Synthesis and Characterization of Lanthanide Metal Ion Complexes of New Polydentate Hydrazone Schiff Base Ligand
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis, ESI-MS and IR Spectroscopy, Thermal Analysis of the Complexes
2.2. Crystal Structures
2.3. Electronic Absorption Spectra and Luminescence Properties
3. Materials and Methods
3.1. Materials
3.2. Physical Measurements
3.3. Synthesis of the 2-((2-(benzoxazol-2-yl)-2-methylhydrazono)methyl)phenol, HL=C15H13N3O2
3.4. Synthesis of the Complexes. General Procedures
- (1)
- [Sm2(C15H12N3O2)3(NO3)3]·CH3CN group A
- (2)
- [Eu2(C15H12N3O2)3(NO3)3]·CH3CN·[(CH₃)₂CH]₂O group B
- (3a)
- [Tb2(C15H12N3O2)3(NO3)3]·CH3OH·CH3CN·C6H5CH3 group A
- (3b)
- [Tb2(C15H12N3O2)3(NO3)3]·CH3CN·(C2H5)3NHNO3 group B
- (4)
- [Dy2(C15H12N3O2)3(NO3)3]·CH3CN group A
- (5)
- [Ho2(C15H12N3O2)3(NO3)3]·3CH3CN·CH3OH group B
- (6)
- [Er2(C15H12N3O2)3(NO3)3]·CH3CN group A
- (7)
- [Tm2(C15H12N3O2)3(NO3)3]·4CH3CN group B
- (8)
- [Yb2(C15H12N3O2)3(NO3)3]·4CH3CN group B
3.5. X-ray Crystallography
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Woodruff, D.N.; Winpenny, R.E.P.; Layfield, R.A. Lanthanide Single-Molecule Magnets. Chem. Rev. 2013, 113, 5110–5148. [Google Scholar] [CrossRef] [PubMed]
- Patroniak, V.; Baxter, P.N.W.; Lehn, J.-M.; Hnatejko, Z.; Kubicki, M. Synthesis and Luminescence Properties of New Dinuclear Complexes of Lanthanide(III) Ions. Eur. J. Inorg. Chem. 2004, 2004, 2379–2384. [Google Scholar] [CrossRef]
- Wang, X.; Chang, H.; Xie, J.; Zhao, B.; Liu, B.; Xu, S.; Pei, W.; Ren, N.; Huang, L.; Huang, W. Recent developments in lanthanide-based luminescent probes. Coord. Chem. Rev. 2014, 273–274, 201–212. [Google Scholar] [CrossRef]
- Gao, X.-S.; Jiang, X.; Yao, C. Two new complexes of Lanthanide (III) ion with the N3O2-donor Schiff base ligand: Synthesis, crystal structure, and magnetic properties. J. Mol. Struct. 2016, 1126, 275–279. [Google Scholar] [CrossRef]
- Demir, S.; Jeon, I.-R.; Long, J.R.; Harris, T.D. Radical ligand-containing single-molecule magnets. Coord. Chem. Rev. 2015, 289–290, 149–176. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.; Zhang, L.; Tang, J. Lanthanide single molecule magnets: Progress and perspective. Dalton Trans. 2015, 44, 3923–3929. [Google Scholar] [CrossRef]
- Hutchings, A.-J.; Habib, F.; Holmberg, R.J.; Korobkov, I.; Murugesu, M. Structural Rearrangement through Lanthanide Contraction in Dinuclear Complexes. Inorg. Chem. 2014, 53, 2102–2112. [Google Scholar] [CrossRef]
- Shavaleev, N.M.; Eliseeva, S.V.; Scopelliti, R.; Bünzli, J.-C.G. Tridentate Benzimidazole-Pyridine-Tetrazolates as Sensitizers of Europium Luminescence. Inorg. Chem. 2014, 53, 5171–5178. [Google Scholar] [CrossRef]
- Pospieszna-Markiewicz, I.; Radecka-Paryzek, W.; Kubicki, M.; Korabik, M.; Hnatejko, Z. Different supramolecular architectures in self-assembled praseodymium(III) and europium(III) complexes with rare coordination pattern of salicylaldimine ligand. Polyhedron 2015, 97, 167–174. [Google Scholar] [CrossRef]
- Moreno-Pineda, E.; Chilton, N.F.; Marx, R.; Dorfel, M.; Sells, D.O.; Neugebauer, P.; Jiang, S.D.; Collison, D.; van Slageren, J.; McInnes, E.J.L.; et al. Direct measurement of dysprosium (III) dysprosium (III) interactions in a single-molecule magnet. Nat. Commun. 2014, 5, 5243. [Google Scholar] [CrossRef] [Green Version]
- Gorczyński, A.; Marcinkowski, D.; Kubicki, M.; Löffler, M.; Korabik, M.; Karbowiak, M.; Wiśniewski, P.; Rudowicz, C.; Patroniak, V. New field-induced single ion magnets based on prolate Er(III) and Yb(III) ions: Tuning the energy barrier Ueff by the choice of counterions within an N3-tridentate Schiff-base scaffold. Inorg. Chem. Front. 2018, 5, 605–618. [Google Scholar] [CrossRef] [Green Version]
- Suturina, E.A.; Mason, K.; Botta, M.; Carniato, F.; Kuprov, I.; Chilton, N.F.; McInnes, E.J.L.; Vonci, M.; Parker, D. Periodic trends and hidden dynamics of magnetic properties in three series of triazacyclononane lanthanide complexes. Dalton Trans. 2019, 48, 8400–8409. [Google Scholar] [CrossRef] [PubMed]
- Sardaru, M.-C.; Marangoci, N.L.; Shova, S.; Bejan, D. Novel Lanthanide (III) Complexes Derived from an Imidazole–Biphenyl–Carboxylate Ligand: Synthesis, Structure and Luminescence Properties. Molecules 2021, 26, 6942. [Google Scholar] [CrossRef] [PubMed]
- Swain, A.; Sen, A.; Rajaraman, G. Are lanthanide-transition metal direct bonds a route to achieving new generation {3d–4f} SMMs? Dalton Trans. 2021, 50, 16099–16109. [Google Scholar] [CrossRef] [PubMed]
- Edelmann, F.T. Lanthanides and actinides: Annual survey of their organometallic chemistry covering the year 2016. Coord. Chem. Rev. 2017, 338, 27–140. [Google Scholar] [CrossRef]
- Kozłowski, M.; Kierzek, R.; Kubicki, M.; Radecka-Paryzek, W. Metal-promoted synthesis, characterization, crystal structure and RNA cleavage ability of 2,6-diacetylpyridine bis(2-aminobenzoylhydrazone) lanthanide complexes. J. Inorg. Biochem. 2013, 126, 38–45. [Google Scholar] [CrossRef]
- Fik-Jaskółka, M.; Pospieszna-Markiewicz, I.; Roviello, G.N.; Kubicki, M.; Radecka-Paryzek, W.; Patroniak, V. Synthesis and Spectroscopic Investigation of a Hexaaza Lanthanum(III) Macrocycle with a Hybrid-Type G4 DNA Stabilizing Effect. Inorg. Chem. 2021, 60, 2122–2126. [Google Scholar] [CrossRef]
- Kulkarni, A.; Patil, S.A.; Badami, P.S. Synthesis, characterization, DNA cleavage and in vitro antimicrobial studies of La (III), Th (IV) and VO (IV) complexes with Schiff bases of coumarin derivatives. Eur. J. Med. Chem. 2009, 44, 2904–2912. [Google Scholar] [CrossRef]
- Eliseeva, S.V.; Bünzli, J.-C.G. Lanthanide luminescence for functional materials and bio-sciences. Coord. Chem. Rev. 2010, 39, 189–227. [Google Scholar] [CrossRef]
- Dokukin, V.; Silverman, S.K. Photosensitised regioselective [2+2]-cycloaddition of cinnamates and related alkenes. Chem. Sci. 2012, 3, 1707–1714. [Google Scholar] [CrossRef]
- Mundoma, C.; Greenbaum, N.L. Sequestering of Eu (III) by a GAAA RNA tetraloop. J. Am. Chem. Soc. 2002, 124, 3525–3532. [Google Scholar] [CrossRef] [PubMed]
- Ambiliraj, D.B.; Francis, B.; Reddy, M.L.P. Lysosome-targeting luminescent lanthanide complexes: From molecular design to bioimaging. Dalton Trans. 2022, 51, 7748–7762. [Google Scholar] [CrossRef] [PubMed]
- Nitabaru, T.; Nojiri, A.; Kobayashi, M.; Kumagai, N.; Shibasaki, M. anti-Selective Catalytic Asymmetric Nitroaldol Reaction via a Heterobimetallic Heterogeneous Catalyst. J. Am. Chem. Soc. 2009, 131, 13860–13869. [Google Scholar] [CrossRef] [PubMed]
- Mikami, K.; Terada, M.; Matsuzawa, H. “Asymmetric” catalysis by lanthanide complexes. Angew. Chem. Int. Ed. 2002, 41, 3554–3571. [Google Scholar] [CrossRef]
- Vuillamy, A.; Zebret, S.; Besnard, C.; Placide, V.; Petoud, S.; Hamacek, J. Functionalized Triptycene-Derived Tripodal Ligands: Privileged Formation of Tetranuclear Cage Assemblies with Larger Ln (III). Inorg. Chem. 2017, 56, 2742–2749. [Google Scholar] [CrossRef]
- Xu, C.; Sun, T.; Rao, L. Interactions of bis(2,4,4-trimethylpentyl) dithiophosphinate with trivalent lanthanides in a homogeneous medium: Thermodynamics and coordination modes. Inorg. Chem. 2017, 56, 2556–2565. [Google Scholar] [CrossRef]
- Boland, K.S.; Hobart, D.E.; Kozimor, S.A.; MacInnes, M.M.; Scott, B.L. The coordination chemistry of trivalent lanthanides (Ce, Nd, Sm, Eu, Gd, Dy, Yb) with diphenyldithiophosphinate anions. Polyhedron 2014, 67, 540–548. [Google Scholar] [CrossRef]
- Marcinkowski, D.; Wałęsa-Chorab, M.; Bocian, A.; Mikołajczyk, J.; Kubicki, M.; Hnatejko, Z.; Patroniak, V. The spectroscopic studies of new polymeric complexes of silver(I) and original mononuclear complexes of lanthanides(III) with benzimidazole-based hydrazone. Polyhedron 2017, 123, 243–251. [Google Scholar] [CrossRef]
- Fik, M.A.; Löffler, M.; Kubicki, M.; Weselski, M.; Korabik, M.J.; Patroniak, V. New Fe (II) complexes with Schiff base ligand: Synthesis, spectral characterization, magnetic studies and thermal stability. Polyhedron 2015, 102, 609–614. [Google Scholar] [CrossRef]
- Groom, C.R.; Bruno, I.J.; Lightfoot, M.P.; Ward, S.C. The Cambridge Structural Database. Acta Cryst. B 2016, 72, 171–179. [Google Scholar] [CrossRef]
- Patroniak, V.; Stefankiewicz, A.R.; Lehn, J.-M.; Kubicki, M.; Hoffmann, M. Self-Assembly and Characterization of Homo- and Heterodinuclear Complexes of Zinc(II) and Lanthanide(III) Ions with a Tridentate Schiff-Base Ligand. Eur. J. Inorg. Chem. 2006, 2006, 144–149. [Google Scholar] [CrossRef]
- Zhang, L.; Ji, Y.; Xu, X.; Liu, Z.; Tang, J. Synthesis, structure and luminescence properties of a series of dinuclear LnIII complexes (Ln = Gd, Tb, Dy, Ho, Er). J. Lumin. 2012, 132, 1906–1909. [Google Scholar] [CrossRef]
- Zhang, S.; Shen, N.; Liu, S.; Ma, R.; Zhang, Y.-Q.; Hu, D.-W.; Liu, X.-Y.; Zhang, J.-W.; Yang, D.-S. Rare CH3O−/CH3CH2O−-bridged nine-coordinated binuclear DyIII single-molecule magnets (SMMs) significantly regulate and enhance the effective energy barriers. CrystEngComm 2020, 22, 1712–1724. [Google Scholar] [CrossRef]
- Lever, A.B.D. Inorganic Electronic Spectroscopy, 2nd ed.; Elsevier: London, UK, 1992. [Google Scholar]
- Taha, Z.A.; Ajlouni, A.M.; Al Momani, W.; Al-Ghzawi, A.A. Syntheses, characterization, biological activities and photophysical properties of lanthanides complexes with a tetradentate Schiff base ligand. Spectrochim. Acta A 2011, 81, 570–577. [Google Scholar] [CrossRef] [PubMed]
- Ajlouni, A.M.; Taha, Z.A.; Al-Hassan, K.A.; Abu Anzeh, A.M. Synthesis, characterization, luminescence properties and antioxidant activity of Ln(III) complexes with a new aryl amide bridging ligand. J. Luminesc. 2012, 132, 1357–1363. [Google Scholar] [CrossRef]
- Lis, S.; Elbanowski, M.; Mąkowska, B.; Hnatejko, Z. Energy transfer in solution of lanthanide complexes. J. Photochem. Photobiol. A Chem. 2002, 150, 233–247. [Google Scholar] [CrossRef]
- Carnall, W.T. Handbook on the Physics and Chemistry of Rare Earths; Gschneidner, K.A., Jr., Eyring, L., Eds.; North-Holland Publishing Company: Amsterdam, The Netherlands, 1979; Volume 3. [Google Scholar]
- Binnemans, K.; Van Duen, R.; Görller-Walrand, C.; Collinson, S.R.; Martin, F.; Bruce, D.W.; Wickleder, C. Spectroscopic behaviour of lanthanide (III) coordination compounds with Schiff base ligands. Phys. Chem. Chem. Phys. 2000, 2, 3753–3757. [Google Scholar] [CrossRef]
- Ullmann, S.; Hahn, P.; Blömer, L.; Mehnert, A.; Laube, C.; Abelc, B.; Kersting, B. Dinuclear lanthanide complexes supported by a hybrid salicylaldiminato/calix[4]arene-ligand: Synthesis, structure, and magnetic and luminescence properties of (HNEt3)[Ln2(HL)(L)] (Ln = SmIII, EuIII, GdIII, TbIII). Dalton Trans. 2019, 48, 3893–3905. [Google Scholar] [CrossRef] [Green Version]
- Karachousos-Spiliotakopoulos, K.; Tangoulis, V.; Panagiotou, N.; Tasiopoulos, A.; Moreno-Pineda, E.; Wernsdorfer, W.; Schulze, M.; Botas, A.M.P.; Carlos, L.D. Luminescence thermometry and field induced slow magnetic relaxation based on a near infrared emissive heterometallic complex. Dalton Trans. 2022, 51, 8208–8216. [Google Scholar] [CrossRef]
- Osawa, M.; Yamayoshi, H.; Hoshino, M.; Tanaka, Y.; Akita, M. Luminescence color alteration induced by trapped solvent molecules in crystals of tetrahedral gold(i) complexes: Near-unity luminescence mixed with thermally activated delayed fluorescence and phosphorescence. Dalton Trans. 2019, 48, 9094–9103. [Google Scholar] [CrossRef]
- Bartyzel, A. Effect of solvents on synthesis and recrystallization of Ni(II) complex with N2O2-donor Schiff base. Inorg. Chim. Acta 2017, 459, 103–112. [Google Scholar] [CrossRef]
- Su, H.; Li, Z.; Tan, J.; Ma, H.; Yan, L.; Li, H. Structural conversion of three copper(II) complexes with snapshot observations based on the different crystal colours and morphology. RSC Adv. 2020, 10, 42964–42970. [Google Scholar] [CrossRef] [PubMed]
- Rigaku, O.D. CrysAlis PRO (Version 1.171.38.46), Rigaku Oxford Diffraction 2015. Available online: https://www.rigaku.com/en/;products/smc/crysalis (accessed on 12 April 2019).
- Sheldrick, G.M. SHELXL-Integrated space-group and crystal-structure determination. Acta Cryst. A 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Cryst. C 2015, 71, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Spek, A.L. checkCIF validation ALERTS: What they mean and how to respond. Acta Cryst. E 2020, 76, 1–11. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pospieszna-Markiewicz, I.; Fik-Jaskółka, M.A.; Hnatejko, Z.; Patroniak, V.; Kubicki, M. Synthesis and Characterization of Lanthanide Metal Ion Complexes of New Polydentate Hydrazone Schiff Base Ligand. Molecules 2022, 27, 8390. https://doi.org/10.3390/molecules27238390
Pospieszna-Markiewicz I, Fik-Jaskółka MA, Hnatejko Z, Patroniak V, Kubicki M. Synthesis and Characterization of Lanthanide Metal Ion Complexes of New Polydentate Hydrazone Schiff Base Ligand. Molecules. 2022; 27(23):8390. https://doi.org/10.3390/molecules27238390
Chicago/Turabian StylePospieszna-Markiewicz, Izabela, Marta A. Fik-Jaskółka, Zbigniew Hnatejko, Violetta Patroniak, and Maciej Kubicki. 2022. "Synthesis and Characterization of Lanthanide Metal Ion Complexes of New Polydentate Hydrazone Schiff Base Ligand" Molecules 27, no. 23: 8390. https://doi.org/10.3390/molecules27238390
APA StylePospieszna-Markiewicz, I., Fik-Jaskółka, M. A., Hnatejko, Z., Patroniak, V., & Kubicki, M. (2022). Synthesis and Characterization of Lanthanide Metal Ion Complexes of New Polydentate Hydrazone Schiff Base Ligand. Molecules, 27(23), 8390. https://doi.org/10.3390/molecules27238390