-yl-N(Me)N=C-(1-methyl)imidazole-2-yl ligand, activated by LiHBEt3, were successfully used in the transfer hydrogenation of substituted styrenes and phenylacetylenes with ammonia borane as a hydrogen source. Key advantages of the reported catalytic system include mild reaction conditions, high selectivity and tolerance to functional groups of substrates. Full article
47 pages, 14467 KiB  
Review
An Insight into Fluorinated Imines and Hydrazones as Antibacterial Agents
by Małgorzata Sztanke, Agata Wilk and Krzysztof Sztanke
Int. J. Mol. Sci. 2024, 25(6), 3341; https://doi.org/10.3390/ijms25063341 - 15 Mar 2024
Cited by 4 | Viewed by 2891
Abstract
Fluorinated imines (Schiff bases) and fluorinated hydrazones are of particular interest in medicinal chemistry due to their potential usefulness in treating opportunistic strains of bacteria that are resistant to commonly used antibacterial agents. The present review paper is focused on these fluorinated molecules [...] Read more.
Fluorinated imines (Schiff bases) and fluorinated hydrazones are of particular interest in medicinal chemistry due to their potential usefulness in treating opportunistic strains of bacteria that are resistant to commonly used antibacterial agents. The present review paper is focused on these fluorinated molecules revealing strong, moderate or weak in vitro antibacterial activities, which have been reported in the scientific papers during the last fifteen years. Fluorinated building blocks and reaction conditions used for the synthesis of imines and hydrazones are mentioned. The structural modifications, which have an influence on the antibacterial activity in all the reported classes of fluorinated small molecules, are highlighted, focusing mainly on the importance of specific substitutions. Advanced research techniques and innovations for the synthesis, design and development of fluorinated imines and hydrazones are also summarized. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

18 pages, 4245 KiB  
Article
Synthesis and Primary Activity Assay of Novel Benitrobenrazide and Benserazide Derivatives
by Karolina Juszczak, Wojciech Szczepankiewicz and Krzysztof Walczak
Molecules 2024, 29(3), 629; https://doi.org/10.3390/molecules29030629 - 29 Jan 2024
Cited by 1 | Viewed by 2969
Abstract
Schiff bases attract research interest due to their applications in chemical synthesis and medicinal chemistry. In recent years, benitrobenrazide and benserazide containing imine moiety have been synthesized and characterized as promising inhibitors of hexokinase 2 (HK2), an enzyme overexpressed in most cancer cells. [...] Read more.
Schiff bases attract research interest due to their applications in chemical synthesis and medicinal chemistry. In recent years, benitrobenrazide and benserazide containing imine moiety have been synthesized and characterized as promising inhibitors of hexokinase 2 (HK2), an enzyme overexpressed in most cancer cells. Benserazide and benitrobenrazide possess a common structural fragment, a 2,3,4-trihydroxybenzaldehyde moiety connected through a hydrazone or hydrazine linker acylated on an N′ nitrogen atom by serine or a 4-nitrobenzoic acid fragment. To avoid the presence of a toxicophoric nitro group in the benitrobenrazide molecule, we introduced common pharmacophores such as 4-fluorophenyl or 4-aminophenyl substituents. Modification of benserazide requires the introduction of other endogenous amino acids instead of serine. Herein, we report the synthesis of benitrobenrazide and benserazide analogues and preliminary results of inhibitory activity against HK2 evoked by these structural changes. The derivatives contain a fluorine atom or amino group instead of a nitro group in BNB and exhibit the most potent inhibitory effects against HK2 at a concentration of 1 µM, with HK2 inhibition rates of 60% and 54%, respectively. Full article
Show Figures

Graphical abstract

32 pages, 15808 KiB  
Review
Small Schiff Base Molecules—A Possible Strategy to Combat Biofilm-Related Infections
by Maria Coandă, Carmen Limban and Diana Camelia Nuță
Antibiotics 2024, 13(1), 75; https://doi.org/10.3390/antibiotics13010075 - 12 Jan 2024
Cited by 11 | Viewed by 3475
Abstract
Microorganisms participating in the development of biofilms exhibit heightened resistance to antibiotic treatment, therefore infections involving biofilms have become a problem in recent years as they are more difficult to treat. Consequently, research efforts are directed towards identifying novel molecules that not only [...] Read more.
Microorganisms participating in the development of biofilms exhibit heightened resistance to antibiotic treatment, therefore infections involving biofilms have become a problem in recent years as they are more difficult to treat. Consequently, research efforts are directed towards identifying novel molecules that not only possess antimicrobial properties but also demonstrate efficacy against biofilms. While numerous investigations have focused on antimicrobial capabilities of Schiff bases, their potential as antibiofilm agents remains largely unexplored. Thus, the objective of this article is to present a comprehensive overview of the existing scientific literature pertaining to small molecules categorized as Schiff bases with antibiofilm properties. The survey involved querying four databases (Web of Science, ScienceDirect, Scopus and Reaxys). Relevant articles published in the last 10 years were selected and categorized based on the molecular structure into two groups: classical Schiff bases and oximes and hydrazones. Despite the majority of studies indicating a moderate antibiofilm potential of Schiff bases, certain compounds exhibited a noteworthy effect, underscoring the significance of considering this type of molecular modeling when seeking to develop new molecules with antibiofilm effects. Full article
(This article belongs to the Special Issue Organic Synthesis of Drug-Like Antimicrobial Compounds)
Show Figures

Figure 1

16 pages, 3490 KiB  
Article
Discovery of Potent Indolyl-Hydrazones as Kinase Inhibitors for Breast Cancer: Synthesis, X-ray Single-Crystal Analysis, and In Vitro and In Vivo Anti-Cancer Activity Evaluation
by Eid E. Salama, Mohamed F. Youssef, Ahmed Aboelmagd, Ahmed T. A. Boraei, Mohamed S. Nafie, Matti Haukka, Assem Barakat and Ahmed A. M. Sarhan
Pharmaceuticals 2023, 16(12), 1724; https://doi.org/10.3390/ph16121724 - 13 Dec 2023
Cited by 8 | Viewed by 2421
Abstract
According to data provided by the World Health Organization (WHO), a total of 2.3 million women across the globe received a diagnosis of breast cancer in the year 2020, and among these cases, 685,000 resulted in fatalities. As the incidence of breast cancer [...] Read more.
According to data provided by the World Health Organization (WHO), a total of 2.3 million women across the globe received a diagnosis of breast cancer in the year 2020, and among these cases, 685,000 resulted in fatalities. As the incidence of breast cancer statistics continues to rise, it is imperative to explore new avenues in the ongoing battle against this disease. Therefore, a number of new indolyl-hydrazones were synthesized by reacting the ethyl 3-formyl-1H-indole-2-carboxylate 1 with thiosemicarbazide, semicarbazide.HCl, 4-nitrophenyl hydrazine, 2,4-dinitrophenyl hydrazine, and 4-amino-5-(1H-indol-2-yl)-1,2,4-triazole-3-thione to afford the new hit compounds, which were assigned chemical structures as thiosemicarbazone 3, bis(hydrazine derivative) 5, semicarbzone 6, Schiff base 8, and the corresponding hydrazones 10 and 12 by NMR, elemental analysis, and X-ray single-crystal analysis. The MTT assay was employed to investigate the compounds’ cytotoxicity against breast cancer cells (MCF-7). Cytotoxicity results disclosed potent IC50 values against MCF-7, especially compounds 5, 8, and 12, with IC50 values of 2.73 ± 0.14, 4.38 ± 0.23, and 7.03 ± 0.37 μM, respectively, compared to staurosproine (IC50 = 8.32 ± 0.43 μM). Consequently, the activities of compounds 5, 8, and 12 in relation to cell migration were investigated using the wound-healing test. The findings revealed notable wound-healing efficacy, with respective percentages of wound closure measured at 48.8%, 60.7%, and 51.8%. The impact of the hit compounds on cell proliferation was assessed by examining their apoptosis-inducing properties. Intriguingly, compound 5 exhibited a significant enhancement in cell death within MCF-7 cells, registering a notable increase of 39.26% in comparison to the untreated control group, which demonstrated only 1.27% cell death. Furthermore, the mechanism of action of compound 5 was scrutinized through testing against kinase receptors. The results revealed significant kinase inhibition, particularly against PI3K-α, PI3K-β, PI3K-δ, CDK2, AKT-1, and EGFR, showcasing promising activity, compared to standard drugs targeting these receptors. In the conclusive phase, through in vivo assay, compound 5 demonstrated a substantial reduction in tumor volume, decreasing from 106 mm³ in the untreated control to 56.4 mm³. Moreover, it significantly attenuated tumor proliferation by 46.9%. In view of these findings, the identified leads exhibit promises for potential development into future medications for the treatment of breast cancer, as they effectively hinder both cell migration and proliferation. Full article
(This article belongs to the Special Issue Heterocyclic Compounds in Medicinal Chemistry)
Show Figures

Figure 1

20 pages, 2277 KiB  
Review
Prediction of Sensor Ability Based on Chemical Formula: Possible Approaches and Pitfalls
by Daniil N. Yarullin, Maksim N. Zavalishin, George A. Gamov, Michail M. Lukanov, Alexander A. Ksenofontov, Natalia A. Bumagina and Elena V. Antina
Inorganics 2023, 11(4), 158; https://doi.org/10.3390/inorganics11040158 - 6 Apr 2023
Cited by 11 | Viewed by 3556
Abstract
This review presents an analysis of different algorithms for predicting the sensory ability of organic compounds towards metal ions based on their chemical formula. A database of chemosensors containing information on various classes of suitable compounds, including dipyrromethenes, BODIPY, Schiff bases, hydrazones, fluorescein, [...] Read more.
This review presents an analysis of different algorithms for predicting the sensory ability of organic compounds towards metal ions based on their chemical formula. A database of chemosensors containing information on various classes of suitable compounds, including dipyrromethenes, BODIPY, Schiff bases, hydrazones, fluorescein, rhodamine, phenanthroline, coumarin, naphthalimide derivatives, and others (a total of 965 molecules) has been compiled. Additionally, a freely available software has been developed for predicting the sensing ability of chemical compounds, which can be accessed through a Telegram bot. This tool aims to assist researchers in their search for new chemosensors. Full article
(This article belongs to the Special Issue Chemical Sensors of Inorganic Cations and Anions)
Show Figures

Graphical abstract

14 pages, 2748 KiB  
Article
Impedance Spectroscopy as a Powerful Tool for Researching Molybdenum-Based Materials with Schiff Base Hydrazones
by Josipa Sarjanović, Martina Stojić, Mirta Rubčić, Luka Pavić and Jana Pisk
Materials 2023, 16(3), 1064; https://doi.org/10.3390/ma16031064 - 25 Jan 2023
Cited by 6 | Viewed by 2029
Abstract
Molybdenum coordination complexes are widely applied due to their biological and pharmacological potential, as well as their performance in different catalytic processes. Parent dioxidomolybdenum Schiff base complexes were prepared via the reaction of [MoO2(acac)2] with a hydrazone Schiff-base tetradentate [...] Read more.
Molybdenum coordination complexes are widely applied due to their biological and pharmacological potential, as well as their performance in different catalytic processes. Parent dioxidomolybdenum Schiff base complexes were prepared via the reaction of [MoO2(acac)2] with a hydrazone Schiff-base tetradentate ligand. A new hydrazone-Schiff base (H2L1 and 2) and its corresponding mononuclear and polynuclear dioxidomolybdenum(VI) complex were synthesized and characterized by spectroscopic methods and elemental analyses, and their thermal behavior was investigated by thermogravimetry. The crystal and molecular structures of H2L2 ligands and the complexes [MoO2(L1)(H2O)], [MoO2(L2)(H2O)], [MoO2(L1)(MeOH)]∙MeOH, [MoO2(L1)(EtOH)]∙EtOH, [MoO2(L1)(2-PrOH)]∙2-PrOH, and [MoO2(L1)]n were determined by single-crystal X-ray diffraction. Using the in situ impedance spectroscopy method (IS), the structural transformations of chosen complexes were followed, and their electrical properties were examined in a wide range of temperatures and frequencies. Full article
(This article belongs to the Section Biomaterials)
Show Figures

Graphical abstract

39 pages, 10204 KiB  
Review
Structural Features of Small Molecule Antioxidants and Strategic Modifications to Improve Potential Bioactivity
by Nathan C. Charlton, Maxim Mastyugin, Béla Török and Marianna Török
Molecules 2023, 28(3), 1057; https://doi.org/10.3390/molecules28031057 - 20 Jan 2023
Cited by 106 | Viewed by 8202
Abstract
This review surveys the major structural features in various groups of small molecules that are considered to be antioxidants, including natural and synthetic compounds alike. Recent advances in the strategic modification of known small molecule antioxidants are also described. The highlight is placed [...] Read more.
This review surveys the major structural features in various groups of small molecules that are considered to be antioxidants, including natural and synthetic compounds alike. Recent advances in the strategic modification of known small molecule antioxidants are also described. The highlight is placed on changing major physicochemical parameters, including log p, bond dissociation energy, ionization potential, and others which result in improved antioxidant activity. Full article
(This article belongs to the Special Issue Featured Reviews in Organic Chemistry)
Show Figures

Figure 1

14 pages, 3390 KiB  
Article
Synthesis and Characterization of Lanthanide Metal Ion Complexes of New Polydentate Hydrazone Schiff Base Ligand
by Izabela Pospieszna-Markiewicz, Marta A. Fik-Jaskółka, Zbigniew Hnatejko, Violetta Patroniak and Maciej Kubicki
Molecules 2022, 27(23), 8390; https://doi.org/10.3390/molecules27238390 - 1 Dec 2022
Cited by 9 | Viewed by 3721
Abstract
The new homodinuclear complexes of the general formula [Ln2L3(NO3)3] (where HL is newly synthesized 2-((2-(benzoxazol-2-yl)-2-methylhydrazono)methyl)phenol and Ln = Sm3+ (1), Eu3+ (2), Tb3+ (3a, 3b), [...] Read more.
The new homodinuclear complexes of the general formula [Ln2L3(NO3)3] (where HL is newly synthesized 2-((2-(benzoxazol-2-yl)-2-methylhydrazono)methyl)phenol and Ln = Sm3+ (1), Eu3+ (2), Tb3+ (3a, 3b), Dy3+ (4), Ho3+ (5), Er3+ (6), Tm3+ (7), Yb3+ (8)), have been synthesized from the lanthanide(III) nitrates with the polydentate hydrazone Schiff base ligand. The flexibility of this unsymmetrical Schiff base ligand containing N2O binding moiety, attractive for lanthanide metal ions, allowed for a self-assembly of these complexes. The compounds were characterized by spectroscopic data (ESI-MS, IR, UV/Vis, luminescence) and by the X-ray structure determination of the single crystals, all of which appeared to be different solvents. The analytical data suggested 2:3 metal:ligand stoichiometry in these complexes, and this was further confirmed by the structural results. The metal cations are nine-coordinated, by nitrogen and oxygen donor atoms. The complexes are two-centered, with three oxygen atoms in bridging positions. There are two types of structures, differing by the sources of terminal (non-bridging) coordination centers (group A: two ligands, one nitro anion/one ligand, two nitro anions, group B: three ligands, three anions). Full article
(This article belongs to the Special Issue Crystal Structures of Metal Complexes)
Show Figures

Figure 1

Back to TopTop