Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (372)

Search Parameters:
Keywords = hydraulic motor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 5200 KB  
Article
Feasibility Study of MOS Gas Sensors for Detecting Mineral Hydrocarbon Contaminants in Freshly Harvested Olives at Different Maturity Stages
by David Bonillo Martínez, Guilherme Felipe Pacheco Braga, Diego Manuel Martínez Gila and Silvia Satorres Martínez
Sensors 2026, 26(3), 816; https://doi.org/10.3390/s26030816 - 26 Jan 2026
Viewed by 117
Abstract
The accidental contamination of olives by mineral hydrocarbons, such as diesel, motor lubricants, and hydraulic fluids from agricultural machinery, has become a growing concern in the olive oil industry. In response, European regulatory bodies are working on establishing new standards to address this [...] Read more.
The accidental contamination of olives by mineral hydrocarbons, such as diesel, motor lubricants, and hydraulic fluids from agricultural machinery, has become a growing concern in the olive oil industry. In response, European regulatory bodies are working on establishing new standards to address this issue. This study explores the feasibility of using Metal Oxide Semiconductor (MOS) gas sensors as a non-invasive method for detecting such contaminants on freshly harvested olives across different maturity stages. By assessing the sensitivity and selectivity of MOS sensors, this research aims to identify hydrocarbons that may adhere to the olive surface during harvesting and processing. The study involves controlled laboratory contamination scenarios, with samples exposed to various hydrocarbons to evaluate the relative response of individual MOS sensors under reproducible conditions. Findings from this research may provide valuable insights into rapid and cost-effective detection systems, supporting quality control and regulatory compliance in olive oil production, and contributing to the safety and traceability of olive-derived products. As a feasibility study, the results provide a basis for future developments involving multivariate analysis, field-contaminated samples, and industrial implementation. Full article
(This article belongs to the Special Issue Electronic Nose and Artificial Olfaction)
Show Figures

Figure 1

22 pages, 7265 KB  
Article
Dynamic Modeling of Multi-Stroke Radial Piston Motor with CFD-Informed Leakage Characterization
by Manhui Woo and Sangwon Ji
Actuators 2026, 15(1), 54; https://doi.org/10.3390/act15010054 - 13 Jan 2026
Viewed by 181
Abstract
Radial piston motors are expected to expand their applications in hydraulic drive systems due to their high torque density and mechanical robustness. However, its volumetric efficiency can be significantly affected by the multi-stroke operating characteristics and leakage occurring in the micro-clearances of the [...] Read more.
Radial piston motors are expected to expand their applications in hydraulic drive systems due to their high torque density and mechanical robustness. However, its volumetric efficiency can be significantly affected by the multi-stroke operating characteristics and leakage occurring in the micro-clearances of the valve plate. In this study, a detailed modeling procedure for a multi-stroke radial piston motor is proposed using the 1D system simulation software Amesim. In particular, the dynamic interaction between the ports and pistons inside the motor is formulated using mathematical function-based expressions, enabling a more precise representation of the driving behavior and torque generation process. Furthermore, to characterize the leakage flow occurring in the micro-clearance between the fluid distributor and cylinder housing, the commercial CFD software Simerics MP+ was employed to analyze the three-dimensional flow characteristics within the leakage gap. Based on these CFD results, a leakage-path function was constructed and implemented in the Amesim model. As a result, the developed model exhibited strong agreement with reference data from an actual motor in terms of overall operating performance, including volumetric and mechanical efficiencies while consistently reproducing the leakage behavior observed in the CFD analysis. The simulation approach presented in this study demonstrates the capability to reliably capture complex fluid–mechanical interactions at the system level, and it can serve as an effective tool for performance prediction and optimal design of hydraulic motors. Full article
Show Figures

Figure 1

24 pages, 6868 KB  
Article
Study on Multi-Parameter Collaborative Optimization of Motor-Pump Stator Slotting for Cogging Torque and Noise Suppression Mechanism
by Geqiang Li, Xiaojie Guo, Xiaowen Yu, Min Zhao and Shuai Wang
World Electr. Veh. J. 2026, 17(1), 39; https://doi.org/10.3390/wevj17010039 - 13 Jan 2026
Viewed by 166
Abstract
As a highly integrated and compact power unit, the motor-pump finds critical applications in emerging electric vehicle (EV) domains such as electro-hydraulic braking and steering systems, where its vibration and noise performance directly impacts cabin comfort. A key factor limiting its NVH (Noise, [...] Read more.
As a highly integrated and compact power unit, the motor-pump finds critical applications in emerging electric vehicle (EV) domains such as electro-hydraulic braking and steering systems, where its vibration and noise performance directly impacts cabin comfort. A key factor limiting its NVH (Noise, Vibration, and Harshness) performance is the electromagnetic vibration and noise induced by the cogging torque of the built-in brushless DC motor (BLDCM). Traditional suppression methods that rely on stator auxiliary slots exhibit certain limitations. To address this issue, this paper proposes a collaborative optimization method integrating multi-parameter scanning and response surface methodology (RSM) for the design of auxiliary slots on the motor-pump’s stator teeth. The approach begins with a multi-parameter scanning phase to identify a promising region for global optimization. Subsequently, an accurate RSM-based prediction model is established to enable refined parameter tuning. Results demonstrate that the optimized stator structure achieves a 91.2% reduction in cogging torque amplitude for the motor-pump. Furthermore, this structure effectively suppresses radial electromagnetic force, leading to a 5.1% decrease in the overall sound pressure level. This work provides a valuable theoretical foundation and a systematic design methodology for cogging torque mitigation and low-noise design in motor-pumps. Full article
(This article belongs to the Section Propulsion Systems and Components)
Show Figures

Figure 1

25 pages, 6378 KB  
Article
Research on Efficiency Characteristics Modeling and Control Strategy of Dual Continuously Variable Transmission System with Series Combination of “Drive Motor-Hydrostatic Transmission Device-Wet Multi-Clutch Power Shift Transmission” for Agricultural Tractor
by Jiabo Wang, Zhun Cheng, Jiawei Lin, Maohua Xiao, Zhixiong Lu and Guangming Wang
Agriculture 2025, 15(24), 2583; https://doi.org/10.3390/agriculture15242583 - 14 Dec 2025
Viewed by 392
Abstract
The high-precision establishment of drive motor models and “pump-motor” system models is crucial for the development of the agricultural machinery powertrain. The research of this paper studied the series combination of electric drive continuously variable transmission devices, hydraulic continuously variable transmission devices, and [...] Read more.
The high-precision establishment of drive motor models and “pump-motor” system models is crucial for the development of the agricultural machinery powertrain. The research of this paper studied the series combination of electric drive continuously variable transmission devices, hydraulic continuously variable transmission devices, and power shift transmission devices to form a dual continuously variable transmission system. A drive motor efficiency characteristics modeling method combining the improved sine cosine optimization algorithm and BP neural network (ISCA-BPNN) and a hydrostatic transmission device efficiency characteristics modeling method combining the partial least squares method and the idea of sampling without replacement (PLS-SWOR) were proposed. Various binary control strategies for agricultural tractors were designed and compared. The results show that the two proposed modeling methods can effectively establish the efficiency characteristics models of the motor and hydrostatic transmission device. For agricultural machinery equipped with a dual continuously variable transmission system, it is advisable to apply the comprehensive binary control strategy under medium and high loads, and the pure economic binary control strategy under medium and low loads. This study is expected to provide support for the high-level design and intelligent strategy development of continuously variable transmission agricultural machinery in the future. Full article
Show Figures

Figure 1

18 pages, 1058 KB  
Review
The Evolution of Large Organism Size: Disparate Physiologies Share a Foundation at the Smallest Physical Scales
by Simon Pierce
Life 2025, 15(12), 1914; https://doi.org/10.3390/life15121914 - 14 Dec 2025
Viewed by 600
Abstract
Life is defined by self-governing networks of molecules that change conformation cyclically, converting thermodynamic motion into directional work and structure. A spectrum of scale, from nanoscopic to macroscopic, involves a shift from intracellular thermodynamically driven processes (thermal agitation ultimately rooted in quantum phenomena) [...] Read more.
Life is defined by self-governing networks of molecules that change conformation cyclically, converting thermodynamic motion into directional work and structure. A spectrum of scale, from nanoscopic to macroscopic, involves a shift from intracellular thermodynamically driven processes (thermal agitation ultimately rooted in quantum phenomena) to intercellular bulk flows described by classical physics; from short-distance transport involving diffusion and cytoskeletal transport to long-distance pressure fluxes in hydraulic networks. A review of internal transport systems in macroscopic eukaryotes suggests that a key evolutionary step favoring large size and multicellularity involved exploiting molecular-scale stochasticity to generate organized bulk flows (e.g., motor proteins collectively generating mechanical pressures in metazoan tissues such as cardiac muscle; within tracheophytes, active and passive phloem loading/unloading inducing pressure gradients, and active regulation enabling passive xylem function and hydraulic reliability; sieve-like conduction in heterokonts; and peristaltic shuttle streaming in myxogastrian plasmodia). Macroscopic physiologies are underpinned by Brownian molecular thermodynamics and thus quantum mechanics; the apparently disparate physiologies of large organisms share a fundamental operating principle at small scales. However, the specific translocation mechanisms that extend this functioning to larger scales are embroiled in bauplans, representing phylogenetic constraints to body size. Full article
(This article belongs to the Section Evolutionary Biology)
Show Figures

Figure 1

31 pages, 6234 KB  
Article
Research on Cavitation Characteristics of the Fluid Domain of the Single-Plunger Two-Dimensional Electro-Hydraulic Pump
by Xinguo Qiu, Jiahui Wang and Haodong Lu
Machines 2025, 13(12), 1100; https://doi.org/10.3390/machines13121100 - 27 Nov 2025
Viewed by 504
Abstract
A single-plunger two-dimensional electro-hydraulic pump is an integrated unit in which a two-dimensional plunger pump is embedded inside the rotor of a permanent magnet synchronous motor, significantly improving the power density and power-to-weight ratio of electro-hydraulic pumps. The pursuit of a higher power-to-weight [...] Read more.
A single-plunger two-dimensional electro-hydraulic pump is an integrated unit in which a two-dimensional plunger pump is embedded inside the rotor of a permanent magnet synchronous motor, significantly improving the power density and power-to-weight ratio of electro-hydraulic pumps. The pursuit of a higher power-to-weight ratio has made high-speed operation and high-pressure output persistent research priorities. However, during the iterative design process of electro-hydraulic pumps, cavitation has been identified as a common issue, leading to difficulties in oil suction and even severe backflow. Based on the structure and motion characteristics of the single-plunger two-dimensional electro-hydraulic pump, a CFD numerical model was established to analyze the influence of different working conditions on the cavitation characteristics inside the pump. The study shows that cavitation mainly occurs in the plunger chamber, the distribution groove, and the triangular damping groove. The location and intensity of cavitation are directly reflected by the gas volume fraction. The simulation analysis of variable operating conditions has verified that suction pressure and rotational speed have a significant impact on cavitation—an increase in suction pressure can effectively suppress cavitation, while an increase in rotational speed will exacerbate cavitation development. Specifically, the non-cavitation working boundary of this type of pump was determined through theoretical derivation, and the coupling relationship between critical suction pressure and critical speed was clarified. This work provides an important theoretical basis for the optimization design of the new integrated electro-hydraulic pump. Full article
(This article belongs to the Special Issue Unsteady Flow Phenomena in Fluid Machinery Systems)
Show Figures

Figure 1

25 pages, 5023 KB  
Article
Multi-State Recognition of Electro-Hydraulic Servo Fatigue Testers via Spatiotemporal Fusion and Bidirectional Cross-Attention
by Guotai Huang, Shuang Bai, Xiuguang Yang, Xiyu Gao and Peng Liu
Sensors 2025, 25(23), 7229; https://doi.org/10.3390/s25237229 - 26 Nov 2025
Viewed by 616
Abstract
Electro-hydraulic servo fatigue testing machines are susceptible to concurrent degradation and failure of multiple components during high-frequency, high-load, and long-duration cyclic operations, posing significant challenges for online health monitoring. To address this, this paper proposes a multi-state recognition method based on spatiotemporal feature [...] Read more.
Electro-hydraulic servo fatigue testing machines are susceptible to concurrent degradation and failure of multiple components during high-frequency, high-load, and long-duration cyclic operations, posing significant challenges for online health monitoring. To address this, this paper proposes a multi-state recognition method based on spatiotemporal feature fusion and bidirectional cross-attention. The method employs a Bidirectional Temporal Convolutional Network (BiTCN) to extract multi-scale local features, a Bidirectional Gated Recurrent Unit (BiGRU) to capture forward and backward temporal dependencies, and Bidirectional Cross-Attention (BiCrossAttention) to achieve fine-grained bidirectional interaction and fusion of spatial and temporal features. During training, GradNorm is introduced to dynamically balance task weights and mitigate gradient conflicts. Experimental validation was conducted using a real-world multi-sensor dataset collected from an SDZ0100 electro-hydraulic servo fatigue testing machine. The results show that on the validation set, the cooler and servo valve achieved both accuracy and F1-scores of 100%, the motor-pump unit achieved an accuracy of 98.32% and an F1-score of 97.72%, and the servo actuator achieved an accuracy of 96.39% and an F1-score of 95.83%. Compared to single-task models with the same backbone, multi-task learning improved performance by approximately 3% to 4% for the hydraulic pump and servo actuator tasks, while significantly reducing overall deployment resources. Compared to single-task baselines, multi-task learning improves performance by 3–4% while reducing deployment parameters by 75%. Ablation studies further confirmed the critical contributions of the bidirectional structure and individual components, as well as the effectiveness of GradNorm in multi-task learning for testing machines, achieving an average F1-score of 98.38%. The method also demonstrated strong robustness under varying learning rates and resampling conditions. Compared to various deep learning and fusion baseline methods, the proposed approach achieved optimal performance in most tasks. This study provides an effective technical solution for high-precision, lightweight, and robust online health monitoring of electro-hydraulic servo fatigue testing machines under complex operating conditions. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

26 pages, 8977 KB  
Article
Research on Modeling, Simulation and Performance Improvement of Mechanical Feedback Digital Hydraulic Drive System for Three-Degree-of-Freedom Crane
by Shenyang Zhang, Zhaoqiang Wang and Cunyue Yan
Machines 2025, 13(12), 1092; https://doi.org/10.3390/machines13121092 - 26 Nov 2025
Viewed by 403
Abstract
To mitigate the inadequate performance of traditional hydraulic systems, mechanical feedback-based digital hydraulic technology is applied to a 3-degree-of-freedom (3-DOF) crane. Digital hydraulic cylinders drive the pitch mechanism, and digital hydraulic motors power the rotary and winch mechanisms. By analyzing the working principles [...] Read more.
To mitigate the inadequate performance of traditional hydraulic systems, mechanical feedback-based digital hydraulic technology is applied to a 3-degree-of-freedom (3-DOF) crane. Digital hydraulic cylinders drive the pitch mechanism, and digital hydraulic motors power the rotary and winch mechanisms. By analyzing the working principles of digital hydraulic cylinders and motors, transfer functions of the 3-DOF actuators are derived. AMESim simulation models are established for each actuator, with model validity verified. Based on these models, simulation analysis of the digital hydraulic system is performed to examine key influencing factors: motor speed, motor subdivision, system flow rate, digital valve opening, and throttle groove shape. System characteristics are obtained, and corresponding optimization schemes are proposed. After optimization, the comprehensive performance of the digital hydraulic system is improved by 1.29%. This study provides theoretical support for the engineering application of digital hydraulic systems in cranes, clarifies their operational specifications and optimization pathways, and exhibits substantial engineering application value. Full article
(This article belongs to the Section Automation and Control Systems)
Show Figures

Figure 1

21 pages, 978 KB  
Article
Control Technology of Master-Master Working Mode for Advanced Aircraft Dual-Redundancy Electro-Hydrostatic Flight Control Actuation System
by Xin Bao, Yan Li, Zhong Wang and Rui Wang
Appl. Syst. Innov. 2025, 8(6), 178; https://doi.org/10.3390/asi8060178 - 25 Nov 2025
Viewed by 655
Abstract
In response to the demands for high reliability, excellent dynamic response, and high-precision control of advanced aircraft actuation systems, this study focuses on the control technology for the master-master operating mode of dual-redundancy electro-hydrostatic actuation (EHA) systems. A multi-domain coupling model integrating motor [...] Read more.
In response to the demands for high reliability, excellent dynamic response, and high-precision control of advanced aircraft actuation systems, this study focuses on the control technology for the master-master operating mode of dual-redundancy electro-hydrostatic actuation (EHA) systems. A multi-domain coupling model integrating motor magnetic circuit saturation, hydraulic viscosity-temperature characteristics, and mechanical clearances was established, based on which a current-loop decoupling technique using vector control was developed. Furthermore, the study combined adaptive sliding mode control (ASMC) and an improved active disturbance rejection control (ADRC) to enhance the robustness of the speed loop and the disturbance rejection capability of the position loop, respectively. To address the key challenges of synchronous error accumulation and uneven load distribution in the master-master mode, a dual-redundancy dynamic model accounting for hydraulic coupling effects was developed, and a two-level cooperative control strategy of "position synchronization-dynamic load balancing" was proposed based on the cross-coupling control (CCC) framework. Experimental results demonstrate that the position loop control error is less than ±0.02 mm, and the load distribution accuracy is improved to over 97%, fully meeting the design requirements of advanced aircraft. These findings provide key technical support for the engineering application of power-by-wire flight control systems in advanced aircraft. Full article
Show Figures

Figure 1

14 pages, 1388 KB  
Article
Design of a Verification Device of Motor Axle Wheel Load Scales Based on Pump-Controlled Hydraulic Cylinder
by Long Hao, Zhipeng Xu, Bin Zhou and Gaoming Zhang
Sensors 2025, 25(23), 7180; https://doi.org/10.3390/s25237180 - 25 Nov 2025
Viewed by 443
Abstract
Vehicle axle load scales are one of the most important devices for vehicle safety testing. To ensure the stability and reliability of test results, regular calibration of axle load scales is necessary. Traditional calibration methods are inefficient and error-prone. In this work, an [...] Read more.
Vehicle axle load scales are one of the most important devices for vehicle safety testing. To ensure the stability and reliability of test results, regular calibration of axle load scales is necessary. Traditional calibration methods are inefficient and error-prone. In this work, an automatic calibration device for portable axle load scales was presented, which uses a pump-controlled hydraulic cylinder as a loading unit. The loading unit was controlled by a high-precision force sensor and a PLC. A hydraulic unit based on a servo motor and a gear pump was designed, and control software including automatic control, data acquisition, and report generation was developed. The experimental test was carried out. The results showed that the developed portable automatic calibration device could realize the automatic calibration of a 0~150 kN load range, and the accuracy level was up to ±0.3%. Finally, it was verified that the device had the advantages of compactness and lightweight and simple operation. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

17 pages, 4642 KB  
Article
Maximizing Efficiency in a Retrofitted Battery-Powered Material Handler by Novel Control Strategies
by Marco Ferrari, Daniele Beltrami, Vinay Partap Singh, Tatiana Minav and Stefano Uberti
Actuators 2025, 14(11), 553; https://doi.org/10.3390/act14110553 - 11 Nov 2025
Viewed by 444
Abstract
The electrification of non-road mobile machinery is advancing to enhance sustainability and reduce emissions. This study investigates how to maximize the efficiency of the retrofitting of a material handler from an internal combustion engine to a battery-powered electric motor, while keeping the hydraulic [...] Read more.
The electrification of non-road mobile machinery is advancing to enhance sustainability and reduce emissions. This study investigates how to maximize the efficiency of the retrofitting of a material handler from an internal combustion engine to a battery-powered electric motor, while keeping the hydraulic system unchanged. Using a previously validated model, this study proposes three control strategies for the electric motor and hydraulic pump to enhance efficiency and performance. The first control strategy optimizes hydraulic pump performance within its most efficient displacement range. The second strategy maximizes powertrain efficiency by considering both efficiencies of the electric motor and hydraulic pump. The third strategy uses a servo-actuated valve to adjust the load-sensing margin and exhibits energy savings up to 14.2% and an 11.5% increase in efficiency. The proposed strategies avoid complex optimization algorithms, ensuring practical applicability for small- and medium-sized enterprises, which often face cost constraints and limited scalability. Full article
(This article belongs to the Special Issue New Control Schemes for Actuators—2nd Edition)
Show Figures

Figure 1

24 pages, 4384 KB  
Article
Cointegration Approach for Vibration-Based Misalignment Detection in Rotating Machinery Under Varying Load Conditions
by Sylwester Szewczyk, Roman Barczewski, Wiesław J. Staszewski, Damian Janiga and Phong B. Dao
Sensors 2025, 25(21), 6764; https://doi.org/10.3390/s25216764 - 5 Nov 2025
Viewed by 748
Abstract
Shaft misalignment is among the most common faults in rotating machinery, and although many diagnostic methods have been proposed, reliably detecting it under varying load conditions remains a major challenge for vibration-based techniques. To address this issue, this study proposes a new vibration-based [...] Read more.
Shaft misalignment is among the most common faults in rotating machinery, and although many diagnostic methods have been proposed, reliably detecting it under varying load conditions remains a major challenge for vibration-based techniques. To address this issue, this study proposes a new vibration-based misalignment detection framework that leverages cointegration analysis. The approach examines both the stationarity of vibration signals and the residuals derived from the cointegration process. Specifically, it combines the Augmented Dickey–Fuller (ADF) test with cointegration analysis in three stages: (1) applying the ADF test to raw vibration data before cointegration, (2) performing cointegration on the vibration time series, and (3) reapplying the ADF test to the post-cointegrated data. The method was validated using experimental measurements collected from a laboratory-scale test rig comprising a motor, gearbox, and hydraulic gear pump, tested under both healthy and misaligned states with varying degrees of severity. Vibration signals were recorded across multiple load conditions. The results demonstrate that the proposed method can successfully detect misalignment despite load variations, while also providing insights into fault severity. In addition, the residuals from the cointegration process proved to be highly sensitive to damage, highlighting their value as features for vibration-based condition monitoring. Full article
Show Figures

Figure 1

21 pages, 2556 KB  
Article
Multi-Objective Optimization of Torque Motor Structural Parameters in Direct-Drive Valves Based on Genetic Algorithm
by Jian Zhang, Qiusong Liang, Jipeng Sun, Baosen Yan, Zhidong Hu and Wei Sun
Actuators 2025, 14(11), 527; https://doi.org/10.3390/act14110527 - 29 Oct 2025
Cited by 1 | Viewed by 510
Abstract
This paper presents a genetic algorithm (GA) approach to optimize key structural parameters of the torque motor used in a direct-drive slide knife gate valve. The optimization aims at enhancing the performance of the torque motor by improving the output torque, minimizing the [...] Read more.
This paper presents a genetic algorithm (GA) approach to optimize key structural parameters of the torque motor used in a direct-drive slide knife gate valve. The optimization aims at enhancing the performance of the torque motor by improving the output torque, minimizing the overshoot, and reducing the response time. A mathematical model based on these performance indicators is formulated to guide the optimization process. Compared to the original design, the optimized design is shown to achieve a 26.4% increase in output torque, a 0.14 ms reduction in response time, and a 9% decrease in overshoot. Additionally, AMESim simulations confirm that the optimized motor significantly improves valve control accuracy, dynamic response, and flow stability, while also decreasing sensitivity to pressure fluctuations under high-current conditions. Finally, experimental results are provided to corroborate the simulation findings, validating the accuracy and effectiveness of the proposed optimization methodology. This study provides novel theoretical insights and practical guidance for the design of high-performance torque motors used in direct-drive electro-hydraulic servo valves within aerospace applications. Full article
(This article belongs to the Special Issue Design, Hydrodynamics, and Control of Valve Systems)
Show Figures

Figure 1

29 pages, 7829 KB  
Article
Braking Force Coordination Control for In-Wheel Motor Drive Electric Vehicles with Electro-Hydraulic Composite Braking System
by Huichen Li, Liqiang Jin, Jianhua Li, Feng Xiao, Zhongshu Wang and Guangming Zhang
Vehicles 2025, 7(4), 119; https://doi.org/10.3390/vehicles7040119 - 17 Oct 2025
Cited by 1 | Viewed by 958
Abstract
This paper presents a coordinated control strategy for an electro-hydraulic composite braking system in in-wheel motor electric vehicles to enhance regenerative energy recovery and braking safety. A novel hydraulic control unit (HCU) without a pressure-reducing valve is designed to simplify structure and maximize [...] Read more.
This paper presents a coordinated control strategy for an electro-hydraulic composite braking system in in-wheel motor electric vehicles to enhance regenerative energy recovery and braking safety. A novel hydraulic control unit (HCU) without a pressure-reducing valve is designed to simplify structure and maximize energy utilization. Based on the ideal braking force distribution, a force allocation strategy coordinates motor and hydraulic braking across modes, ensuring motor torque can compensate total braking torque when wheel lock occurs. An anti-lock braking (ABS) strategy relying solely on motor torque adjustment is proposed, keeping hydraulic torque constant while rapidly stabilizing slip within 13–17%, thereby avoiding interference between hydraulic and motor braking. A joint Simulink–AMESim–CarSim platform evaluates the strategy under varying conditions, and real-vehicle tests in regenerative mode confirm feasibility and smooth switching. Results show the proposed approach achieves target braking intensity, improves energy recovery, reduces torque oscillations and valve actions, and maintains stability. The study offers a practical solution for integrating regenerative braking and ABS in in-wheel motor EVs, with potential for hardware-in-the-loop validation and advanced stability control applications. Full article
Show Figures

Figure 1

16 pages, 1895 KB  
Article
Modernization of Hoisting Operations Through the Design of an Automated Skip Loading System—Enhancing Efficiency and Sustainability
by Keane Baulen Size, Rejoice Moyo, Richard Masethe, Tawanda Zvarivadza and Moshood Onifade
Mining 2025, 5(4), 62; https://doi.org/10.3390/mining5040062 - 4 Oct 2025
Viewed by 1276
Abstract
This study presents the design and validation of an automated skip loading system for vertical shaft hoisting operations, aimed at addressing inefficiencies in current manual systems that contribute to consistent underperformance in meeting daily production targets. Initial assessments revealed a task completion rate [...] Read more.
This study presents the design and validation of an automated skip loading system for vertical shaft hoisting operations, aimed at addressing inefficiencies in current manual systems that contribute to consistent underperformance in meeting daily production targets. Initial assessments revealed a task completion rate of 91.6%, largely due to delays and inaccuracies in manual ore loading and accounting. To resolve these challenges, an automated system was developed using a bin and conveyor mechanism integrated with a suite of industrial automation components, including a programmable logic controller (PLC), stepper motors, hydraulic cylinders, ultrasonic sensors, and limit switches. The system is designed to transport ore from the draw point, halt when one ton is detected, and activate the hoisting process automatically. Digital simulations demonstrated that the automated system reduced loading time by 12% and increased utilization by 16.6%, particularly by taking advantage of the 2 h post-blast idle period. Financial evaluation of the system revealed a positive Net Present Value (NPV) of $1,019,701, a return on investment (ROI) of 69.7% over four years, and a payback period of 2 years and 11 months. The study concludes that the proposed solution significantly improves operational efficiency and recommends further enhancements to the hoisting infrastructure to fully optimize performance. Full article
(This article belongs to the Special Issue Mine Automation and New Technologies, 2nd Edition)
Show Figures

Figure 1

Back to TopTop