Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,030)

Search Parameters:
Keywords = hybrid sensor system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 2667 KiB  
Article
Transformer-Driven Fault Detection in Self-Healing Networks: A Novel Attention-Based Framework for Adaptive Network Recovery
by Parul Dubey, Pushkar Dubey and Pitshou N. Bokoro
Mach. Learn. Knowl. Extr. 2025, 7(3), 67; https://doi.org/10.3390/make7030067 (registering DOI) - 16 Jul 2025
Abstract
Fault detection and remaining useful life (RUL) prediction are critical tasks in self-healing network (SHN) environments and industrial cyber–physical systems. These domains demand intelligent systems capable of handling dynamic, high-dimensional sensor data. However, existing optimization-based approaches often struggle with imbalanced datasets, noisy signals, [...] Read more.
Fault detection and remaining useful life (RUL) prediction are critical tasks in self-healing network (SHN) environments and industrial cyber–physical systems. These domains demand intelligent systems capable of handling dynamic, high-dimensional sensor data. However, existing optimization-based approaches often struggle with imbalanced datasets, noisy signals, and delayed convergence, limiting their effectiveness in real-time applications. This study utilizes two benchmark datasets—EFCD and SFDD—which represent electrical and sensor fault scenarios, respectively. These datasets pose challenges due to class imbalance and complex temporal dependencies. To address this, we propose a novel hybrid framework combining Attention-Augmented Convolutional Neural Networks (AACNN) with transformer encoders, enhanced through Enhanced Ensemble-SMOTE for balancing the minority class. The model captures spatial features and long-range temporal patterns and learns effectively from imbalanced data streams. The novelty lies in the integration of attention mechanisms and adaptive oversampling in a unified fault-prediction architecture. Model evaluation is based on multiple performance metrics, including accuracy, F1-score, MCC, RMSE, and score*. The results show that the proposed model outperforms state-of-the-art approaches, achieving up to 97.14% accuracy and a score* of 0.419, with faster convergence and improved generalization across both datasets. Full article
Show Figures

Figure 1

23 pages, 951 KiB  
Article
Multi-Objective Evolution and Swarm-Integrated Optimization of Manufacturing Processes in Simulation-Based Environments
by Panagiotis D. Paraschos, Georgios Papadopoulos and Dimitrios E. Koulouriotis
Machines 2025, 13(7), 611; https://doi.org/10.3390/machines13070611 - 16 Jul 2025
Abstract
This paper presents a digital twin-driven multi-objective optimization approach for enhancing the performance and productivity of a multi-product manufacturing system under complex operational challenges. More specifically, the concept of digital twin is applied to virtually replicate a physical system that leverages real-time data [...] Read more.
This paper presents a digital twin-driven multi-objective optimization approach for enhancing the performance and productivity of a multi-product manufacturing system under complex operational challenges. More specifically, the concept of digital twin is applied to virtually replicate a physical system that leverages real-time data fusion from Internet of Things devices or sensors. JaamSim serves as the platform for modeling the digital twin, simulating the dynamics of the manufacturing system. The implemented digital twin is a manufacturing system that incorporates a three-stage production line to complete and stockpile two gear types. The production line is subject to unpredictable events, including equipment breakdowns, maintenance, and product returns. The stochasticity of these real-world-like events is modeled using a normal distribution. Manufacturing control strategies, such as CONWIP and Kanban, are implemented to evaluate the impact on the performance of the manufacturing system in a simulation environment. The evaluation is performed based on three key indicators: service level, the amount of work-in-progress items, and overall system profitability. Multiple objective functions are formulated to optimize the behavior of the system by reducing the work-in-progress items and improving both cost-effectiveness and service level. To this end, the proposed approach couples the JaamSim-based digital twins with evolutionary and swarm-based algorithms to carry out the multi-objective optimization under varying conditions. In this sense, the present work offers an early demonstration of an industrial digital twin, implementing an offline simulation-based manufacturing environment that utilizes optimization algorithms. Results demonstrate the trade-offs between the employed strategies and offer insights on the implementation of hybrid production control systems in dynamic environments. Full article
(This article belongs to the Section Advanced Manufacturing)
Show Figures

Figure 1

38 pages, 5046 KiB  
Review
Photonics on a Budget: Low-Cost Polymer Sensors for a Smarter World
by Muhammad A. Butt
Micromachines 2025, 16(7), 813; https://doi.org/10.3390/mi16070813 - 15 Jul 2025
Viewed by 191
Abstract
Polymer-based photonic sensors are emerging as cost-effective, scalable alternatives to conventional silicon and glass photonic platforms, offering unique advantages in flexibility, functionality, and manufacturability. This review provides a comprehensive assessment of recent advances in polymer photonic sensing technologies, focusing on material systems, fabrication [...] Read more.
Polymer-based photonic sensors are emerging as cost-effective, scalable alternatives to conventional silicon and glass photonic platforms, offering unique advantages in flexibility, functionality, and manufacturability. This review provides a comprehensive assessment of recent advances in polymer photonic sensing technologies, focusing on material systems, fabrication techniques, device architectures, and application domains. Key polymer materials, including PMMA, SU-8, polyimides, COC, and PDMS, are evaluated for their optical properties, processability, and suitability for integration into sensing platforms. High-throughput fabrication methods such as nanoimprint lithography, soft lithography, roll-to-roll processing, and additive manufacturing are examined for their role in enabling large-area, low-cost device production. Various photonic structures, including planar waveguides, Bragg gratings, photonic crystal slabs, microresonators, and interferometric configurations, are discussed concerning their sensing mechanisms and performance metrics. Practical applications are highlighted in environmental monitoring, biomedical diagnostics, and structural health monitoring. Challenges such as environmental stability, integration with electronic systems, and reproducibility in mass production are critically analyzed. This review also explores future opportunities in hybrid material systems, printable photonics, and wearable sensor arrays. Collectively, these developments position polymer photonic sensors as promising platforms for widespread deployment in smart, connected sensing environments. Full article
(This article belongs to the Section A:Physics)
Show Figures

Figure 1

20 pages, 1303 KiB  
Review
The Role of Nanomaterials in the Wearable Electrochemical Glucose Biosensors for Diabetes Management
by Tahereh Jamshidnejad-Tosaramandani, Soheila Kashanian, Kobra Omidfar and Helgi B. Schiöth
Biosensors 2025, 15(7), 451; https://doi.org/10.3390/bios15070451 - 14 Jul 2025
Viewed by 103
Abstract
The increasing prevalence of diabetes mellitus necessitates the development of advanced glucose-monitoring systems that are non-invasive, reliable, and capable of real-time analysis. Wearable electrochemical biosensors have emerged as promising tools for continuous glucose monitoring (CGM), particularly through sweat-based platforms. This review highlights recent [...] Read more.
The increasing prevalence of diabetes mellitus necessitates the development of advanced glucose-monitoring systems that are non-invasive, reliable, and capable of real-time analysis. Wearable electrochemical biosensors have emerged as promising tools for continuous glucose monitoring (CGM), particularly through sweat-based platforms. This review highlights recent advancements in enzymatic and non-enzymatic wearable biosensors, with a specific focus on the pivotal role of nanomaterials in enhancing sensor performance. In enzymatic sensors, nanomaterials serve as high-surface-area supports for glucose oxidase (GOx) immobilization and facilitate direct electron transfer (DET), thereby improving sensitivity, selectivity, and miniaturization. Meanwhile, non-enzymatic sensors leverage metal and metal oxide nanostructures as catalytic sites to mimic enzymatic activity, offering improved stability and durability. Both categories benefit from the integration of carbon-based materials, metal nanoparticles, conductive polymers, and hybrid composites, enabling the development of flexible, skin-compatible biosensing systems with wireless communication capabilities. The review critically evaluates sensor performance parameters, including sensitivity, limit of detection, and linear range. Finally, current limitations and future perspectives are discussed. These include the development of multifunctional sensors, closed-loop therapeutic systems, and strategies for enhancing the stability and cost-efficiency of biosensors for broader clinical adoption. Full article
Show Figures

Graphical abstract

25 pages, 8564 KiB  
Article
A Vision-Based Single-Sensor Approach for Identification and Localization of Unloading Hoppers
by Wuzhen Wang, Tianyu Ji, Qi Xu, Chunyi Su and Guangming Zhang
Sensors 2025, 25(14), 4330; https://doi.org/10.3390/s25144330 - 10 Jul 2025
Viewed by 227
Abstract
To promote the automation and intelligence of rail freight, the accurate identification and localization of bulk cargo unloading hoppers have become a key technical challenge. Under the technological wave driven by the deep integration of Industry 4.0 and artificial intelligence, the bulk cargo [...] Read more.
To promote the automation and intelligence of rail freight, the accurate identification and localization of bulk cargo unloading hoppers have become a key technical challenge. Under the technological wave driven by the deep integration of Industry 4.0 and artificial intelligence, the bulk cargo unloading process is undergoing a significant transformation from manual operation to intelligent control. In response to this demand, this paper proposes a vision-based 3D localization system for unloading hoppers, which adopts a single visual sensor architecture and integrates three core modules: object detection, corner extraction, and 3D localization. Firstly, a lightweight hybrid attention mechanism is incorporated into the YOLOv5 network to enable edge deployment and enhance the detection accuracy of unloading hoppers in complex industrial scenarios. Secondly, an image processing approach combining depth consistency constraint (DCC) and geometric structure constraints is designed to achieve sub-pixel level extraction of key corner points. Finally, a real-time 3D localization method is realized by integrating corner-based initialization with an RGB-D SLAM tracking mechanism. Experimental results demonstrate that the proposed system achieves an average localization accuracy of 97.07% under challenging working conditions. This system effectively meets the comprehensive requirements of automation, intelligence, and high precision in railway bulk cargo unloading processes, and exhibits strong engineering practicality and application potential. Full article
(This article belongs to the Section Industrial Sensors)
Show Figures

Figure 1

25 pages, 9813 KiB  
Article
Digital Twin Approach for Fault Diagnosis in Photovoltaic Plant DC–DC Converters
by Pablo José Hueros-Barrios, Francisco Javier Rodríguez Sánchez, Pedro Martín Sánchez, Carlos Santos-Pérez, Ariya Sangwongwanich, Mateja Novak and Frede Blaabjerg
Sensors 2025, 25(14), 4323; https://doi.org/10.3390/s25144323 - 10 Jul 2025
Viewed by 197
Abstract
This article presents a hybrid fault diagnosis framework for DC–DC converters in photovoltaic (PV) systems, combining digital twin (DT) modelling and detection with machine learning anomaly classification. The proposed method addresses both hardware faults such as open and short circuits in insulated-gate bipolar [...] Read more.
This article presents a hybrid fault diagnosis framework for DC–DC converters in photovoltaic (PV) systems, combining digital twin (DT) modelling and detection with machine learning anomaly classification. The proposed method addresses both hardware faults such as open and short circuits in insulated-gate bipolar transistors (IGBTs) and diodes and sensor-level false data injection attacks (FDIAs). A five-dimensional DT architecture is employed, where a virtual entity implemented using FMI-compliant FMUs interacts with a real-time emulated physical plant. Fault detection is performed by comparing the real-time system behaviour with DT predictions, using dynamic thresholds based on power, voltage, and current sensors errors. Once a discrepancy is flagged, a second step classifier processes normalized time-series windows to identify the specific fault type. Synthetic training data are generated using emulation models under normal and faulty conditions, and feature vectors are constructed using a compact, interpretable set of statistical and spectral descriptors. The model was validated using OPAL-RT Hardware in the Loop emulations. The results show high classification accuracy, robustness to environmental fluctuations, and transferability across system configurations. The framework also demonstrates compatibility with low-cost deployment hardware, confirming its practical applicability for fault diagnosis in real-world PV systems. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

20 pages, 4616 KiB  
Article
Temporal Convolutional Network with Attention Mechanisms for Strong Wind Early Warning in High-Speed Railway Systems
by Wei Gu, Guoyuan Yang, Hongyan Xing, Yajing Shi and Tongyuan Liu
Sustainability 2025, 17(14), 6339; https://doi.org/10.3390/su17146339 - 10 Jul 2025
Viewed by 244
Abstract
High-speed railway (HSR) is a key transport mode for achieving carbon reduction targets and promoting sustainable regional economic development due to its fast, efficient, and low-carbon nature. Accurate wind speed forecasting (WSF) is vital for HSR systems, as it provides future wind conditions [...] Read more.
High-speed railway (HSR) is a key transport mode for achieving carbon reduction targets and promoting sustainable regional economic development due to its fast, efficient, and low-carbon nature. Accurate wind speed forecasting (WSF) is vital for HSR systems, as it provides future wind conditions that are critical for ensuring safe train operations. Numerous WSF schemes based on deep learning have been proposed. However, accurately forecasting strong wind events remains challenging due to the complex and dynamic nature of wind. In this study, we propose a novel hybrid network architecture, MHSETCN-LSTM, for forecasting strong wind. The MHSETCN-LSTM integrates temporal convolutional networks (TCNs) and long short-term memory networks (LSTMs) to capture both short-term fluctuations and long-term trends in wind behavior. The multi-head squeeze-and-excitation (MHSE) attention mechanism dynamically recalibrates the importance of different aspects of the input sequence, allowing the model to focus on critical time steps, particularly when abrupt wind events occur. In addition to wind speed, we introduce wind direction (WD) to characterize wind behavior due to its impact on the aerodynamic forces acting on trains. To maintain the periodicity of WD, we employ a triangular transform to predict the sine and cosine values of WD, improving the reliability of predictions. Massive experiments are conducted to evaluate the effectiveness of the proposed method based on real-world wind data collected from sensors along the Beijing–Baotou railway. Experimental results demonstrated that our model outperforms state-of-the-art solutions for WSF, achieving a mean-squared error (MSE) of 0.0393, a root-mean-squared error (RMSE) of 0.1982, and a coefficient of determination (R2) of 99.59%. These experimental results validate the efficacy of our proposed model in enhancing the resilience and sustainability of railway infrastructure.Furthermore, the model can be utilized in other wind-sensitive sectors, such as highways, ports, and offshore wind operations. This will further promote the achievement of Sustainable Development Goal 9. Full article
(This article belongs to the Section Environmental Sustainability and Applications)
Show Figures

Figure 1

18 pages, 3556 KiB  
Article
Multi-Sensor Fusion for Autonomous Mobile Robot Docking: Integrating LiDAR, YOLO-Based AprilTag Detection, and Depth-Aided Localization
by Yanyan Dai and Kidong Lee
Electronics 2025, 14(14), 2769; https://doi.org/10.3390/electronics14142769 - 10 Jul 2025
Viewed by 286
Abstract
Reliable and accurate docking remains a fundamental challenge for autonomous mobile robots (AMRs) operating in complex industrial environments with dynamic lighting, motion blur, and occlusion. This study proposes a novel multi-sensor fusion-based docking framework that significantly enhances robustness and precision by integrating YOLOv8-based [...] Read more.
Reliable and accurate docking remains a fundamental challenge for autonomous mobile robots (AMRs) operating in complex industrial environments with dynamic lighting, motion blur, and occlusion. This study proposes a novel multi-sensor fusion-based docking framework that significantly enhances robustness and precision by integrating YOLOv8-based AprilTag detection, depth-aided 3D localization, and LiDAR-based orientation correction. A key contribution of this work is the construction of a custom AprilTag dataset featuring real-world visual disturbances, enabling the YOLOv8 model to achieve high-accuracy detection and ID classification under challenging conditions. To ensure precise spatial localization, 2D visual tag coordinates are fused with depth data to compute 3D positions in the robot’s frame. A LiDAR group-symmetry mechanism estimates heading deviation, which is combined with visual feedback in a hybrid PID controller to correct angular errors. A finite-state machine governs the docking sequence, including detection, approach, yaw alignment, and final engagement. Simulation and experimental results demonstrate that the proposed system achieves higher docking success rates and improved pose accuracy under various challenging conditions compared to traditional vision- or LiDAR-only approaches. Full article
Show Figures

Figure 1

22 pages, 3432 KiB  
Article
Tracking Accuracy Evaluation of Autonomous Agricultural Tractors via Rear Three-Point Hitch Estimation Using a Hybrid Model of EKF Transformer
by Eun-Kuk Kim, Tae-Ho Han, Jun-Ho Lee, Cheol-Woo Han and Ryu-Gap Lim
Agriculture 2025, 15(14), 1475; https://doi.org/10.3390/agriculture15141475 - 9 Jul 2025
Viewed by 219
Abstract
The objective of this study was to improve measurement accuracy in the evaluation of autonomous agricultural tractor performance by addressing external disturbances, such as sensor installation errors, vibrations, and heading-induced bias that occur during the measurement of the conventional rear three-point hitch (Rear [...] Read more.
The objective of this study was to improve measurement accuracy in the evaluation of autonomous agricultural tractor performance by addressing external disturbances, such as sensor installation errors, vibrations, and heading-induced bias that occur during the measurement of the conventional rear three-point hitch (Rear 3-Point) system. To mitigate these disturbances, the measurement point was relocated to the cab, where external interference is comparatively minimal. However, in compliance with the ISO 12188 standard, the Rear 3-Point system must be used as the reference measurement point. Therefore, its coordinates were indirectly estimated using an extended Kalman filter (EKF) and artificial intelligence (AI)-based techniques. A hybrid model was developed in which a transformer-based AI model was trained using the Rear 3-Point coordinates predicted by EKF as the ground truth. While traditional time-series models, such as LSTM and GRU, show limitations in predicting nonlinear data, the application of an attention mechanism was found to enhance prediction performance by effectively learning temporal dependencies and vibration patterns. The experimental results show that the EKF-based estimation achieved a precision of RMSE 1.6 mm, a maximum error of 12.6 mm, and a maximum standard deviation of 3.9 mm compared to actual measurements. From the perspective of experimental design, the proposed hybrid model was able to predict the trajectory of the autonomous agricultural tractor with significantly reduced external disturbances when compared to the actual measured Rear 3-Point coordinates, while also complying with the ISO 12188 standard. These findings suggest that the proposed approach provides an effective and integrated solution for developing high-precision autonomous agricultural systems. Full article
(This article belongs to the Special Issue Soil-Machine Systems and Its Related Digital Technologies Application)
Show Figures

Figure 1

6 pages, 521 KiB  
Proceeding Paper
LoRaWAN IoT System for Measuring Air Parameters in a Traffic Monitoring Station
by Stefan Lishev, Grisha Spasov and Galidiya Petrova
Eng. Proc. 2025, 100(1), 17; https://doi.org/10.3390/engproc2025100017 - 7 Jul 2025
Viewed by 133
Abstract
Traffic measurement systems are an essential part of intelligent transportation systems (ITS). These are specialized transport infrastructures where traffic data is collected and analyzed in order to optimize the use of road systems, improve transport safety, and implement future transport plans. The rapid [...] Read more.
Traffic measurement systems are an essential part of intelligent transportation systems (ITS). These are specialized transport infrastructures where traffic data is collected and analyzed in order to optimize the use of road systems, improve transport safety, and implement future transport plans. The rapid development of transportation systems, urbanization, and industrialization have led to a global problem of air pollution. This has raised the topical issue of measuring and monitoring environmental parameters at traffic monitoring stations in ITS. In this paper, we present a wireless environmental monitoring system, which is a subsystem of a traffic monitoring station. Along with measuring traffic parameters, the station also collects useful meteorological information. A novel hybrid, dual-band IoT system based on LoRa and LoRaWAN for environmental parameters monitoring is presented. The hardware realization of a developed hybrid LoRaWAN end device, together with the sensors used for the measurement of air parameters, is described. Initial results from real test monitoring of environmental parameters on the road in urban environments are presented as a proof of concept. The presented wireless environmental monitoring system can also be used for indoor or outdoor air pollution monitoring, serving as a useful complement to intelligent transport systems. Full article
Show Figures

Figure 1

32 pages, 2740 KiB  
Article
Vision-Based Navigation and Perception for Autonomous Robots: Sensors, SLAM, Control Strategies, and Cross-Domain Applications—A Review
by Eder A. Rodríguez-Martínez, Wendy Flores-Fuentes, Farouk Achakir, Oleg Sergiyenko and Fabian N. Murrieta-Rico
Eng 2025, 6(7), 153; https://doi.org/10.3390/eng6070153 - 7 Jul 2025
Viewed by 704
Abstract
Camera-centric perception has matured into a cornerstone of modern autonomy, from self-driving cars and factory cobots to underwater and planetary exploration. This review synthesizes more than a decade of progress in vision-based robotic navigation through an engineering lens, charting the full pipeline from [...] Read more.
Camera-centric perception has matured into a cornerstone of modern autonomy, from self-driving cars and factory cobots to underwater and planetary exploration. This review synthesizes more than a decade of progress in vision-based robotic navigation through an engineering lens, charting the full pipeline from sensing to deployment. We first examine the expanding sensor palette—monocular and multi-camera rigs, stereo and RGB-D devices, LiDAR–camera hybrids, event cameras, and infrared systems—highlighting the complementary operating envelopes and the rise of learning-based depth inference. The advances in visual localization and mapping are then analyzed, contrasting sparse and dense SLAM approaches, as well as monocular, stereo, and visual–inertial formulations. Additional topics include loop closure, semantic mapping, and LiDAR–visual–inertial fusion, which enables drift-free operation in dynamic environments. Building on these foundations, we review the navigation and control strategies, spanning classical planning, reinforcement and imitation learning, hybrid topological–metric memories, and emerging visual language guidance. Application case studies—autonomous driving, industrial manipulation, autonomous underwater vehicles, planetary rovers, aerial drones, and humanoids—demonstrate how tailored sensor suites and algorithms meet domain-specific constraints. Finally, the future research trajectories are distilled: generative AI for synthetic training data and scene completion; high-density 3D perception with solid-state LiDAR and neural implicit representations; event-based vision for ultra-fast control; and human-centric autonomy in next-generation robots. By providing a unified taxonomy, a comparative analysis, and engineering guidelines, this review aims to inform researchers and practitioners designing robust, scalable, vision-driven robotic systems. Full article
(This article belongs to the Special Issue Interdisciplinary Insights in Engineering Research)
Show Figures

Figure 1

18 pages, 4458 KiB  
Article
Intelligent Hybrid SHM-NDT Approach for Structural Assessment of Metal Components
by Romaine Byfield, Ahmed Shabaka, Milton Molina Vargas and Ibrahim Tansel
Infrastructures 2025, 10(7), 174; https://doi.org/10.3390/infrastructures10070174 - 6 Jul 2025
Viewed by 303
Abstract
Structural health monitoring (SHM) plays a pivotal role in ensuring the integrity and safety of critical infrastructure and mechanical components. While traditional non-destructive testing (NDT) methods offer high-resolution data, they typically require periodic access and disassembly of equipment to conduct inspections. In contrast, [...] Read more.
Structural health monitoring (SHM) plays a pivotal role in ensuring the integrity and safety of critical infrastructure and mechanical components. While traditional non-destructive testing (NDT) methods offer high-resolution data, they typically require periodic access and disassembly of equipment to conduct inspections. In contrast, SHM employs permanently installed, cost-effective sensors to enable continuous monitoring, though often with reduced detail. This study presents an integrated hybrid SHM-NDT methodology enhanced by deep learning to enable the real-time monitoring and classification of mechanical stresses in structural components. As a case study, a 6-foot-long parallel flange I-beam, representing bridge truss elements, was subjected to variable bending loads to simulate operational conditions. The hybrid system utilized an ultrasonic transducer (NDT) for excitation and piezoelectric sensors (SHM) for signal acquisition. Signal data were analyzed using 1D and 2D convolutional neural networks (CNNs), long short-term memory (LSTM) models, and random forest classifiers to detect and classify load magnitudes. The AI-enhanced approach achieved 100% accuracy in 47 out of 48 tests and 94% in the remaining tests. These results demonstrate that the hybrid SHM-NDT framework, combined with machine learning, offers a powerful and adaptable solution for continuous monitoring and precise damage assessment of structural systems, significantly advancing maintenance practices and safety assurance. Full article
Show Figures

Figure 1

25 pages, 4082 KiB  
Article
Multi-Scale Attention Fusion Gesture-Recognition Algorithm Based on Strain Sensors
by Zhiqiang Zhang, Jun Cai, Xueyu Dai and Hui Xiao
Sensors 2025, 25(13), 4200; https://doi.org/10.3390/s25134200 - 5 Jul 2025
Viewed by 216
Abstract
Surface electromyography (sEMG) signals are commonly employed for dynamic-gesture recognition. However, their robustness is often compromised by individual variability and sensor placement inconsistencies, limiting their reliability in complex and unconstrained scenarios. In contrast, strain-gauge signals offer enhanced environmental adaptability by stably capturing joint [...] Read more.
Surface electromyography (sEMG) signals are commonly employed for dynamic-gesture recognition. However, their robustness is often compromised by individual variability and sensor placement inconsistencies, limiting their reliability in complex and unconstrained scenarios. In contrast, strain-gauge signals offer enhanced environmental adaptability by stably capturing joint deformation processes. To address the challenges posed by the multi-channel, temporal, and amplitude-varying nature of strain signals, this paper proposes a lightweight hybrid attention network, termed MACLiteNet. The network integrates a local temporal modeling branch, a multi-scale fusion module, and a channel reconstruction mechanism to jointly capture local dynamic transitions and inter-channel structural correlations. Experimental evaluations conducted on both a self-collected strain-gauge dataset and the public sEMG benchmark NinaPro DB1 demonstrate that MACLiteNet achieves recognition accuracies of 99.71% and 98.45%, respectively, with only 0.22M parameters and a computational cost as low as 0.10 GFLOPs. Extensive experimental results demonstrate that the proposed method achieves superior performance in terms of accuracy, efficiency, and cross-modal generalization, offering a promising solution for building efficient and reliable strain-driven interactive systems. Full article
(This article belongs to the Special Issue Sensor Systems for Gesture Recognition (3rd Edition))
Show Figures

Figure 1

20 pages, 1179 KiB  
Article
Conv1D-GRU-Self Attention: An Efficient Deep Learning Framework for Detecting Intrusions in Wireless Sensor Networks
by Kenan Honore Robacky Mbongo, Kanwal Ahmed, Orken Mamyrbayev, Guanghui Wang, Fang Zuo, Ainur Akhmediyarova, Nurzhan Mukazhanov and Assem Ayapbergenova
Future Internet 2025, 17(7), 301; https://doi.org/10.3390/fi17070301 - 4 Jul 2025
Viewed by 339
Abstract
Wireless Sensor Networks (WSNs) consist of distributed sensor nodes that collect and transmit environmental data, often in resource-constrained and unsecured environments. These characteristics make WSNs highly vulnerable to various security threats. To address this, the objective of this research is to design and [...] Read more.
Wireless Sensor Networks (WSNs) consist of distributed sensor nodes that collect and transmit environmental data, often in resource-constrained and unsecured environments. These characteristics make WSNs highly vulnerable to various security threats. To address this, the objective of this research is to design and evaluate a deep learning-based Intrusion Detection System (IDS) that is both accurate and efficient for real-time threat detection in WSNs. This study proposes a hybrid IDS model combining one-dimensional Convolutional Neural Networks (Conv1Ds), Gated Recurrent Units (GRUs), and Self-Attention mechanisms. A Conv1D extracts spatial features from network traffic, GRU captures temporal dependencies, and Self-Attention emphasizes critical sequence components, collectively enhancing detection of subtle and complex intrusion patterns. The model was evaluated using the WSN-DS dataset and demonstrated superior performance compared to traditional machine learning and simpler deep learning models. It achieved an accuracy of 98.6%, precision of 98.63%, recall of 98.6%, F1-score of 98.6%, and an ROC-AUC of 0.9994, indicating strong predictive capability even with imbalanced data. In addition to centralized training, the model was tested under cooperative, node-based learning conditions, where each node independently detects anomalies and contributes to a collective decision-making framework. This distributed approach improves detection efficiency and robustness. The proposed IDS offers a scalable and resilient solution tailored to the unique challenges of WSN security. Full article
Show Figures

Figure 1

14 pages, 4193 KiB  
Article
Comparative Analysis of Two Types of Combined Power-Over-Fiber and Radio-Over-Fiber Systems Using Raman Amplification for Different Link Lengths
by Paulo Kiohara, Romildo H. Souza, Véronique Quintard, Mikael Guegan, Laura Ghisa, André Pérennou and Olympio L. Coutinho
Sensors 2025, 25(13), 4159; https://doi.org/10.3390/s25134159 - 4 Jul 2025
Viewed by 251
Abstract
The use of analog radio-over-fiber (RoF) systems combined with power-over-fiber (PoF) systems has been proposed in recent years for applications involving remote sensors used in hazardous environments or where electrical wiring may be impractical. This article presents a hybrid architecture topology that combines [...] Read more.
The use of analog radio-over-fiber (RoF) systems combined with power-over-fiber (PoF) systems has been proposed in recent years for applications involving remote sensors used in hazardous environments or where electrical wiring may be impractical. This article presents a hybrid architecture topology that combines PoF and RoF, using Raman amplification to obtain RF gain. The first emphasis is placed on the use of two types of high-power laser sources (HPLSs) for the PoF system: a 1480 nm Raman-based HPLS and a 1550 nm HPLS that is based on an erbium-doped fiber amplifier (EDFA). The second emphasis of this paper is on how these two HPLSs simulate Raman scattering (SRS) in the fiber, considering different lengths of SMF 28 for the link. Thus, a comparative analysis is proposed considering the effects induced on the RF signal, mainly focused on its RF power gain (GRF), noise figure (NF), and spurious-free dynamic range (SFDR). The obtained results show that the architecture using a PoF system based on the 1550 nm HPLS benefits from a lower noise figure degradation, even when the noise generated by the optical amplification is considered. Full article
(This article belongs to the Special Issue Optical Communications in Sensor Networks)
Show Figures

Figure 1

Back to TopTop