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Abstract: According to data provided by the World Health Organization (WHO), a total of 2.3 million
women across the globe received a diagnosis of breast cancer in the year 2020, and among these
cases, 685,000 resulted in fatalities. As the incidence of breast cancer statistics continues to rise, it is
imperative to explore new avenues in the ongoing battle against this disease. Therefore, a number of
new indolyl-hydrazones were synthesized by reacting the ethyl 3-formyl-1H-indole-2-carboxylate 1
with thiosemicarbazide, semicarbazide.HCl, 4-nitrophenyl hydrazine, 2,4-dinitrophenyl hydrazine,
and 4-amino-5-(1H-indol-2-yl)-1,2,4-triazole-3-thione to afford the new hit compounds, which were
assigned chemical structures as thiosemicarbazone 3, bis(hydrazine derivative) 5, semicarbzone 6,
Schiff base 8, and the corresponding hydrazones 10 and 12 by NMR, elemental analysis, and X-ray
single-crystal analysis. The MTT assay was employed to investigate the compounds’ cytotoxicity
against breast cancer cells (MCF-7). Cytotoxicity results disclosed potent IC50 values against MCF-7,
especially compounds 5, 8, and 12, with IC50 values of 2.73 ± 0.14, 4.38 ± 0.23, and 7.03 ± 0.37 µM,
respectively, compared to staurosproine (IC50 = 8.32 ± 0.43 µM). Consequently, the activities of
compounds 5, 8, and 12 in relation to cell migration were investigated using the wound-healing test.
The findings revealed notable wound-healing efficacy, with respective percentages of wound closure
measured at 48.8%, 60.7%, and 51.8%. The impact of the hit compounds on cell proliferation was
assessed by examining their apoptosis-inducing properties. Intriguingly, compound 5 exhibited a
significant enhancement in cell death within MCF-7 cells, registering a notable increase of 39.26% in
comparison to the untreated control group, which demonstrated only 1.27% cell death. Furthermore,
the mechanism of action of compound 5 was scrutinized through testing against kinase receptors.
The results revealed significant kinase inhibition, particularly against PI3K-α, PI3K-β, PI3K-δ, CDK2,
AKT-1, and EGFR, showcasing promising activity, compared to standard drugs targeting these
receptors. In the conclusive phase, through in vivo assay, compound 5 demonstrated a substantial
reduction in tumor volume, decreasing from 106 mm3 in the untreated control to 56.4 mm3. Moreover,
it significantly attenuated tumor proliferation by 46.9%. In view of these findings, the identified leads
exhibit promises for potential development into future medications for the treatment of breast cancer,
as they effectively hinder both cell migration and proliferation.
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1. Introduction

Globally, cancer stands as the foremost contributor to mortality, with breast cancer
ranking among the leading causes of death in women. The complexity of this ailment poses
a significant challenge to medical therapy. Despite their capacity to eliminate cancer cells,
conventional anticancer treatments often induce a multitude of adverse effects, proving
detrimental to healthy tissues. Traditional antineoplastic drugs, aimed at inhibiting specific
molecules fostering tumor growth, commonly result in side effects. In response, scientists
are actively exploring novel anticancer drugs, engaging in the design and discovery of new
compounds tailored for treating various cancer types. This pursuit aims to identify targeted
therapies that can potentially offer more effective and less harmful treatment options [1,2].
Kinases, constituting the sixth largest class of proteins in the human body [3–5], play a
crucial role in cellular function. Inhibitors of kinases are indispensable for maintaining
proper cellular activities, as they modulate kinase dysregulation associated with various
diseases and disorders, including cancer, inflammatory conditions, and responses to exter-
nal stimuli. Through the regulation of protein kinases, these inhibitors effectively impede
the growth of their substrates, thereby exerting control over the viability and proliferation
of cells [6–9].

Various therapeutic targets for kinase inhibitors exist, encompassing EGFR, CDK,
AKT, PI3K, and other specific targets [10–12]. Indole-containing compounds have garnered
prolonged attention from researchers and evolved into a dynamic field of study. The indole
moiety demonstrates a high affinity for binding to several receptors, paving the way for
the development of new bioactive medications. Its widespread utilization in target-based
discovery and the design of anticancer drugs is well-documented [13–18].

N’-Methylene-5-((4-(pyridin-3-yl)pyrimidin-2-yl)amino)1H-indole-2-carbohydrazide
moiety showed CDK9 inhibitory activity for cancer therapy treatment, according to Hu
et al. [19]. Some representative examples discussed, such as compound I, were assessed,
and it was revealed that they showed potential against CDK9 inhibition. Al-warhi et al.
reported that oxindole II displayed anti-tumor activity targeting the CDK4 inhibitor [20].
N-substituted iso-indigo compounds were designed, synthesized, and biologically eval-
uated by Zhao et al. as inhibitors of cyclin-dependent kinase 2 (CDK2). Iso-indigo com-
pound III was found to stop the S-phase of the cell cycle [21] (Figure 1).

Sunitinib is used for the treatment of gastrointestinal stromal tumors (GIST) and
advanced renal cell carcinoma (RCC) [22–25]. Semaxanib is a tyrosine kinase inhibitor
drug that is used in cancer therapeutics [26]. Indole-triazole alkylated system (Figure 1)
displayed significant anti-cancer activity. For example: 3-benzylsulfanyl-5-(1H-indol-2-
yl)-2H-1,2,4-triazole IV showed promising antiproliferative activity against HEPG-2 and
MCF-7 cancer cell lines [27]; 3-(allylsulfanyl)-4-phenyl-5-(1H-indol-2-yl)-1,2,4-triazole V
and its analogues showed interesting anti-proliferative potential against breast cancer [28];
substituted 3-(triazolo-thiadiazin-3-yl)-indolin-2-one derivatives VI displayed dual in-
hibition activity for c-Met (a receptor tyrosine kinase) and VEGFR2 enzymes, with an
effective anti-proliferative potency against different subpanels of the most NCI 58 tumor
cell lines [29]; and indole-triazole hybrid VII and its analogues revealed a potent inhibition
against vascular endothelial growth factor receptor-2 (VEGFR-2), with potential anti-renal
cancer activity [30]. Alkylated indolyl-triazole Schiff bases VIII targeted breast cancer via
VEGFR2 tyrosine kinase inhibition [31].

Building upon the findings from the aforementioned studies, the conceptualization of
synthesizing novel compounds that incorporate ester and azomethine groups, along with
an indole scaffold in a single compound, is expected to yield potent anticancer medicines.
This anticipation stems from the potential of these compounds to function as both hydrogen
bond donors and/or acceptors upon interaction with receptors.
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2. Results and Discussion
2.1. Synthesis

Condensation of thiosemicarbazide 2 with ethyl 3-formyl-1H-indole-2-carboxylate
1 by fusion for 5 min led to the formation of the thiosemicarbazone derivative 3. Under
the same fusion condition, the condensation of 1 with semicarbazide.HCl 4 interestingly
afforded bis-ester derivative 5. Through the reaction of 1 with semicarbazide.HCl 4 under
reflux in AcOH/MeOH, semicarbazone derivative 6 was obtained (Scheme 1).
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Scheme 1. Reaction of thiosemicarbazide 2 and semicarbazide.HCl 4 with ethyl 3-formyl-1H-indole-
2-carboxylate 1.

Under fusion conditions, the reaction between ethyl 3-formyl-1H-indole-2-carboxylate
1 with amine functionality derivatives, such as 4-amino-5-(1H-indol-2-yl)-1,2,4-triazole-3-
thione 7, 4-nitrophenyl hydrazine 9, and 2,4-dinitrophenyl hydrazine 11, resulted in the
formation of condensed hydrazones 8, 10, and 12, respectively (Scheme 2). The structural
assignment for the newly synthesized hits was established through a comprehensive set
of spectroscopic tools (see Section 3), which included nuclear magnetic resonance (NMR),
mass spectrometry (MS), CHN analysis, and single-crystal X-ray diffraction analysis.
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2.2. X-ray Single-Crystal Analysis for Compounds 3 and 5

Using single-crystal X-ray analysis, structures of compounds 3 and 5 were conclusively
confirmed. The unit cell parameters of compound 3 (a = 9.23490(10) Å, b = 19.4168(2) Å, c
= 7.89280(10) Å, and V = 1374.36(3) Å3) that crystallized in monoclinic space group P21/c
and compound 5 (a = 5.4774(3) Å, b = 9.2031(5) Å, c = 10.6234(8) (10) Å, and V = 531.26(6)
show the Å3 that crystallized in the triclinic space group P 1 (Table 1). The crystal structure
(Figure 2) revealed that compound 3 was a thiosemicarbazone structure, while compound
5 was a bis-hydrazino derivative.

Table 1. Crystals data of compounds 3 and 5.

3 5

CCDC 2293777 2293778
empirical formula C13H14N4O2S C24H22N4O4

fw 290.34 430.45
temp (K) 120(2) 120(2)

Λ (Å) 1.54184 0.71073
cryst syst Monoclinic Triclinic

space group P21/c P 1
a (Å) 9.23490(10) 5.4774(3)
b (Å) 19.4168(2) 9.2031(5)
c (Å) 7.89280(10) 10.6234(8)

A (deg) 90 93.995(5)
β (deg) 103.8110(10) 94.008(6)
γ (deg) 90 94.201(5)
V (Å3) 1374.36(3) 531.26(6)

Z 4 1
ρcalc (Mg/m3) 1.403 1.345

µ(Mo Kα) (mm−1) 2.168 0.094
No. reflns. 16497 8485

Unique reflns. 2884 2637
Completeness to θ = 67.684◦ 99.8%
Completeness to θ = 25.242◦ 99.9%

GOOF (F2) 1.058 1.046
Rint 0.0187 0.0300

R1
a (I ≥ 2σ) 0.0279 0.0469

wR2
b (I ≥ 2σ) 0.0780 0.1123

a R1 = Σ||Fo| − |Fc||/Σ|Fo|. b wR2 = {Σ[w (Fo
2 − Fc

2)2]/Σ[w (Fo
2)2]}1/2.
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2.3. Biology
2.3.1. MTT Assay for the Synthesized Compounds

The produced compounds were examined for their cytotoxicity against MCF-7 breast
cancer cells using the MTT assay. As summarized in Table 2, they demonstrated po-
tent IC50 values against MCF-7, especially compounds 5, 8, and 12, with IC50 values of
2.73 ± 0.14, 4.38 ± 0.23, and 7.03 ± 0.37 µM, compared to staurosproine, with an IC50 value
of 8.32 ± 0.43 µM, while compounds 1, 3, and 6 exhibited promising cytotoxicity, with
IC50 values of 19.7 ± 2.31, 10.2 ± 0.53, and 9.42 ± 0.57 µM, respectively. Compound 10
exhibited moderate cytotoxicity, with a high concentration of IC50 (25.4 ± 1.54 µM).

Table 2. Cytotoxicities of the investigated compounds against MCF-7 cells using the MTT assay.

Compounds IC50 ± SD [µM]

1 19.7 ± 2.31
3 10.2 ± 0.53
5 2.73 ± 0.14
6 9.42 ± 0.57
8 4.38 ± 0.23

10 25.4 ± 1.54
12 7.03 ± 0.37

Staurosporine 8.32 ± 0.43
IC50 values were calculated using “Mean ± SD” of three independent values.

2.3.2. Wound-Healing Activity

As shown in Table 3 and Figure 3, the wounded area between cell layers following a
scratch was partially filled by migrating MCF-7 control cells (94.07% wound closure), while
treatments of compounds 5, 8, and 12 significantly inhibited wound-healing activity, with
percentages of wound closure of 48.88, 60.74, and 51.85%, respectively, compared to control.

Table 3. The percentage of wound healing (% closure) for untreated and 5-treated MCF-7 cells.

Compound %Closure *, MCF-7

5 48.88 # ± 2.7
8 60.74 # ± 3.43
12 51.85 # ± 2.92

Untreated control 94.07 ± 5.5
* Values are expressed as “Mean ± SD”. # Significance level (p < 0.05) indicates a significant difference (unpaired
Student’s t-test) from the untreated control group. Data for length of migration (mm) and area are supported in
the Supplementary Materials.
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Pharmaceuticals 2023, 16, 1724 7 of 16

2.3.3. Apoptotic Induction Activity

To investigate the apoptotic activity of compounds 5, 8, and 12, flow cytometric
evaluation of Annexin V/PI staining was utilized to examine apoptotic cell death in
untreated and treated MCF-7 cells. Table 4 shows that compound 5 dramatically increased
cell death in MCF-7 cells by 39.26% (29.35% for apoptosis and 9.91% for necrosis), compared
to the untreated control group, which increased it by 1.27% (0.4% for apoptosis and 0.87%
for necrosis). Additionally, compounds 8 and 12 caused total cell death by 24.4% and 37%,
with apoptosis ratios of 15.72% and 21.0%, respectively.

Table 4. Flow cytometry results of the three promising cytotoxic agents using Annexin V/PI and
DNA-aided flow cytometry.

Compound
Annexin V/PI Staining DNA Content

Total Early Late Necrosis %G0-G1 %S %G2/M %Pre-G1

Cont.MCF7 1.27 0.29 0.11 0.87 52.91 41.33 5.76 1.27

5 39.26 7.11 22.24 9.91 39.07 56.19 4.74 39.26

8 24.38 2.27 13.45 8.66 47.10 46.31 6.57 24.38

12 37.05 4.59 17.44 15.02 59.33 38.10 2.55 37.05

After being treated with a cytotoxic chemical, the cell population in each cell phase
was then ascertained by DNA flow cytometry. Compound 5 increased the S-phase cell
population by 56.2%, compared to control, which increased it by 41.33%, as Figure 4
illustrates, whereas cells in other phases decreased negligibly. Consequently, compound 5
stopped MCF-7 cells from proliferating at the S-phase by inducing apoptosis.
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an IC50 value of 2.73 µM, 48 h, are displayed in the lower panel (B).
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2.3.4. Kinase-Inhibition Activity

To highlight their effective molecular target, the most cytotoxic and apoptotic com-
pound 5 was screened for its activity towards a panel of kinase activities, including
PI3K-α, PI3K-β, PI3K-δ, CDK2, AKT-1, and EGFR, compared to their standard drugs.
It caused promising kinase inhibitory activities, as summarized in Table 5. Interestingly,
compound 5 exhibited significant inhibitory potential against PI3K-α and showed selec-
tivity, with a 4.92-fold higher potency than LY294002. However, in the cases of PI3K-β
and PI3K-δ, compound 5 demonstrated lower activity compared to LY294002. More-
over, compound 5 (IC50 = 0.156 ± 0.01 µM) showed a reactivity profile against CDK2
closer to the standard drug erlotinib (IC50 of 0.173 ± 0.01 µM). On the other hand, com-
pound 5 (IC50 = 0.602 ± 0.03 µM) demonstrated lower reactivity towards AKT-1, com-
pared to the standard drug A-674563 (IC50 of 0.26 ± 0.01 µM). Finally, compound 5
(IC50 = 0.058 ± 0.029 µM) demonstrated lower reactivity against EGFR, compared to
the standard drug erlotinib (IC50 of 0.038 ± 0.019 µM). Compound 5 was found to possess
the potential for inhibiting multiple kinases.

Table 5. IC50 values of kinase activities of the tested compounds.

Compound
IC50 [µM] ± SD *

PI3K-α PI3K-β PI3K-δ CDK2 AKT-1 EGFR

5 1.73 ± 0.1 2.27 ± 0.11 2.68 ± 0.15 0.156 ± 0.01 0.602 ± 0.03 0.058 ± 0.029

LY294002 8.52 ± 0.48 0.44 ± 0.02 0.85 ± 0.05 NT NT NT

erlotinib NT NT NT 0.173 ± 0.01 NT 0.038 ± 0.019

A-674563 NT NT NT NT 0.26 ± 0.01 NT

* “Values are expressed as an average of three independent replicates”. “IC50 values were calculated using a
sigmoidal non-linear regression curve fit of percentage inhibition against five concentrations of each compound”.
NT = Not tested.

2.3.5. In Vivo (SEC-Bearing Mice)

A solid Ehrlich carcinoma cell was implanted, and 5 was injected intraperitoneally
(IP) throughout the experiment to confirm its anticancer efficacy, as shown in Figure 5,
which summarizes the main findings of the antitumor activity experiments. As a result,
tumor proliferation revealed an increase in solid tumor mass of approximately 398.1 mg,
which is related to tumor proliferation. Following treatment with 5, the solid tumor mass
decreased to 126.5 mg, compared to 110 mg in the 5-FU treatment. As a result, treatments
with 5 considerably reduced tumor volume from 106 mm3 in the untreated control to
56.4 mm3 and significantly decreased tumor proliferation by 46.9%, while 5-FU reduced
tumor volume to 43.7 mm3 and inhibited tumor development by 58.8%.

2.3.6. Molecular Docking

To illustrate the virtual mechanism of binding towards the EGFR, PI3K, and CDK2
binding sites, molecular docking research was carried out. As seen in Figure 6, compound
5 was properly docked inside the protein active sites of EGFR (A), PI3K (B), and CDK2 (C),
with binding energies of −23.15, −21.32, and −23.44 Kcal/mol, and it formed good binding
interactions with their active sites. Compound 5 exhibited strong binding interactions with
the amino acids Lys721, Cys773, and Leu694 inside EGFR. It formed two H-bond interac-
tions with Val882 inside the PI3K active site, and it formed two arene–cation interactions
with Lys89 inside the CDK2 active site like the co-crystallized ligands. These outcomes
corroborated the kinase inhibition experiment findings. Previous literature reported the
downstream inhibition pathway of EGFR/PI3K/AKT, which is linked to CDK2 inhibition,
as a promising target for inducing apoptosis in cancer cells [32].
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As summarized in Figure 7, compound 5, as an indolyl-hydrazone derivative, induced
potent cytotoxicity against MCF-7 as an apoptosis inducer through the downstreaming
pathway of EGFR/PI3K/AKT and CDK2 inhibition. The effective pathway induced cell
cycle arrest at the S-phase, and it led to apoptosis in the MCF-7 cells. EGFR, and its
downstreaming pathway is considered one of the promising effective pathways for cancer
treatment, and our results agreed with previous reported studies for the same compounds’
scaffold affecting cytotoxic activities through apoptosis [33–35].
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2.3.7. SAR

The structure–reactivity relationship of the synthesized compounds is summarized
as follows in Figure 8: The hydrazone derivative 10, featuring a p-nitro group-substituted
benzene ring, exhibited the lowest reactivity, with an IC50 value of 25.4 ± 1.54 µM. In
contrast, the aldehyde-based indole derivative 1, the starting material, demonstrated better
reactivity, with an IC50 value of 19.7 ± 2.31 µM. The thiosemicarbazide 3 and its isosteric
semicarbazide 6 enhanced reactivity, with IC50 values of 9.42 ± 0.57 and 10.2 ± 0.53 µM,
respectively. The presence of two nitro groups on the substituted benzene ring of hydrazone
12 significantly improved reactivity, with an IC50 value of 7.03 ± 0.37 µM, due to the high
electron-withdrawing group effect. The introduction of the thio-triazole indole-based Schiff
base 8 significantly increased activity (IC50 = 4.38 ± 0.23 µM) up to 1.9-fold higher than
the reference drug, while the symmetrical bis-esters azine 5 emerged as the most potent
compound in inhibiting breast cancer cells, with an IC50 of 2.73 ± 0.14 µM, 3-fold more
potent than the standard drug staurosporine (IC50 = 8.32 ± 0.43 µM).
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3. Materials and Methods
3.1. Chemistry
3.1.1. General

The values for the melting points were uncorrected and were determined in open
capillaries using a Temp-melt II melting point equipment. On silica gel 60 (230–400 mesh
ASTM), flash chromatography was carried out. On silica gel 60 F254 aluminum plates
(E. Merck, layer thickness 0.2 mm), thin-layer chromatography (TLC) was performed. The
spots were found using a UV lamp. Using DMSO-d6 and CDCl3 as solvents, the 1H and
13C-NMR spectra were captured on Bruker instruments at 400 MHz for 1H NMR and
101 MHz for 13C NMR, respectively. Using KBr and a PerkinElmer 1430 ratio-recording
infrared spectrophotometer, Bruker’s Fourier-transform infrared (FT-IR) spectrophotometry
was used to record the IR spectra.

3.1.2. Synthesis

A mixture of 1 (1.0 mmol, 0.22 g), thiosemicarbazide, and semicarbazide.HCl (1.1
mmol, 0.1 g, and 0.12 g respectively) was grinded and fused on a hotplate for 5 min until
all reactants turned to products. The products were purified by recrystallization from
DMF/EtOH to 3 and 5, respectively.

Ethyl (E)-3-((2-carbamothioylhydrazineylidene)methyl)-1H-indole-2-carboxylate 3.
There was 81% yield, 0.23 g, and m.p. 229–230 ◦C. 1H NMR (400 MHz, DMSO-d6):

δ 1.41 (t, 3 H, J = 6.8 Hz, CH3), 4.42 (q, 2 H, J = 6.8 Hz, OCH2), 7.21 (dd, 1H, J = 7.2,
7.6 Hz), 7.35 (dd, 1 H, J = 7.2, 7.6 Hz), 7.51 (d, 1 H, J = 8.0 Hz), 8.17 (brs, 2 H), 8.40 (d, 1 H,
J = 8.4 Hz), 9.01 (s, 1H, CH=N-), 11.58 (s, 1H, NH), and 12.15 (s, 1 H, NH indole); 13C NMR
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(100 MHz, DMSO-d6): δ 14.69 (CH3), 61.60 (OCH2), 113.06, 115.69, 122.32, 124.57, 124.69,
126.12, 127.90, 137.04, 141.10 (9 C), 161.41 (C=O), and 177.97 (C=S); and elemental analysis
calculated for [C13H14N4O2S]: C, 53.78; H, 4.86; N, 19.30; S, 11.04; found C, 53.89; H, 4.93;
N, 19.23; and S, 11.09

Diethyl 3,3’-((1E,1’E)-hydrazine-1,2-diylidenebis(methaneylylidene))bis(1H-indole-2-
carboxylate) 5.

There was 78% yield, 0.34 g, and m.p. 302–303 ◦C. 1H NMR (400 MHz, DMSO-d6): δ
1.45 (t, 3 H, J = 6.4 Hz, CH3), 4.48 (q, 2H, J = 6.4 Hz, OCH2), 7.29 (dd, 1 H, J = 6.8, 7.2 Hz),
7.41 (dd, 1 H, J = 7.2, 6.8 Hz), 7.58 (d, 1 H, J = 7.6 Hz), 8.57 (d, 1 H, J = 8.0 Hz), 9.59 (s, 1 H,
CH=N), and 12.37 (s, 1 H, NH indole); 13C NMR (100 MHz, DMSO-d6): δ 14.67 (CH3), 61.70
(OCH2), 113.39, 116.09, 122.52, 124.53, 125.34, 126.25, 128.92, 137.07 (8 C), 157.27 (C=O), and
161.24 (C=O); elemental analysis computed for [C24H22N4O4]: C, 66.97; H, 5.15; N, 13.02;
found C, 66.99; H, 5.21; and N, 13.13.

Ethyl (E)-3-((2-carbamoylhydrazineylidene)methyl)-1H-indole-2-carboxylate 6.
A mixture of 1 (1.0 mmol) and semicarbazide.HCl (1.1 mmol) was refluxed in equal

volumes of MeOH/AcOH 10 mL for 8 h until all reactants formed products. A precipitate
was formed upon cooling, which was filtered, dried, and recrystallized from MeOH to
obtain 6.

There was 88% yield, 0.25 g, and m.p. 285–286 ◦C. 1H NMR (400 MHz, DMSO-d6): δ
1.36 (t, J 7.1 Hz, 3 H), 4.37 (q, J = 7.1 Hz, 2 H), 6.46 (s, 2 H), 7.19 (t, J = 7.5 Hz, 1 H), 7.47–7.32
(m, 2H), 7.55 (d, J = 8.3 Hz, 1 H), 7.66 (s, 1 H), 8.67 (s, 1 H), and 12.31 (s, 1 H, NH indole );
13C NMR (101 MHz, DMSO-d6): δ 14.63, 61.45, 112.10, 113.63, 121.50, 121.95, 124.78, 125.65,
126.23, 134.06, 136.85, 156.88, and 161.24; elemental analysis calculated for [C13H14N4O3]:
C, 56.93; H, 5.15; N, 20.43; found C, 57.01; H, 5.13; and N, 20.52.

Ethyl (E)-3-(((3-(1H-indol-2-yl)-5-thioxo-1,5-dihydro-4H-1,2,4-triazol-4-yl)imino)methyl)-
1H-indole-2-carboxylate 8.

There was 81% yield, 0.36 g, and m.p. 248–249 ◦C. 1H NMR (400 MHz, DMSO-d6): δ
1.41 (t, 3 H, J = 6.8 Hz,CH3), 4.46 (q, 2 H, J = 6.8 Hz,OCH2), 7.02 (dd, 1H, J = 7.2, 7.6 Hz),
7.20–7.23 (m, 2H), 7.31 (dd, 1H, and J = 7.6 Hz), 7.44–7.52 (m, 3 H), 7.65 (d, 1 H, J = 8 Hz),
8.48 (d, 1 H, J = 8 Hz), 10.41 (s, 1 H), 11.88 (s, 1 H), 12.79 (s, 1 H, NH indole), and 14.20 (brs, 1
H, NHtrz); 13C NMR(100 MHz, DMSO-d6): δ 14.60 (CH3), 62.17 (CH2), 105.59, 112.41, 113.11,
113.86, 120.45, 121.55, 123.10, 123.53, 123.86, 124.19, 125.09, 126.61, 127.73, 131.19, 137.12,
137.41, 144.01, 160.84, 162.73, and 163.31. Calculated elemental analysis for [C22H18N6O2S]:
found C, 61.44; H, 4.37; N, 19.43; S, 7.39; C, 61.38; H, 4.21; N, 19.52; O, 7.43; and S, 7.45

Ethyl (E)-3-((2-(4-nitrophenyl)hydrazineylidene)methyl)-1H-indole-2-carboxylate 10.
There was 89% yield, 0.32 g, and m.p. 270–271 ◦C. 1H NMR (400 MHz, DMSO-d6): δ

1.43 (t, J = 7.0 Hz, 3 H), 4.44 (q, J = 6.9 Hz, 2 H), 7.28–7.11 (m, 2 H), 7.30 (d, J = 7.4 Hz, 1 H),
7.40 (t, J = 7.6 Hz, 1 H), 7.54 (d, J = 8.2 Hz, 1 H), 8.18 (d, J = 8.6 Hz, 2 H), 8.45 (d, J = 8.1
Hz, 1 H), 8.99 (s, 1 H), 11.39 (s, 1 H), and 12.13 (s, 1 H, NH indole); 13C NMR (101 MHz,
DMSO-d6): δ 14.76, 61.44, 111.43, 113.29, 117.04, 122.20, 124.15, 124.56, 126.23, 126.81, 137.10,
138.40, 139.67, 151.01, and 161.46; elemental analysis calculated for [C18H16N4O4]: C, 61.36;
H, 4.58; N, 15.90; found C, 61.47; H, 4.43; and N, 15.82.

Ethyl (E)-3-((2-(2,4-dinitrophenyl)hydrazineylidene)methyl)-1H-indole-2-carboxylate 12.
There was 89% yield, 0.36 g, and m.p. 292–293 ◦C. 1H NMR (400 MHz, DMSO-d6): δ

1.44 (t, 3 H, CH3), 4.46 (q, 2 H, OCH2), 7.30–7.54 (m, 3 H), 8.00 (brs, 1 H), 8.38 (brs, 2 H), 8.83
(brs, 1 H), 9.36 (s, 1 H, CH=N), 11.73 (s, 1 H, NH), and 12.33 (s, 1 H, NH indole); 13C NMR
(100 MHz, DMSO-d6): δ 14.72 (CH3), 61.67 (OCH2), 113.49, 115.73, 122.76, 123.89, 126.33,
130.43, 137.08, 146.62, and 161.20; elemental analysis calculated for [C18H15N5O6]: C, 54.41;
H, 3.81; N, 17.63; found C, 54.53; H, 3.88; and N, 17.49.

3.1.3. X-ray Structure Determination

The general protocol for the collection of crystalline compounds 3 and 5 is provided in
the supporting materials [36–38].
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4. Cytotoxicity

The National Research Institute in Egypt donated the breast cancer (MCF-7) cells,
which were collected and cultured in RPMI-1640 medium L-glutamine (Lonza Verviers
SPRL, Verviers, Belgium, cat#12-604F). The 10% fetal bovine serum (FBS; Sigma-Aldrich,
St. Louis, MO, USA) and 1% penicillin-streptomycin (Lonza, Belgium) were given to each
of the two cell lines.

All cells were cultured, following routine tissue culture work, in 5% CO2 humidified
at 37 ◦C. Cells were exposed to compounds at concentrations of 0.01, 0.1, 1, 10, and 100 µM
on the second day of culturing. After 48 h, cell viability was evaluated using the MTT
solution (Promega, Madison, WI, USA) [38]. MTT dye (20 µL) was placed into each well,
and the plate was then incubated for three hours. Absorbance was subsequently measured
at 570 nm using the ELISA microplate reader (BIO-RAD, model iMark, Tokyo, Japan), and
the percentage of cell viability was calculated, compared to control, as (mean absorbance of
tested compound)/(mean absorbance in control) × 100. Finally, IC50 values were found
using the nonlinear dose–response sigmoidal curve in GraphPad Prism 7 [39].

4.1. Investigation of Apoptosis

Annexin V/PI staining and cell cycle analysis 3–105 MCF-7 cells were added to 6-
well culture plates, which were then placed in the incubator for the night. Following
that, cells were treated for 48 h to compound 5 at its IC50 levels. Following that, PBS
was rinsed with ice-cold water before cells and media supernatants were gathered. The
cells were then treated with “Annexin V-FITC solution (1:100) and propidium iodide (PI)”
at a concentration of 10 g/mL for 30 min in the dark after being suspended in 100 L of
annexin-binding buffer solution, which was composed of 25 mM CaCl2, 1.4 M NaCl, and
0.1 M Hepes/NaOH, pH 7.4. Then, labeled cells were collected using the Cytoflex FACS
system. The data were assessed using the cytExpert program [39].

4.2. Wound-Healing Assay (Scratch Assay)

The wound-healing test was mentioned in previous research [40,41]. Six-well plates
containing starvation media were filled with four 105 MCF-7 cells per well, and the plates
were subsequently incubated at 37 ◦C for the whole night. A sterile 1 mL pipette tip was
used to generate a scratch of the cell monolayer once it was established the following day
that the cells had adhered to the well and that cell confluence had reached 90%. Starvation
media was used to clean the cells before they were removed from the plates. For 48 h,
the cells were cultivated in a CO2 incubator with the IC50 of compounds 5, 8, and 12 in
the full medium. After 48 h, the medium was immediately changed to PBS, the wound
gap was examined, and cells—both control and treated—were captured on camera with a
digital camera attached to an Olympus microscope. The region where the wound closes
was measured [42,43].

4.3. Kinase Inhibitory Assays

EGFR (catalog #40321), CDK2 (catalog #79599), AKT (catalog #78038), PI3K-α (catalog
#40639), β (catalog #79802), and δ (catalog #40628) kinase inhibitions were conducted using
an ELISA kit in accordance with the manufacturer instructions from Bioscience, USA. To
assess the inhibitory potency of compound 5 against the kinase activity, kinase inhibitory
tests were carried out. The following calculation was used to compute the proportion that
chemicals inhibited autophosphorylation: 100 − [(A Control)/(A Treated) − A Control]. Using
the GraphPad prism7 program, the IC50 was calculated using the curves of percentage
inhibition of five concentrations of each chemical [44].

4.4. In Vivo (SEC-Bearing Model)

The Suez Canal University Research Ethics Committee gave the experimental procedure
their seal of approval (approval number REC219/2023, Faculty of Science, Suez Canal Univer-
sity) [45,46]. The full, detailed methodology is supported in the Supplementary Materials.
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4.5. Molecular Docking

Maestro was used to construct, optimize, and energetically favor ligand structures.
The X-ray crystallographic structures of EGFR kinase (PDB ID: 1M17), PI3K (PDB = 1E7V),
and CDK2 (PDB = 2A4L) [47,48] were subjected to a molecular docking investigation using
the AutoDock Vina 1.2.0 software following routine work, which was followed by the
Chimera-UCSF 1.17.3 software.

5. Conclusions

Ethyl 3-formyl-1H-indole-2-carboxylate 1 serves as a precursor in a series of condensa-
tion reactions under fusion conditions, aiming to discover novel bioactive lead compounds.
Structure assignments were accomplished through NMR and X-ray single-crystal analy-
sis. The majority of the synthesized compounds exhibited noteworthy anti-breast cancer
activity. Compounds 5, 8, and 12 exhibited superior activity, compared to the standard
drug. Compound 5 demonstrated potent cytotoxicity, with IC50 values of 2.73 ± 0.14 µM,
surpassing staurosporine (IC50 = 8.32 ± 0.43 µM) by three-fold. Additionally, it exhibited
significant wound-healing activity, with a wound-closure percentage of 48.8%. Notably, in
terms of apoptosis induction, compound 5 markedly increased cell death through apop-
tosis by inhibiting PI3K-α, PI3K-β, PI3K-δ, CDK2, AKT-1, and EGFR kinases, compared
to their respective standard drugs. Consequently, the newly identified lead compound is
recommended for further development as a kinase-targeted anti-breast cancer agent.

Supplementary Materials: The following documents are available for download at https://www.
mdpi.com/article/10.3390/ph16121724/s1, where you can find the titles of Figures S1–S12: NMR
spectrum of the synthesized compounds, Figure S13: Wound-healing assay for the most active
compounds. In vivo assay protocol. References [49–52] are cited in the supplementary materials.
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