Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (384)

Search Parameters:
Keywords = hybrid building construction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 11765 KiB  
Article
The European Influence on Qing Dynasty Architecture: Design Principles and Construction Innovations Across Cultures
by Manuel V. Castilla
Heritage 2025, 8(8), 311; https://doi.org/10.3390/heritage8080311 - 2 Aug 2025
Viewed by 259
Abstract
The design and planning of Western-style constructions during the early Qing Dynasty in China constituted a significant multicultural encounter that fused technological advancement with aesthetic innovation. This cultural interplay is particularly evident in the imperial garden and pavilion projects commissioned by the Qing [...] Read more.
The design and planning of Western-style constructions during the early Qing Dynasty in China constituted a significant multicultural encounter that fused technological advancement with aesthetic innovation. This cultural interplay is particularly evident in the imperial garden and pavilion projects commissioned by the Qing court, which served as physical and symbolic sites of cross-cultural dialogue. Influenced by the intellectual and artistic movements of the European Renaissance, Western architectural concepts gradually found their way into the spatial and visual language of Chinese architecture, especially within the royal gardens and aristocratic buildings of the time. These structures were not simply imitative but rather represented a selective adaptation of Western ideas to suit Chinese imperial tastes and principles. This article examines the architectural language that emerged from this encounter between Chinese and European cultures, analysing symbolic motifs, spatial design, ornamental aesthetics, the application of linear perspective, and the integration of foreign architectural forms. These elements collectively functioned as tools to construct a unique visual discourse that communicated both political authority and cultural hybridity. The findings underscore that this architectural phenomenon was not merely stylistic imitation, but rather a dynamic convergence of technological knowledge and artistic vision across cultural boundaries. Full article
Show Figures

Figure 1

22 pages, 1486 KiB  
Review
Review on Aging Behavior and Durability Enhancement of Bamboo Fiber-Reinforced Polymer Composites
by Sameeksha Shettigar, Mandya Channegowda Gowrishankar and Manjunath Shettar
Molecules 2025, 30(15), 3062; https://doi.org/10.3390/molecules30153062 - 22 Jul 2025
Viewed by 266
Abstract
This review article focuses on the long-term durability challenges associated with bamboo fiber-reinforced polymer composites when subjected to various environmental aging conditions such as water immersion, hygrothermal fluctuations, ultraviolet (UV) radiation, soil burial, and refrigerated storage. The primary issue addressed is the degradation [...] Read more.
This review article focuses on the long-term durability challenges associated with bamboo fiber-reinforced polymer composites when subjected to various environmental aging conditions such as water immersion, hygrothermal fluctuations, ultraviolet (UV) radiation, soil burial, and refrigerated storage. The primary issue addressed is the degradation of mechanical and structural performance of bamboo fiber-reinforced polymer composites due to moisture absorption, fiber swelling, and fiber–matrix interface deterioration. To mitigate these aging effects, the study evaluates and compares multiple strategies, including chemical and physical fiber surface treatments, filler additions, and fiber hybridization, which aim to enhance moisture resistance and mechanical stability. These composites are relevant in automotive interiors, construction panels, building insulation, and consumer goods due to their eco-friendly nature and potential to replace conventional synthetic composites. This review is necessary to consolidate current knowledge, identify effective enhancement approaches, and guide the development of environmentally resilient bamboo fiber-reinforced polymer composites for real-world applications. Full article
(This article belongs to the Special Issue Advances in Natural Fiber Composites)
Show Figures

Figure 1

19 pages, 5415 KiB  
Article
Intelligent Optimized Diagnosis for Hydropower Units Based on CEEMDAN Combined with RCMFDE and ISMA-CNN-GRU-Attention
by Wenting Zhang, Huajun Meng, Ruoxi Wang and Ping Wang
Water 2025, 17(14), 2125; https://doi.org/10.3390/w17142125 - 17 Jul 2025
Viewed by 279
Abstract
This study suggests a hybrid approach that combines improved feature selection and intelligent diagnosis to increase the operational safety and intelligent diagnosis capabilities of hydropower units. In order to handle the vibration data, complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) is [...] Read more.
This study suggests a hybrid approach that combines improved feature selection and intelligent diagnosis to increase the operational safety and intelligent diagnosis capabilities of hydropower units. In order to handle the vibration data, complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) is used initially. A novel comprehensive index is constructed by combining the Pearson correlation coefficient, mutual information (MI), and Kullback–Leibler divergence (KLD) to select intrinsic mode functions (IMFs). Next, feature extraction is performed on the selected IMFs using Refined Composite Multiscale Fluctuation Dispersion Entropy (RCMFDE). Then, time and frequency domain features are screened by calculating dispersion and combined with IMF features to build a hybrid feature vector. The vector is then fed into a CNN-GRU-Attention model for intelligent diagnosis. The improved slime mold algorithm (ISMA) is employed for the first time to optimize the hyperparameters of the CNN-GRU-Attention model. The experimental results show that the classification accuracy reaches 96.79% for raw signals and 93.33% for noisy signals, significantly outperforming traditional methods. This study incorporates entropy-based feature extraction, combines hyperparameter optimization with the classification model, and addresses the limitations of single feature selection methods for non-stationary and nonlinear signals. The proposed approach provides an excellent solution for intelligent optimized diagnosis of hydropower units. Full article
(This article belongs to the Special Issue Optimization-Simulation Modeling of Sustainable Water Resource)
Show Figures

Figure 1

35 pages, 2895 KiB  
Review
Ventilated Facades for Low-Carbon Buildings: A Review
by Pinar Mert Cuce and Erdem Cuce
Processes 2025, 13(7), 2275; https://doi.org/10.3390/pr13072275 - 17 Jul 2025
Viewed by 671
Abstract
The construction sector presently consumes about 40% of global energy and generates 36% of CO2 emissions, making facade retrofits a priority for decarbonising buildings. This review clarifies how ventilated facades (VFs), wall assemblies that interpose a ventilated air cavity between outer cladding [...] Read more.
The construction sector presently consumes about 40% of global energy and generates 36% of CO2 emissions, making facade retrofits a priority for decarbonising buildings. This review clarifies how ventilated facades (VFs), wall assemblies that interpose a ventilated air cavity between outer cladding and the insulated structure, address that challenge. First, the paper categorises VFs by structural configuration, ventilation strategy and functional control into four principal families: double-skin, rainscreen, hybrid/adaptive and active–passive systems, with further extensions such as BIPV, PCM and green-wall integrations that couple energy generation or storage with envelope performance. Heat-transfer analysis shows that the cavity interrupts conductive paths, promotes buoyancy- or wind-driven convection, and curtails radiative exchange. Key design parameters, including cavity depth, vent-area ratio, airflow velocity and surface emissivity, govern this balance, while hybrid ventilation offers the most excellent peak-load mitigation with modest energy input. A synthesis of simulation and field studies indicates that properly detailed VFs reduce envelope cooling loads by 20–55% across diverse climates and cut winter heating demand by 10–20% when vents are seasonally managed or coupled with heat-recovery devices. These thermal benefits translate into steadier interior surface temperatures, lower radiant asymmetry and fewer drafts, thereby expanding the hours occupants remain within comfort bands without mechanical conditioning. Climate-responsive guidance emerges in tropical and arid regions, favouring highly ventilated, low-absorptance cladding; temperate and continental zones gain from adaptive vents, movable insulation or PCM layers; multi-skin adaptive facades promise balanced year-round savings by re-configuring in real time. Overall, the review demonstrates that VFs constitute a versatile, passive-plus platform for low-carbon buildings, simultaneously enhancing energy efficiency, durability and indoor comfort. Future advances in smart controls, bio-based materials and integrated energy-recovery systems are poised to unlock further performance gains and accelerate the sector’s transition to net-zero. Emerging multifunctional materials such as phase-change composites, nanostructured coatings, and perovskite-integrated systems also show promise in enhancing facade adaptability and energy responsiveness. Full article
(This article belongs to the Special Issue Sustainable Development of Energy and Environment in Buildings)
Show Figures

Figure 1

18 pages, 899 KiB  
Article
Platforms for Construction: Definitions, Classifications, and Their Impact on the Construction Value Chain
by Amer A. Hijazi, Priyadarshini Das, Robert C. Moehler and Duncan Maxwell
Buildings 2025, 15(14), 2482; https://doi.org/10.3390/buildings15142482 - 15 Jul 2025
Viewed by 328
Abstract
This paper presents platforms as a solution to rethink how we build, addressing the pressing paradox between meeting growing housing demands. The construction sector has not fully grasped the advantages of platforms beyond standardisation and efficiency. In contrast, other sectors have begun acknowledging [...] Read more.
This paper presents platforms as a solution to rethink how we build, addressing the pressing paradox between meeting growing housing demands. The construction sector has not fully grasped the advantages of platforms beyond standardisation and efficiency. In contrast, other sectors have begun acknowledging that platforms can capture increased value through interactions among firms within a networked ecosystem. Learning from other sectors, this paper investigates platforms in the construction context, aiming to define, classify, and assess their impact on the construction value chain. The research approach was abductive, involving a cross-sectoral review of 190 platforms across 16 Australian and New Zealand Standard Industrial Classification (ANZSIC) industries and semi-structured interviews with stakeholder groups of the construction value chain in Australia. The findings categorise platforms as physical, digital, or hybrid, highlighting their potential to move value-added activities upstream, facilitate collaboration, and foster innovation through data-driven insights. The paper’s novelty lies in the exhaustive cross-sectoral review, the classification of platforms in the construction context, and the proposition of a platform approach as a versatile framework tailored to diverse needs and circumstances that offers a fresh perspective on sustainable building practices. The practical contribution of this study lies in offering guidelines for industry practitioners aiming to develop or refine a platform-based approach tailored to the construction context. Full article
Show Figures

Figure 1

20 pages, 1902 KiB  
Article
Prediction Model of Household Carbon Emission in Old Residential Areas in Drought and Cold Regions Based on Gene Expression Programming
by Shiao Chen, Yaohui Gao, Zhaonian Dai and Wen Ren
Buildings 2025, 15(14), 2462; https://doi.org/10.3390/buildings15142462 - 14 Jul 2025
Viewed by 200
Abstract
To support the national goals of carbon peaking and carbon neutrality, this study proposes a household carbon emission prediction model based on Gene Expression Programming (GEP) for low-carbon retrofitting of aging residential areas in arid-cold regions. Focusing on 15 typical aging communities in [...] Read more.
To support the national goals of carbon peaking and carbon neutrality, this study proposes a household carbon emission prediction model based on Gene Expression Programming (GEP) for low-carbon retrofitting of aging residential areas in arid-cold regions. Focusing on 15 typical aging communities in Kundulun District, Baotou City, a 17-dimensional dataset encompassing building characteristics, demographic structure, and energy consumption patterns was collected through field surveys. Key influencing factors (e.g., electricity usage and heating energy consumption) were selected using Pearson correlation analysis and the Random Forest (RF) algorithm. Subsequently, a hybrid prediction model was constructed, with its parameters optimized by minimizing the root mean square error (RMSE) as the fitness function. Experimental results demonstrated that the model achieved an R2 value of 0.81, reducing RMSE by 77.1% compared to conventional GEP models and by 60.4% compared to BP neural networks, while significantly improving stability. By combining data dimensionality reduction with adaptive evolutionary algorithms, this model overcomes the limitations of traditional methods in capturing complex nonlinear relationships. It provides a reliable tool for precision-based low-carbon retrofits in aging residential areas of arid-cold regions and offers a methodological advance for research on building carbon emission prediction driven by urban renewal. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

26 pages, 2217 KiB  
Review
A Scientific Review of Recycling Practices and Challenges for Autoclaved Aerated Concrete in Sustainable Construction
by Shuxi (Hiro) Wang, Guomin Zhang, Chamila Gunasekara, David Law, Yongtao Tan and Weihan Sun
Buildings 2025, 15(14), 2453; https://doi.org/10.3390/buildings15142453 - 12 Jul 2025
Viewed by 542
Abstract
Autoclaved Aerated Concrete (AAC) is a lightweight, thermally insulating, and fire-resistant building material that has become prominent in sustainable construction due to its reduced production energy demands and minimal environmental impact. As an increasing number of AAC-based structures reach end-of-life, the effective recycling [...] Read more.
Autoclaved Aerated Concrete (AAC) is a lightweight, thermally insulating, and fire-resistant building material that has become prominent in sustainable construction due to its reduced production energy demands and minimal environmental impact. As an increasing number of AAC-based structures reach end-of-life, the effective recycling and reuse of AAC waste present both challenges and opportunities within the context of sustainable building practices and circular economy frameworks. This study presents a scientometric review of AAC recycling research published between 2014 and 2024, using the Web of Science database and bibliometric tools such as CiteSpace. Key trends, techniques, and knowledge gaps in AAC recycling are identified, highlighting issues such as high energy consumption, limited practical implementation, and the absence of standardized recovery protocols. The study also outlines emerging research pathways, including detailed material characterization, development of recycling standards, innovative reuse techniques, hybrid material systems, and the integration of recycled AAC in new construction. These insights provide a foundation for advancing sustainable building material strategies and inform policy and practice in construction waste management. Full article
(This article belongs to the Topic Sustainable Building Development and Promotion)
Show Figures

Figure 1

27 pages, 1431 KiB  
Article
Environmental and Behavioral Dimensions of Private Autonomous Vehicles in Sustainable Urban Mobility
by Iulia Ioana Mircea, Eugen Rosca, Ciprian Sorin Vlad and Larisa Ivascu
Clean Technol. 2025, 7(3), 56; https://doi.org/10.3390/cleantechnol7030056 - 7 Jul 2025
Viewed by 461
Abstract
In the current context, where environmental concerns are gaining increased attention, the transition toward sustainable urban mobility stands out as a necessary and responsible step. Technological advancements over the past decade have brought private autonomous vehicles, particularly those defined by the Society of [...] Read more.
In the current context, where environmental concerns are gaining increased attention, the transition toward sustainable urban mobility stands out as a necessary and responsible step. Technological advancements over the past decade have brought private autonomous vehicles, particularly those defined by the Society of Automotive Engineers Levels 4 and 5, into focus as promising solutions for mitigating road congestion and reducing greenhouse gas emissions. However, the extent to which Autonomous Vehicles can fulfill this potential depends largely on user acceptance, patterns of use, and their integration within broader green energy and sustainability policies. The present paper aims to develop an integrated conceptual model that links behavioral determinants to environmental outcomes, assessing how individuals’ intention to adopt private autonomous vehicles can contribute to sustainable urban mobility. The model integrates five psychosocial determinants—perceived usefulness, trust in technology, social influence, environmental concern, and perceived behavioral control—with contextual variables such as energy source, infrastructure availability, and public policy. These components interact to predict users’ intention to adopt AVs and their perceived contribution to urban sustainability. Methodologically, the study builds on a narrative synthesis of the literature and proposes a framework applicable to empirical validation through structural equation modeling (SEM). The model draws on established frameworks such as Technology Acceptance Model (TAM), Theory of Planned Behavior, and Unified Theory of Acceptance and Use of Technology, incorporating constructs including perceived usefulness, trust in technology, social influence, environmental concern, and perceived behavioral control, constructs later to be examined in relation to key contextual variables, including the energy source powering Autonomous Vehicles—such as electricity from mixed or renewable grids, hydrogen, or hybrid systems—and the broader policy environment (regulatory frameworks, infrastructure investment, fiscal incentives, and alignment with climate and mobility strategies and others). The research provides relevant directions for public policy and behavioral interventions in support of the development of clean and smart urban transport in the age of automation. Full article
Show Figures

Figure 1

24 pages, 2885 KiB  
Article
Life Cycle Approach to Shopping Mall Redevelopment: A Model for Service Life Design
by Jasmina Tamburić, Vladan Nikolić, Dragoslav Stojić and Olivera Nikolić
Appl. Sci. 2025, 15(13), 7509; https://doi.org/10.3390/app15137509 - 4 Jul 2025
Viewed by 475
Abstract
This study investigates the enhancement of condition and the extension of service life in architectural structures of shopping malls through the application of a hybrid methodological framework that integrates Life Cycle Assessment (LCA) and Service Life Planning (SLP). Thisresearch identifies key parameters related [...] Read more.
This study investigates the enhancement of condition and the extension of service life in architectural structures of shopping malls through the application of a hybrid methodological framework that integrates Life Cycle Assessment (LCA) and Service Life Planning (SLP). Thisresearch identifies key parameters related to physical performance, sustainability indicators, and functional characteristics of architectural systems that are subject to deterioration and shifting market conditions during the operational phase. The methodology encompasses a theoretical synthesis of LCA/SLP principles and advances in modeling for both the integrated design of new facilities and the monitoring and renewal of existing ones—from data collection and early-stage planning, through construction, use, and maintenance, to end-of-life phases. A second component of the model focuses on quantitative assessment and condition forecasting, based on Markov chain modeling, applied to the case study of the “Deva 1” shopping mall in Serbia. The results demonstrate the model’s ability to correlate physical condition indices with predictive service life scenarios.This study further contributes by integrating time-dependent impact categories, usage profiles, and planning parameters into a unified evaluation matrix, which can be applied to the development and improvement of systems aimed at enhancing the structural, functional, esthetic, and indirectly economic value of shopping mall buildings throughout their entire life cycle—from an architectural perspective. Full article
Show Figures

Figure 1

16 pages, 2499 KiB  
Article
Neural Network-Based Control Optimization for NH3 Leakage and NOx Emissions in SCR Systems
by Weiqi Li, Jie Wu, Dongwei Yao, Feng Wu, Lei Wang, Hua Lou and Haibin He
Processes 2025, 13(7), 2029; https://doi.org/10.3390/pr13072029 - 26 Jun 2025
Viewed by 489
Abstract
This study proposes a data-driven optimization framework to enhance emission control performance in diesel engine selective catalytic reduction (SCR) systems under transient operating conditions. A one-dimensional SCR model was constructed in GT-Power, and simulation datasets were generated using experimentally measured inputs from the [...] Read more.
This study proposes a data-driven optimization framework to enhance emission control performance in diesel engine selective catalytic reduction (SCR) systems under transient operating conditions. A one-dimensional SCR model was constructed in GT-Power, and simulation datasets were generated using experimentally measured inputs from the World Harmonized Transient Cycle (WHTC), with representative emission responses obtained by varying fixed ammonia-to-NOx (A/N) ratios. Building on these datasets, a hybrid prediction model combining Long Short-Term Memory (LSTM) networks and multi-head attention mechanisms was developed to accurately forecast SCR outlet NH3 leakage and NOx emissions. The model exhibited high predictive accuracy, achieving R2 values exceeding 0.977 and low RMSE across training, validation, and test sets. Based on the model predictions, a constrained dynamic multi-objective optimization strategy was implemented to adaptively adjust ammonia dosing, aiming to simultaneously minimize NH3 leakage and NOx emissions. The optimized NH3 injection profiles were validated through reapplication in the GT-Power simulation environment. Compared to the baseline fixed-ratio control strategy, the proposed approach reduced NH3 leakage and NOx emissions by 34.40% and 11.15%, respectively, as determined for the transient segment of the WHTC cycle. These results demonstrate the effectiveness of integrating physics-based simulation, deep learning prediction, and dynamic optimization for improving aftertreatment adaptability and emission compliance in real-world diesel engine applications. All reported values are based on a single simulated WHTC cycle without statistical uncertainty analysis. Full article
(This article belongs to the Special Issue Clean Combustion and Emission in Vehicle Power System, 2nd Edition)
Show Figures

Figure 1

24 pages, 24527 KiB  
Article
Design of Alternatives to Stained Glass with Open-Source Distributed Additive Manufacturing for Energy Efficiency and Economic Savings
by Emily Bow Pearce, Joshua M. Pearce and Alessia Romani
Designs 2025, 9(4), 80; https://doi.org/10.3390/designs9040080 - 24 Jun 2025
Viewed by 829
Abstract
Stained glass has played important roles in heritage building construction, however, conventional fabrication techniques have become economically prohibitive due to both capital costs and energy inefficiency, as well as high-level artistic and craft skills. To overcome these challenges, this study provides a new [...] Read more.
Stained glass has played important roles in heritage building construction, however, conventional fabrication techniques have become economically prohibitive due to both capital costs and energy inefficiency, as well as high-level artistic and craft skills. To overcome these challenges, this study provides a new design methodology for customized 3D-printed polycarbonate (PC)-based stained-glass window alternatives using a fully open-source toolchain and methodology based on digital fabrication and hybrid crafts. Based on design thinking and open design principles, this procedure involves fabricating an additional insert made of (i) a PC substrate and (ii) custom geometries directly 3D printed on the substrate with PC-based 3D printing feedstock (iii) to be painted after the 3D printing process. This alternative is intended for customizable stained-glass design patterns to be used instead of traditional stained glass or in addition to conventional windows, making stained glass accessible and customizable according to users’ needs. Three approaches are developed and demonstrated to generate customized painted stained-glass geometries according to the different users’ skills and needs using (i) online-retrieved 3D and 2D patterns; (ii) custom patterns, i.e., hand-drawn and digital-drawn images; and (iii) AI-generated patterns. The proposed methodology shows potential for distributed applications in the building and heritage sectors, demonstrating its practical feasibility. Its use makes stained-glass-based products accessible to a broader range of end-users, especially for repairing and replicating existing conventional stained glass and designing new customizable products. The developed custom patterns are 50 times less expensive than traditional stained glass and can potentially improve thermal insulation, paving the way to energy efficiency and economic savings. Full article
Show Figures

Graphical abstract

15 pages, 1021 KiB  
Article
Fine Mapping of Quantitative Trait Loci (QTL) with Resistance to Common Scab in Diploid Potato and Development of Effective Molecular Markers
by Guoqiang Wu and Guanghui Jin
Agronomy 2025, 15(7), 1527; https://doi.org/10.3390/agronomy15071527 - 24 Jun 2025
Viewed by 465
Abstract
Potato common scab is one of the major diseases posing a threat to potato production on a global scale. No chemical agents have been found to effectively control the occurrence of this disease, and research on the identification of resistance genes and the [...] Read more.
Potato common scab is one of the major diseases posing a threat to potato production on a global scale. No chemical agents have been found to effectively control the occurrence of this disease, and research on the identification of resistance genes and the development of molecular markers remains relatively limited. In this study, a diploid potato variety H535, which exhibits resistance to the predominant pathogen Streptomyces scabies, was utilized as the male parent, whereas the susceptible diploid potato variety H012 served as the female parent. Building upon the resistance QTL intervals pinpointed through a genome-wide association study, two potential resistance loci were localized on chromosome 2 of the potato genome, spanning the regions between 38–38.6 Mb and 41.3–42.7 Mb. These intervals accounted for 18.03% of the total phenotypic variance and are presumed to be the primary QTLs underlying scab resistance. Building upon this foundation, we expanded the hybrid progeny population, conducted resistance assessments, selected individuals with extreme phenotypes, developed molecular markers, and conducted fine mapping of the resistance gene. A phenotypic evaluation of scab resistance was carried out using a pot-based inoculation test on 175 potato hybrid progenies to characterize the F1 generation population. Twenty lines exhibiting high resistance and thirty lines displaying high susceptibility were selected for investigations. Within the preliminary mapping interval on potato chromosome 2 (spanning 38–43 Mb), a total of 214 SSR (Simple Sequence Repeat) and 133 InDel (Insertion/Deletion) primer pairs were designed. Initial screening with parental lines identified 18 polymorphic markers (8 SSR and 10 InDel) that demonstrated stable segregation patterns. Validation using bulked segregant analysis revealed that 3 SSR markers (with 70–90% linkage) and 6 InDel markers (with 70–90% linkage) exhibited significant co-segregation with the resistance trait. A high-density genetic linkage map spanning 104.59 cm was constructed using 18 polymorphic markers, with an average marker spacing of 5.81 cm. Through linkage analysis, the resistance locus was precisely mapped to a 767 kb interval (41.33–42.09 Mb) on potato chromosome 2, flanked by SSR-2-9 and InDel-3-9. Within this refined interval, four candidate disease resistance genes were identified: RHC02H2G2507, RHC02H2G2515, PGSC0003DMG400030643, and PGSC0003DMG400030661. This study offers novel insights into the genetic architecture underlying scab resistance in potato. The high-resolution mapping results and characterized markers will facilitate marker-assisted selection (MAS) in disease resistance breeding programs, providing an efficient strategy for developing cultivars with enhanced resistance to Streptomyces scabies. Full article
(This article belongs to the Section Crop Breeding and Genetics)
Show Figures

Figure 1

22 pages, 2652 KiB  
Article
Resilience Evaluation of Post-Earthquake Functional Recovery for Precast Prestressed Concrete Buildings
by Hanxi Zhao and Noriyuki Takahashi
Appl. Sci. 2025, 15(13), 6994; https://doi.org/10.3390/app15136994 - 20 Jun 2025
Viewed by 268
Abstract
To improve the post-earthquake resilience evaluation of concrete buildings with various construction types, this study presents a generalized recovery-based framework that ext-ends the FEMA P-58 methodology. The proposed method introduces a dynamic repair scheduling approach that incorporates two key construction-related parameters: the prefabrication [...] Read more.
To improve the post-earthquake resilience evaluation of concrete buildings with various construction types, this study presents a generalized recovery-based framework that ext-ends the FEMA P-58 methodology. The proposed method introduces a dynamic repair scheduling approach that incorporates two key construction-related parameters: the prefabrication ratio and the types of prefabricated components. These inputs govern the allocation of parallel or sequential repairs, enabling a more accurate estimation of recovery trajectories and downtime. Functional loss over time is modeled through component-level repair sequencing combined with mobilization delays. A case study involving three four-story prestressed concrete frame buildings (cast-in situ, partially prefabricated, and fully precast prestressed concrete (PCaPC) with mortise–tenon (MT) connections) demonstrated the framework’s applicability. The results show that higher prefabrication levels lead to significantly shorter median repair times, with up to a 97-day reduction observed for the fully prefabricated frame. Additionally, recovery differences emerge even between buildings with the same prefabrication ratio but different component configurations. Compared to conventional assessment methods, the proposed framework avoids the overestimation of mobilization and repair duration, offering a practical tool for the design and performance assessment of resilient precast and hybrid concrete building systems. Full article
Show Figures

Figure 1

46 pages, 5055 KiB  
Review
Innovations and Applications in Lightweight Concrete: Review of Current Practices and Future Directions
by Diptikar Behera, Kuang-Yen Liu, Firmansyah Rachman and Aman Mola Worku
Buildings 2025, 15(12), 2113; https://doi.org/10.3390/buildings15122113 - 18 Jun 2025
Viewed by 1428
Abstract
Lightweight concrete (LWC) has emerged as a transformative material in sustainable and high-performance construction, driven by innovations in engineered lightweight aggregates, supplementary cementitious materials (SCMs), fiber reinforcements, and geopolymer binders. These advancements have enabled LWC to achieve compressive strengths surpassing 100 MPa while [...] Read more.
Lightweight concrete (LWC) has emerged as a transformative material in sustainable and high-performance construction, driven by innovations in engineered lightweight aggregates, supplementary cementitious materials (SCMs), fiber reinforcements, and geopolymer binders. These advancements have enabled LWC to achieve compressive strengths surpassing 100 MPa while reducing density by up to 30% compared to conventional concrete. Fiber incorporation enhances flexural strength and fracture toughness by 20–40%, concurrently mitigating brittleness and improving ductility. The synergistic interaction between SCMs and lightweight aggregates optimizes matrix densification and interfacial transition zones, curtailing shrinkage and bolstering durability against chemical and environmental aggressors. Integration of recycled and bio-based aggregates substantially diminishes the embodied carbon footprint by approximately 40%—aligning LWC with circular economy principles. Nanomaterials such as nano-silica and carbon nanotubes augment early-age strength development by 25% and refine microstructural integrity. Thermal performance is markedly enhanced through advanced lightweight fillers, including expanded polystyrene and aerogels, achieving up to a 50% reduction in thermal conductivity, thereby facilitating energy-efficient building envelopes. Although challenges persist in cost and workability, the convergence of hybrid fiber systems, optimized mix designs, and sophisticated multi-scale modeling is expanding the applicability of LWC across demanding structural, marine, and prefabricated contexts. In essence, LWC’s holistic development embodies a paradigm shift toward resilient, low-carbon infrastructure, cementing its role as a pivotal material in the evolution of next-generation sustainable construction. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

22 pages, 4653 KiB  
Article
Recycled Clay Brick Powder as a Dual-Function Additive: Mitigating the Alkali–Silica Reaction (ASR) and Enhancing Strength in Eco-Friendly Mortar with Hybrid Waste Glass and Clay Brick Aggregates
by Xue-Fei Chen, Xiu-Cheng Zhang and Ying Peng
Materials 2025, 18(12), 2838; https://doi.org/10.3390/ma18122838 - 16 Jun 2025
Viewed by 467
Abstract
The construction industry’s escalating environmental footprint, coupled with the underutilization of construction waste streams, necessitates innovative approaches to sustainable material design. This study investigates the dual functionality of recycled clay brick powder (RCBP) as both a supplementary cementitious material (SCM) and an alkali–silica [...] Read more.
The construction industry’s escalating environmental footprint, coupled with the underutilization of construction waste streams, necessitates innovative approaches to sustainable material design. This study investigates the dual functionality of recycled clay brick powder (RCBP) as both a supplementary cementitious material (SCM) and an alkali–silica reaction (ASR) inhibitor in hybrid mortar systems incorporating recycled glass (RG) and recycled clay brick (RCB) aggregates. Leveraging the pozzolanic activity of RCBP’s residual aluminosilicate phases, the research quantifies its influence on mortar durability and mechanical performance under varying substitution scenarios. Experimental findings reveal a nonlinear relationship between RCBP dosage and mortar properties. A 30% cement replacement with RCBP yields a 28-day activity index of 96.95%, confirming significant pozzolanic contributions. Critically, RCBP substitution ≥20% effectively mitigates ASRs induced by RG aggregates, with optimal suppression observed at 25% replacement. This threshold aligns with microstructural analyses showing RCBP’s Al3+ ions preferentially reacting with alkali hydroxides to form non-expansive gels, reducing pore solution pH and silica dissolution rates. Mechanical characterization reveals trade-offs between workability and strength development. Increasing RCBP substitution decreases mortar consistency and fluidity, which is more pronounced in RG-RCBS blends due to glass aggregates’ smooth texture. Compressively, both SS-RCBS and RG-RCBS mortars exhibit strength reduction with higher RCBP content, yet all specimens show accelerated compressive strength gain relative to flexural strength over curing time. Notably, 28-day water absorption increases with RCBP substitution, correlating with microstructural porosity modifications. These findings position recycled construction wastes and glass as valuable resources in circular economy frameworks, offering municipalities a pathway to meet recycled content mandates without sacrificing structural integrity. The study underscores the importance of waste synergy in advancing sustainable mortar technology, with implications for net-zero building practices and industrial waste valorization. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

Back to TopTop