Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (506)

Search Parameters:
Keywords = hydrate kinetics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 2261 KiB  
Article
Influence of Superplasticizers on the Diffusion-Controlled Synthesis of Gypsum Crystals
by F. Kakar, C. Pritzel, T. Kowald and M. S. Killian
Crystals 2025, 15(8), 709; https://doi.org/10.3390/cryst15080709 (registering DOI) - 31 Jul 2025
Abstract
Gypsum (CaSO4·2H2O) crystallization underpins numerous industrial processes, yet its response to chemical admixtures remains incompletely understood. This study investigates diffusion-controlled crystal growth in a coaxial test tube system to evaluate how three Sika® ViscoCrete® superplasticizers—430P, 111P, and [...] Read more.
Gypsum (CaSO4·2H2O) crystallization underpins numerous industrial processes, yet its response to chemical admixtures remains incompletely understood. This study investigates diffusion-controlled crystal growth in a coaxial test tube system to evaluate how three Sika® ViscoCrete® superplasticizers—430P, 111P, and 120P—affect nucleation, growth kinetics, morphology, and thermal behavior. The superplasticizers, selected for their surface-active properties, were hypothesized to influence crystallization via interfacial interactions. Ion diffusion was maintained quasi-steadily for 12 weeks, with crystal evolution tracked weekly by macro-photography; scanning electron microscopy and thermogravimetric/differential scanning were performed at the final stage. All admixtures delayed nucleation in a concentration-dependent manner. Lower dosages (0.5–1.0 wt%) yielded platy-to-prismatic morphologies and higher dehydration enthalpies, indicating more ordered lattice formation. In contrast, higher dosages (1.5–2.0 wt%) produced denser, irregular crystals and shifted dehydration to lower temperatures, suggesting structural defects or increased hydration. Among the additives, 120P showed the strongest inhibitory effect, while 111P at 0.5 wt% resulted in the most uniform crystals. These results demonstrate that ViscoCrete® superplasticizers can modulate gypsum crystallization and thermal properties. Full article
(This article belongs to the Section Macromolecular Crystals)
21 pages, 4014 KiB  
Article
Optimized Mortar Formulations for 3D Printing: A Rheological Study of Cementitious Pastes Incorporating Potassium-Rich Biomass Fly Ash Wastes
by Raúl Vico Lujano, Luis Pérez Villarejo, Rui Miguel Novais, Pilar Hidalgo Torrano, João Batista Rodrigues Neto and João A. Labrincha
Materials 2025, 18(15), 3564; https://doi.org/10.3390/ma18153564 - 30 Jul 2025
Viewed by 86
Abstract
The use of 3D printing holds significant promise to transform the construction industry by enabling automation and customization, although key challenges remain—particularly the control of fresh-state rheology. This study presents a novel formulation that combines potassium-rich biomass fly ash (BFAK) with an air-entraining [...] Read more.
The use of 3D printing holds significant promise to transform the construction industry by enabling automation and customization, although key challenges remain—particularly the control of fresh-state rheology. This study presents a novel formulation that combines potassium-rich biomass fly ash (BFAK) with an air-entraining plasticizer (APA) to optimize the rheological behavior, hydration kinetics, and structural performance of mortars tailored for extrusion-based 3D printing. The results demonstrate that BFAK enhances the yield stress and thixotropy increases, contributing to improved structural stability after extrusion. In parallel, the APA adjusts the viscosity and facilitates material flow through the nozzle. Isothermal calorimetry reveals that BFAK modifies the hydration kinetics, increasing the intensity and delaying the occurrence of the main hydration peak due to the formation of secondary sulfate phases such as Aphthitalite [(K3Na(SO4)2)]. This behavior leads to an extended setting time, which can be modulated by APA to ensure a controlled processing window. Flowability tests show that BFAK reduces the spread diameter, improving cohesion without causing excessive dispersion. Calibration cylinder tests confirm that the formulation with 1.5% APA and 2% BFAK achieves the maximum printable height (35 cm), reflecting superior buildability and load-bearing capacity. These findings underscore the novelty of combining BFAK and APA as a strategy to overcome current rheological limitations in digital construction. The synergistic effect between both additives provides tailored fresh-state properties and structural reliability, advancing the development of a sustainable SMC and printable cementitious materials. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

14 pages, 4484 KiB  
Article
Influence of Particle Size, Defect Density and Salts on the Dissolution and Early Hydration of a Model System (C3A + Quartz)
by Shaoxiong Ye and Pan Feng
Materials 2025, 18(15), 3560; https://doi.org/10.3390/ma18153560 - 29 Jul 2025
Viewed by 192
Abstract
Understanding the hydration behavior of cementitious materials is crucial as it governs the setting, strength development and long-term durability of concrete. This study provides fundamental insights into these processes by investigating the early hydration of tricalcium aluminate (C3A) with quartz as [...] Read more.
Understanding the hydration behavior of cementitious materials is crucial as it governs the setting, strength development and long-term durability of concrete. This study provides fundamental insights into these processes by investigating the early hydration of tricalcium aluminate (C3A) with quartz as a novel model system for multiple clinker phases. Employing a multi-technique approach combining conductivity, calorimetry and microscopy, we systematically examine the concurrent effects of product layer formation, C3A’s particle size and defect density, and salts on dissolution kinetics and early-stage reaction pathways. Results indicate that product layer formation shifted C3A’s rapid dissolution toward diffusion-controlled regimes. Reduced particle size and increased defect density accelerated the dissolution and hydration kinetics. Sulfates and chlorides differentially altered reaction pathways, with preferential sulfate reactivity driving ettringite formation. These mechanistic insights advance fundamental understanding of the hydration behavior of cementitious material. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

16 pages, 4134 KiB  
Article
Effect of Oxygen-Containing Functional Groups on the Performance of Palladium/Carbon Catalysts for Electrocatalytic Oxidation of Methanol
by Hanqiao Xu, Hongwei Li, Xin An, Weiping Li, Rong Liu, Xinhong Zhao and Guixian Li
Catalysts 2025, 15(8), 704; https://doi.org/10.3390/catal15080704 - 24 Jul 2025
Viewed by 277
Abstract
The methanol oxidation reaction (MOR) of direct methanol fuel cells (DMFCs) is limited by the slow kinetic process and high reaction energy barrier, significantly restricting the commercial application of DMFCs. Therefore, developing MOR catalysts with high activity and stability is very important. In [...] Read more.
The methanol oxidation reaction (MOR) of direct methanol fuel cells (DMFCs) is limited by the slow kinetic process and high reaction energy barrier, significantly restricting the commercial application of DMFCs. Therefore, developing MOR catalysts with high activity and stability is very important. In this paper, oxygen-functionalised activated carbon (FAC) with controllable oxygen-containing functional groups was prepared by adjusting the volume ratio of H2SO3/HNO3 mixed acid, and Pd/AC and Pd/FAC catalysts were synthesised via the hydrazine hydrate reduction method. A series of characterisation techniques and electrochemical performance tests were used to study the catalyst. The results showed that when V(H2SO3):V(HNO3) = 2:3, more defects were generated on the surface of the AC, and more oxygen-containing functional groups represented by C=O and C–OH were attached to the surface of the support, which increased the anchor sites of Pd and improved the dispersion of Pd nanoparticles (Pd NPs) on the support. At the same time, the mass–specific activity of Pd/FAC for MOR was 2320 mA·mgPd, which is 1.5 times that of Pd/AC, and the stability was also improved to a certain extent. In situ infrared spectroscopy further confirmed that oxygen functionalisation treatment promoted the formation and transformation of *COOH intermediates, accelerated the transformation of COL into COB, reduced the poisoning of COads species adsorbed to the catalyst, optimised the reaction path and improved the catalytic kinetic performance. Full article
Show Figures

Graphical abstract

16 pages, 2285 KiB  
Article
Evaluating the Heat of Hydration, Conductivity, and Microstructural Properties of Cement Composites with Recycled Concrete Powder
by Damir Barbir, Pero Dabić, Miće Jakić and Ivana Weber
Buildings 2025, 15(15), 2613; https://doi.org/10.3390/buildings15152613 - 23 Jul 2025
Viewed by 182
Abstract
This study investigates the effects of incorporating recycled concrete powder (RCP) as a supplementary cementitious material in Portland cement composites at replacement levels of 5–30% by weight. A comprehensive characterization using isothermal calorimetry, electrical conductivity measurements, thermogravimetric analysis, FT-IR spectroscopy, and scanning electron [...] Read more.
This study investigates the effects of incorporating recycled concrete powder (RCP) as a supplementary cementitious material in Portland cement composites at replacement levels of 5–30% by weight. A comprehensive characterization using isothermal calorimetry, electrical conductivity measurements, thermogravimetric analysis, FT-IR spectroscopy, and scanning electron microscopy revealed that RCP modified the hydration behavior and microstructural development. The results showed a linear 16.5% reduction in the total heat of hydration (from 145.38 to 121.44 J/g) at 30% RCP content, accompanied by a 26.5% decrease in peak electrical conductivity (19.16 to 14.08 mS/cm) and delayed reaction kinetics. Thermal analysis demonstrated an increased stability of hydration products, with portlandite decomposition temperatures rising by up to 10.8 °C. Microstructural observations confirmed the formation of denser but more amorphous C–S–H phases alongside increased interfacial porosity at higher RCP contents. The study provides quantitative evidence of RCP’s dual functionality as both an inert filler and a nucleation agent, identifying an optimal 20–25% replacement range that balances performance and sustainability. These findings advance the understanding of construction waste utilization in cementitious materials and provide practical solutions for developing more sustainable building composites while addressing circular economy objectives in the construction sector. Full article
(This article belongs to the Special Issue Advances and Applications of Recycled Concrete in Green Building)
Show Figures

Figure 1

27 pages, 7191 KiB  
Review
Advances in Nano-Reinforced Polymer-Modified Cement Composites: Synergy, Mechanisms, and Properties
by Yibo Gao, Jianlin Luo, Jie Zhang, Muhammad Asad Ejaz and Liguang Liu
Buildings 2025, 15(15), 2598; https://doi.org/10.3390/buildings15152598 - 23 Jul 2025
Viewed by 198
Abstract
Organic polymer introduction effectively enhances the toughness, bond strength, and durability of ordinary cement-based materials, and is often used for concrete repair and reinforcement. However, the entrained air effect simultaneously induced by polymer and the inhibitory action on cement hydration kinetics often lead [...] Read more.
Organic polymer introduction effectively enhances the toughness, bond strength, and durability of ordinary cement-based materials, and is often used for concrete repair and reinforcement. However, the entrained air effect simultaneously induced by polymer and the inhibitory action on cement hydration kinetics often lead to degradation in mechanical performances of polymer-modified cement-based composite (PMC). Nanomaterials provide unique advantages in enhancing the properties of PMC due to their characteristic ultrahigh specific surface area, quantum effects, and interface modulation capabilities. This review systematically examines recent advances in nano-reinforced PMC (NPMC), elucidating their synergistic optimization mechanisms. The synergistic effects of nanomaterials—nano-nucleation, pore-filling, and templating mechanisms—refine the microstructure, significantly enhancing the mechanical strength, impermeability, and erosion resistance of NPMC. Furthermore, nanomaterials establish interpenetrating network structures (A composite structure composed of polymer networks and other materials interwoven with each other) with polymer cured film (The film formed after the polymer loses water), enhancing load-transfer efficiency through physical and chemical action while optimizing dispersion and compatibility of nanomaterials and polymers. By systematically analyzing the synergy among nanomaterials, polymer, and cement matrix, this work provides valuable insights for advancing high-performance repair materials. Full article
Show Figures

Figure 1

26 pages, 4943 KiB  
Article
Ultrasonic Pulse Velocity for Real-Time Filament Quality Monitoring in 3D Concrete Printing Construction
by Luis de la Flor Juncal, Allan Scott, Don Clucas and Giuseppe Loporcaro
Buildings 2025, 15(14), 2566; https://doi.org/10.3390/buildings15142566 - 21 Jul 2025
Viewed by 275
Abstract
Three-dimensional (3D) concrete printing (3DCP) has gained significant attention over the last decade due to its many claimed benefits. The absence of effective real-time quality control mechanisms, however, can lead to inconsistencies in extrusion, compromising the integrity of 3D-printed structures. Although the importance [...] Read more.
Three-dimensional (3D) concrete printing (3DCP) has gained significant attention over the last decade due to its many claimed benefits. The absence of effective real-time quality control mechanisms, however, can lead to inconsistencies in extrusion, compromising the integrity of 3D-printed structures. Although the importance of quality control in 3DCP is broadly acknowledged, research lacks systematic methods. This research investigates the feasibility of using ultrasonic pulse velocity (UPV) as a practical, in situ, real-time monitoring tool for 3DCP. Two different groups of binders were investigated: limestone calcined clay (LC3) and zeolite-based mixes in binary and ternary blends. Filaments of 200 mm were extruded every 5 min, and UPV, pocket hand vane, flow table, and viscometer tests were performed to measure pulse velocity, shear strength, relative deformation, yield stress, and plastic viscosity, respectively, in the fresh state. Once the filaments presented printing defects (e.g., filament tearing, filament width reduction), the tests were concluded, and the open time was recorded. Isothermal calorimetry tests were conducted to obtain the initial heat release and reactivity of the supplementary cementitious materials (SCMs). Results showed a strong correlation (R2 = 0.93) between UPV and initial heat release, indicating that early hydration (ettringite formation) influenced UPV and determined printability across different mixes. No correlation was observed between the other tests and hydration kinetics. UPV demonstrated potential as a real-time monitoring tool, provided the mix-specific pulse velocity is established beforehand. Further research is needed to evaluate UPV performance during active printing when there is an active flow through the printer. Full article
Show Figures

Figure 1

12 pages, 7486 KiB  
Article
Dissolution and Early Hydration Interaction of C3A-C4AF Polyphase in Water and Aqueous Sulfate Solutions
by Shaoxiong Ye and Pan Feng
Materials 2025, 18(14), 3399; https://doi.org/10.3390/ma18143399 - 20 Jul 2025
Viewed by 301
Abstract
The concurrent dissolution and early hydration of tricalcium aluminate (C3A) and tetracalcium aluminoferrite (C4AF) critically govern early-stage reaction dynamics in Portland cement systems. However, their mutual kinetic interactions during reaction, particularly sulfate-dependent modulation mechanisms, remain poorly understood. Using in-situ [...] Read more.
The concurrent dissolution and early hydration of tricalcium aluminate (C3A) and tetracalcium aluminoferrite (C4AF) critically govern early-stage reaction dynamics in Portland cement systems. However, their mutual kinetic interactions during reaction, particularly sulfate-dependent modulation mechanisms, remain poorly understood. Using in-situ digital holographic microscopy (DHM), this study resolved their interaction mechanisms during co-dissolution in aqueous and sulfate-bearing environments. Results reveal asymmetric modulation: while C4AF’s dissolution exhibited limited sensitivity to C3A’s presence, C3A’s kinetics were profoundly altered by C4AF through sulfate-concentration-dependent pathways, which originated from two competing C4AF-mediated mechanisms: (1) suppression via common-ion effects, and (2) acceleration through competitive sulfate species adsorption. These mechanistic insights would provide a roadmap for optimizing cementitious materials through optimized reaction pathways. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

13 pages, 2298 KiB  
Review
Hydration Kinetics of Biochar-Enhanced Cement Composites: A Mini-Review
by Shah Room and Ali Bahadori-Jahromi
Buildings 2025, 15(14), 2520; https://doi.org/10.3390/buildings15142520 - 18 Jul 2025
Viewed by 327
Abstract
The construction sector makes a major contribution to global greenhouse gas emissions, in which cement alone produces approximately 7–8% of global CO2 emissions. To abate environmental impact and promote sustainable construction, alternative low-carbon cementitious materials are gaining attention. Biochar (BC), a carbon-rich [...] Read more.
The construction sector makes a major contribution to global greenhouse gas emissions, in which cement alone produces approximately 7–8% of global CO2 emissions. To abate environmental impact and promote sustainable construction, alternative low-carbon cementitious materials are gaining attention. Biochar (BC), a carbon-rich material obtained from biomass sources through the process of pyrolysis, has surfaced as a capable supplementary cementitious material due to its carbon capture capabilities and positive impact on the characteristics of cement composites. This review investigates the role of BC in cement composites, including its effects on hydration kinetics, microstructural development, fresh-state properties, and its optimal utilisation. The study also highlights the internal curing capabilities of BC when used in cement composites, its role in promoting hydration product formation, and its dual function in enhancing mechanical performance while facilitating carbon capture. Despite the benefits, there are some challenges such as variable BC properties, optimal dosage, and scalability. The review highlights the need for standardisation and further research to fully harness BC’s potential as a sustainable component in low-carbon construction technologies. Full article
(This article belongs to the Special Issue Advanced Research on Cementitious Composites for Construction)
Show Figures

Figure 1

19 pages, 5351 KiB  
Article
Early Hydration Kinetics of Shell Ash-Based Cementitious Materials: A Low-Field Nuclear Magnetic Resonance Study
by Chuan Tong, Liyuan Wang, Kun Wang and Jianxin Fu
Materials 2025, 18(14), 3253; https://doi.org/10.3390/ma18143253 - 10 Jul 2025
Viewed by 253
Abstract
This study systematically investigates the effects of shell ash (SA) content (0–10%) on early moisture evolution, pore structure, and hydration kinetics in cement paste using LF-NMR and NG-I-D hydration kinetic models. Key findings include the following: (1) Increased SA content significantly alters moisture [...] Read more.
This study systematically investigates the effects of shell ash (SA) content (0–10%) on early moisture evolution, pore structure, and hydration kinetics in cement paste using LF-NMR and NG-I-D hydration kinetic models. Key findings include the following: (1) Increased SA content significantly alters moisture phase distribution. Low contents (≤8%) consume free water through rapid CaO hydration, promoting C-S-H gel densification. However, 10% SA causes reduced moisture in 0.16–0.4 μm gel micropores (due to hindered ion diffusion) and abrupt increases in 0.63–2.5 μm pores. (2) Porosity first decreases then increases with SA content, reaching minimum values at 3–5% and 8%, respectively. The 10% content induces abnormal porosity growth from localized over-densification following polynomial fitting (R2 = 0.966). (3) Krstulovic–Dabic model analysis reveals three consecutive hydration stages: nucleation–growth (NG), phase boundary reaction (I), and diffusion control (D). The NG stage shows the most intense reactions, while the D stage dominates (>60% contribution), with high model fitting accuracy (R2 > 0.9). (4) SA delays nucleation/crystal growth, inducing needle-like crystals at 3% content. Mechanical properties exhibit quadratic relationships with SA content, achieving peak compressive strength (18.6% increase vs. control) at 5% SA. This research elucidates SA content thresholds governing hydration kinetics and microstructure evolution, providing theoretical support for low-carbon cementitious material design. Full article
(This article belongs to the Section Materials Physics)
Show Figures

Figure 1

12 pages, 3441 KiB  
Article
Mechanical Strength and Hydration Characteristic of Multiple Common Waste-Blended Cement-Based Materials Cured by Electric-Induced Heating Curing Under Severely Cold Environments
by Lei Zhang, Ruisen Li, Sheng Li, Han Wang and Qiang Fu
Materials 2025, 18(14), 3220; https://doi.org/10.3390/ma18143220 - 8 Jul 2025
Viewed by 291
Abstract
To address the challenges of concrete construction in polar regions, this study investigates the feasibility of fabricating cement-based materials under severely low temperatures using electric-induced heating curing methods. Cement mortars incorporating fly ash (FA-CM), ground granulated blast furnace slag (GGBS-CM), and metakaolin (MK-CM) [...] Read more.
To address the challenges of concrete construction in polar regions, this study investigates the feasibility of fabricating cement-based materials under severely low temperatures using electric-induced heating curing methods. Cement mortars incorporating fly ash (FA-CM), ground granulated blast furnace slag (GGBS-CM), and metakaolin (MK-CM) were cured at environmental temperatures of −20 °C, −40 °C, and −60 °C. The optimal carbon fiber (CF) contents were determined using the initial electric resistivity to ensure a consistent electric-induced heating curing process. The thermal profiles during curing were monitored, and mechanical strength development was systematically evaluated. Hydration characteristics were elucidated through thermogravimetric analysis (TG), X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy (FTIR) to identify phase compositions and reaction products. Results demonstrate that electric-induced heating effectively mitigates the adverse effect caused by the ultra-low temperature constraints, with distinct differences in the strength performance and hydration kinetics among supplementary cementitious materials. MK-CM exhibited superior early strength development with strength increasing rates above 10% compared to the Ref. specimen, which was attributed to the accelerated pozzolanic reactions. Microstructural analyses further verified the macroscopic strength test results that showed that electric-induced heating curing can effectively promote the performance development even under severely cold environments with a higher hydration degree and refined micro-pore structure. This work proposes a viable strategy for polar construction applications. Full article
Show Figures

Figure 1

17 pages, 2674 KiB  
Article
Effect of Additives on Properties of Phase-Change Solidified Plugging Materials
by Hui Zhang, Yongchao Feng, Gege Teng, Jianjun Ni and Jiping She
Processes 2025, 13(7), 2160; https://doi.org/10.3390/pr13072160 - 7 Jul 2025
Viewed by 309
Abstract
The phase-change solidification plugging material (PSPM), a novel type of plugging material for severe fluid loss in demanding formations, necessitates performance enhancement and deeper insight into its hydration mechanism. In this paper, with a foundational formula comprising a nucleating agent (S1), activator (M1), [...] Read more.
The phase-change solidification plugging material (PSPM), a novel type of plugging material for severe fluid loss in demanding formations, necessitates performance enhancement and deeper insight into its hydration mechanism. In this paper, with a foundational formula comprising a nucleating agent (S1), activator (M1), and deionized water, a comprehensive investigation was conducted. This involved basic performance testing, including fluidity, setting or thickening time, hydration heat analysis, SEM and XRD for hydration products, and conduction of kinetics model. The focus was on analyzing the effects of three additives on system properties, hydration process, and hydration products, leading to the inference of the hydration mechanism of PSPM. It was found that the structure additives (SA) and flow pattern regulator (6301) did not partake in the hydration reaction, focusing instead on enhancing structure strength and maintaining slurry stability, respectively. Conversely, the phase regulator (BA) actively engaged in the hydration process, transitioning the system from the KG-N-D to the KG-D model, thereby extending the thickening time without altering the final hydration products. The morphology and composition of the products confirmed that SI and M1 dissolve in the aqueous solution and progressively form Mg(OH)2 and MgSO4·zMg(OH)2·xH2O. The slurry gradually solidifies, ultimately resulting in the formation of a high-strength consolidated body, thereby achieving the objective of lost circulation control. Full article
(This article belongs to the Section Materials Processes)
Show Figures

Figure 1

24 pages, 9329 KiB  
Article
Formation Kinetics and Morphology Characteristics of Natural Gas Hydrates in Sandstone Fractures
by Chaozheng Ma, Xiaoxu Hu, Hongxiang Si, Jiyao Wang, Juntao Pan, Tingting Luo, Tao Han and Aowang Wang
Appl. Sci. 2025, 15(13), 7399; https://doi.org/10.3390/app15137399 - 1 Jul 2025
Viewed by 292
Abstract
Fractures in marine sediments are critical zones for hydrate formation. The kinetics and morphological characteristics of hydrates within sandstone fractures are comprehensively investigated in this study by employing a high-pressure visualization reaction vessel to examine their formation, dissociation, and reformation processes. The results [...] Read more.
Fractures in marine sediments are critical zones for hydrate formation. The kinetics and morphological characteristics of hydrates within sandstone fractures are comprehensively investigated in this study by employing a high-pressure visualization reaction vessel to examine their formation, dissociation, and reformation processes. The results are presented below: (1) In 3 mm Type I fractures, the induction time is longer than that observed in the other two fracture widths. Hydrates predominantly form on the fracture walls and gradually expand toward both sides of the fracture. (2) Gas enters the fracture from multiple directions, causing the hydrate in Type X fractures to expand toward the center from all sides, which shortens the induction time and increases the quantity of hydrate formation. (3) An increase in fracture roughness promotes nucleation of the hydrate at surface protrusions but inhibits the total quantity of hydrate formation. (4) Hydrate dissociation typically propagates from the fracture wall into the interior, exhibiting a wavy surface morphology. Gas production is influenced by the fracture width, with the highest gas production observed in a 3 mm fracture. (5) Due to the memory effect, the hydrate induction time for reformation is significantly shorter, though the quantity of hydrate formed is lower than that of the first formation. This study aims to provide micro-level insights into the distribution of hydrates in sandstone fractures, thereby facilitating more efficient and safe extraction of hydrates from fractures. Full article
Show Figures

Figure 1

15 pages, 3405 KiB  
Article
Influence of Al2O3 Additive on the Synthesis Kinetics of 1.13 nm Tobermorite, and Its Crystallinity and Morphology
by Raimundas Siauciunas, Liveta Steponaityte, Marius Dzvinka and Aivaras Kareiva
Materials 2025, 18(13), 3086; https://doi.org/10.3390/ma18133086 - 29 Jun 2025
Viewed by 358
Abstract
One of the effective types of heat-resistant insulating products with an operating temperature of 1050 °C is made from calcium silicates or their hydrates. These materials are made from synthetic xonotlite and 1.13 nm tobermorite. Various wastes and by-products from other industries can [...] Read more.
One of the effective types of heat-resistant insulating products with an operating temperature of 1050 °C is made from calcium silicates or their hydrates. These materials are made from synthetic xonotlite and 1.13 nm tobermorite. Various wastes and by-products from other industries can be used for the synthesis of the latter compound. However, such raw materials often contain various impurities, especially Al-containing compounds, which strongly influence the kinetics of 1.13 nm tobermorite formation and its properties. Using XRD, DSC, TG, and SEM/EDX methods, it was found that at the beginning of the hydrothermal synthesis, the Al2O3 additive promotes the formation of 1.13 nm tobermorite; however, it later begins to inhibit the recrystallization of semi-crystalline C-S-H(I)-type calcium silicate hydrate and pure, high-crystallinity 1.13 nm tobermorite is more easily formed in mixtures without the aluminum additive. Aluminum oxide also influence the morphology of 1.13 nm tobermorite. When hydrothermally curing the CaO–SiO2 mixture, long, thin fibers (needles) are formed within 24 h. Later, they thicken and form rectangular parallelepiped crystals. After adding alumina, the product produced by 24 h synthesis is dominated by agglomerates, the surface of which is partially covered with crystal plates. By extending the synthesis duration, amorphous aggregates are absent and the crystal shape becomes increasingly square. Full article
Show Figures

Figure 1

19 pages, 3723 KiB  
Article
Calcium or Sodium Carbonate Influence on Calcium Sulfoaluminate Clinker Hydration
by Pilar Padilla-Encinas and Ana Fernández-Jiménez
Molecules 2025, 30(13), 2759; https://doi.org/10.3390/molecules30132759 - 26 Jun 2025
Viewed by 318
Abstract
This work shows how the presence of calcium carbonate and sodium carbonate (5% and 20%) affects the hydration of a commercial calcium sulfoaluminate clinker (KCSA). For this study, water-hydrated pastes were prepared and the mechanical compressive strength and hydration rate were determined. The [...] Read more.
This work shows how the presence of calcium carbonate and sodium carbonate (5% and 20%) affects the hydration of a commercial calcium sulfoaluminate clinker (KCSA). For this study, water-hydrated pastes were prepared and the mechanical compressive strength and hydration rate were determined. The hydration products were characterised by XRD, DTA/TG, FTIR and SEM. The incorporation of CaCO3 can have a beneficial effect on the development of the mechanical strength of KCSA, especially at 90 days. It does not significantly alter the hydration kinetics and the hydration products formed are mainly ettringite and AH3. However, sodium carbonate has a detrimental effect, slowing down the hydration kinetics and reducing the development of mechanical strength, especially at early ages. The 20% Na2CO3 favours the formation of calcium aluminate, gaylusite and thenardite over ettringite. These phases are metastable in the presence of sodium and decompose to form calcite, alumina gel and a large amount of thenardite, which leaches out as efflorescence, causing microcracks and loss of strength in the material. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

Back to TopTop