Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (143)

Search Parameters:
Keywords = hybrid PV-diesel

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 6551 KiB  
Article
Optimization Study of the Electrical Microgrid for a Hybrid PV–Wind–Diesel–Storage System in an Island Environment
by Fahad Maoulida, Kassim Mohamed Aboudou, Rabah Djedjig and Mohammed El Ganaoui
Solar 2025, 5(3), 39; https://doi.org/10.3390/solar5030039 - 4 Aug 2025
Abstract
The Union of the Comoros, located in the Indian Ocean, faces persistent energy challenges due to its geographic isolation, heavy dependence on imported fossil fuels, and underdeveloped electricity infrastructure. This study investigates the techno-economic optimization of a hybrid microgrid designed to supply electricity [...] Read more.
The Union of the Comoros, located in the Indian Ocean, faces persistent energy challenges due to its geographic isolation, heavy dependence on imported fossil fuels, and underdeveloped electricity infrastructure. This study investigates the techno-economic optimization of a hybrid microgrid designed to supply electricity to a rural village in Grande Comore. The proposed system integrates photovoltaic (PV) panels, wind turbines, a diesel generator, and battery storage. Detailed modeling and simulation were conducted using HOMER Energy, accompanied by a sensitivity analysis on solar irradiance, wind speed, and diesel price. The results indicate that the optimal configuration consists solely of PV and battery storage, meeting 100% of the annual electricity demand with a competitive levelized cost of energy (LCOE) of 0.563 USD/kWh and zero greenhouse gas emissions. Solar PV contributes over 99% of the total energy production, while wind and diesel components remain unused under optimal conditions. Furthermore, the system generates a substantial energy surplus of 63.7%, which could be leveraged for community applications such as water pumping, public lighting, or future system expansion. This study highlights the technical viability, economic competitiveness, and environmental sustainability of 100% solar microgrids for non-interconnected island territories. The approach provides a practical and replicable decision-support framework for decentralized energy planning in remote and vulnerable regions. Full article
Show Figures

Figure 1

28 pages, 13030 KiB  
Article
Meta-Heuristic Optimization for Hybrid Renewable Energy System in Durgapur: Performance Comparison of GWO, TLBO, and MOPSO
by Sudip Chowdhury, Aashish Kumar Bohre and Akshay Kumar Saha
Sustainability 2025, 17(15), 6954; https://doi.org/10.3390/su17156954 - 31 Jul 2025
Viewed by 185
Abstract
This paper aims to find an efficient optimization algorithm to bring down the cost function without compromising the stability of the system and respect the operational constraints of the Hybrid Renewable Energy System. To accomplish this, MATLAB simulations were carried out using three [...] Read more.
This paper aims to find an efficient optimization algorithm to bring down the cost function without compromising the stability of the system and respect the operational constraints of the Hybrid Renewable Energy System. To accomplish this, MATLAB simulations were carried out using three optimization techniques: Grey Wolf Optimization (GWO), Teaching–Learning-Based Optimization (TLBO), and Multi-Objective Particle Swarm Optimization (MOPSO). The study compared their outcomes to identify which method yielded the most effective performance. The research included a statistical analysis to evaluate how consistently and stably each optimization method performed. The analysis revealed optimal values for the output power of photovoltaic systems (PVs), wind turbines (WTs), diesel generator capacity (DGs), and battery storage (BS). A one-year period was used to confirm the optimized configuration through the analysis of capital investment and fuel consumption. Among the three methods, GWO achieved the best fitness value of 0.24593 with an LPSP of 0.12528, indicating high system reliability. MOPSO exhibited the fastest convergence behaviour. TLBO yielded the lowest Net Present Cost (NPC) of 213,440 and a Cost of Energy (COE) of 1.91446/kW, though with a comparatively higher fitness value of 0.26628. The analysis suggests that GWO is suitable for applications requiring high reliability, TLBO is preferable for cost-sensitive solutions, and MOPSO is advantageous for obtaining quick, approximate results. Full article
(This article belongs to the Special Issue Energy Technology, Power Systems and Sustainability)
Show Figures

Figure 1

10 pages, 1398 KiB  
Proceeding Paper
Optimization of Grid-Connected Hybrid Microgrid System with EV Charging Using Pelican Optimization Algorithm
by Anirban Maity, Sajjan Kumar and Pulok Pattanayak
Eng. Proc. 2025, 93(1), 13; https://doi.org/10.3390/engproc2025093013 - 2 Jul 2025
Viewed by 221
Abstract
This research focuses on optimizing a grid-connected hybrid microgrid system (HMGS) for The Neotia University (TNU), West Bengal, India, utilizing renewable energy sources to improve sustainability and energy efficiency. The system integrates solar panels, wind turbines, and an existing diesel generator (DG) to [...] Read more.
This research focuses on optimizing a grid-connected hybrid microgrid system (HMGS) for The Neotia University (TNU), West Bengal, India, utilizing renewable energy sources to improve sustainability and energy efficiency. The system integrates solar panels, wind turbines, and an existing diesel generator (DG) to meet campus energy demands, including electric vehicle (EV) charging facilities for residents and staff. The pelican optimization algorithm (POA) is employed to determine the optimal capacity of PV and wind turbine units for reducing energy costs, enhancing reliability, and minimizing carbon emissions. The results reveal a substantial decrease in the cost of energy (COE) from INR 11.74/kWh to INR 5.20/kWh. Full article
Show Figures

Figure 1

18 pages, 3359 KiB  
Article
Integrating Hybrid Energy Solutions into Expressway Infrastructure
by Muqing Yao, Zunbiao Wang, Song Zhang, Zhufa Chu, Yufei Zhang, Shuo Zhang and Wenkai Han
Energies 2025, 18(12), 3186; https://doi.org/10.3390/en18123186 - 18 Jun 2025
Viewed by 362
Abstract
To explore the feasibility of renewable hybrid energy systems for expressway infrastructure, this study proposes a scenario-based design methodology integrating solar, wind, and hydropower resources within the expressway corridor. A case study was conducted on a highway service area located in southern China, [...] Read more.
To explore the feasibility of renewable hybrid energy systems for expressway infrastructure, this study proposes a scenario-based design methodology integrating solar, wind, and hydropower resources within the expressway corridor. A case study was conducted on a highway service area located in southern China, where a solar/wind/hydro hybrid energy system was developed based on the proposed approach. Using the HOMER Pro 3.14 software platform, the system was simulated and optimized under off-grid conditions, and a sensitivity analysis was conducted to evaluate performance variability. The results demonstrate that the strategic integration of corridor-based natural resources—solar irradiance, wind energy, and hydrodynamic potential—enables the construction of a technically and economically viable hybrid energy system. The system includes 382 kW of PV, 210 kW of wind, 80 kW of hydrokinetic power, a 500 kW diesel generator, and 180 kWh of battery storage, forming a hybrid configuration for a stable and reliable energy supply. The optimized configuration can supply up to 1,095,920 kWh of electricity annually at a minimum levelized cost of energy of USD 0.22/kWh. This system reduces CO2 emissions by 23.2 tons/year and NOx emissions by 23 kg/year. demonstrating strong environmental performance and long-term sustainability potential. Full article
(This article belongs to the Topic Clean Energy Technologies and Assessment, 2nd Edition)
Show Figures

Figure 1

34 pages, 4261 KiB  
Article
Two-Stage Optimization on Vessel Routing and Hybrid Energy Output for Marine Debris Collection
by Li Chen, Gang Duan, Jie Cao and Jinhua Wang
Sustainability 2025, 17(8), 3425; https://doi.org/10.3390/su17083425 - 11 Apr 2025
Viewed by 357
Abstract
The harm of marine debris (MD) to the environment and human beings has been paid more and more attention. At present, the most effective way to collect macro-MD floating on the sea is to send vessels. We employ vessels equipped with a hybrid [...] Read more.
The harm of marine debris (MD) to the environment and human beings has been paid more and more attention. At present, the most effective way to collect macro-MD floating on the sea is to send vessels. We employ vessels equipped with a hybrid energy system (HES) composed of photovoltaic (PV), battery and diesel to carry out MD cleanup. We propose a two-stage optimization approach for vessel routing and energy management strategy. In the first stage, the vessel routing problem with a drifting time window is modeled to minimize the vessel travel time considering continuous speed. The drifting time window means that multiple time windows are set on the MD trajectory, which is used to depict its dynamic nature. An adaptive large neighborhood search algorithm considering an elitist strategy coupled with speed optimization is designed to solve this problem. In the second stage, a mixed integer linear programming model for energy management strategy is established to minimize the total cost, including the power generation cost of diesel and PV, the battery charge, and discharge and carbon tax costs. The model takes the power load balance, the power limit of each part of the hybrid energy system and the battery charge and discharge state as constraints. The correctness of the proposed models and the effectiveness of the proposed algorithm are verified by a numerical example. The results not only show the advantages of hybrid energy vessels in energy saving and emission reduction but also show that the drifting time window can provide a rich and effective route selection solution. Some suggestions for rational utilization of hybrid energy vessels with long and short trips are put forward. Full article
Show Figures

Figure 1

35 pages, 5368 KiB  
Article
Systematic Optimize and Cost-Effective Design of a 100% Renewable Microgrid Hybrid System for Sustainable Rural Electrification in Khlong Ruea, Thailand
by Montri Ngao-det, Jutturit Thongpron, Anon Namin, Nopporn Patcharaprakiti, Worrajak Muangjai and Teerasak Somsak
Energies 2025, 18(7), 1628; https://doi.org/10.3390/en18071628 - 24 Mar 2025
Cited by 1 | Viewed by 1065
Abstract
This study presents a systematic approach to designing and optimizing a 100% renewable hybrid microgrid system for sustainable rural electrification in Khlong Ruea, Thailand, using HOMER Pro software (Version 3.15.3). The proposed system integrates photovoltaic (PV) panels (20 kW), pico hydro (9.42 kW), [...] Read more.
This study presents a systematic approach to designing and optimizing a 100% renewable hybrid microgrid system for sustainable rural electrification in Khlong Ruea, Thailand, using HOMER Pro software (Version 3.15.3). The proposed system integrates photovoltaic (PV) panels (20 kW), pico hydro (9.42 kW), and lithium-ion battery storage (264 kWh) to provide a reliable, cost-effective, and environmentally sustainable energy solution for a remote village of 306 residents. The methodology encompasses site-specific resource assessment (solar irradiance, hydro flow), load demand analysis, and techno-economic optimization, minimizing the net present cost (NPC) and cost of energy (COE) while achieving zero emissions. Simulation results indicate the optimal configuration (S1) achieves an NPC of USD 362,687 and COE of USD 0.19/kWh, with a 100% renewable fraction, outperforming the current diesel–hydro system (NPC USD 3,400,000, COE USD 1.85/kWh, 61.4% renewable). Sensitivity analysis confirms robustness against load increases (1–5%), though battery capacity and costs rise proportionally. Compared to regional microgrids, the proposed system excels in terms of sustainability and scalability, leveraging local resources effectively. The lifecycle assessment highlights the battery’s embodied emissions (13,200–39,600 kg CO2e), underscoring the need for recycling to enhance long-term sustainability. Aligned with Thailand’s AEDP 2018–2037 and net-zero goals, this model offers a replicable framework for rural electrification in Southeast Asia. Stakeholder engagement, including community input and EGAT funding, ensures practical implementation. The study demonstrates that fully renewable microgrids are technically feasible and economically viable, providing a blueprint for sustainable energy transitions globally. Full article
(This article belongs to the Section A: Sustainable Energy)
Show Figures

Figure 1

28 pages, 4927 KiB  
Article
Hybrid Genetic Algorithm-Based Optimal Sizing of a PV–Wind–Diesel–Battery Microgrid: A Case Study for the ICT Center, Ethiopia
by Adnan Kedir Jarso, Ganggyoo Jin and Jongkap Ahn
Mathematics 2025, 13(6), 985; https://doi.org/10.3390/math13060985 - 17 Mar 2025
Cited by 1 | Viewed by 993
Abstract
This study presents analysis and optimization of a standalone hybrid renewable energy system (HRES) for Adama Science and Technology University’s ICT center in Ethiopia. The proposed hybrid system combines photovoltaic panels, wind turbines, a battery bank, and a diesel generator to ensure reliable [...] Read more.
This study presents analysis and optimization of a standalone hybrid renewable energy system (HRES) for Adama Science and Technology University’s ICT center in Ethiopia. The proposed hybrid system combines photovoltaic panels, wind turbines, a battery bank, and a diesel generator to ensure reliable and sustainable power. The objectives are to minimize the system’s total annualized cost and loss of power supply probability, while energy reliability is maintained. To optimize the component sizing and energy management strategy of the HRES, we formulated a mathematical model that incorporates the variability of renewable energy and load demand. This optimization problem is solved using a hybrid genetic algorithm (HGA). Simulation results indicate that the HGA yielded the best solution, characterized by the levelized cost of energy of USD 0.2546/kWh, the loss of power supply probability of 0.58%, and a convergence time of 197.2889 s. Full article
(This article belongs to the Special Issue Dynamic Modeling and Simulation for Control Systems, 3rd Edition)
Show Figures

Figure 1

22 pages, 7199 KiB  
Article
Deep Reinforcement Learning-Based Energy Management Strategy for Green Ships Considering Photovoltaic Uncertainty
by Yunxiang Zhao, Shuli Wen, Qiang Zhao, Bing Zhang and Yuqing Huang
J. Mar. Sci. Eng. 2025, 13(3), 565; https://doi.org/10.3390/jmse13030565 - 14 Mar 2025
Viewed by 874
Abstract
Owing to the global concern regarding fossil energy consumption and carbon emissions, the power supply for traditional diesel-driven ships is being replaced by low-carbon power sources, which include hydrogen energy generation and photovoltaic (PV) power generation. However, the uncertainty of shipboard PV power [...] Read more.
Owing to the global concern regarding fossil energy consumption and carbon emissions, the power supply for traditional diesel-driven ships is being replaced by low-carbon power sources, which include hydrogen energy generation and photovoltaic (PV) power generation. However, the uncertainty of shipboard PV power generation due to weather changes and ship motion variations has become an essential factor restricting the energy management of all-electric ships. In this paper, a deep reinforcement learning-based optimization algorithm is proposed for a green ship energy management system (EMS) coupled with hydrogen fuel cells (HFCs), lithium batteries, PV generation, an electric power propulsion system, and service loads. The focus of this study is reducing the total operation cost and improving energy efficiency by jointly optimizing power generation and voyage scheduling, considering shipboard PV uncertainty. To verify the effectiveness of the proposed method, real-world data for a hybrid hydrogen- and PV-driven ship are selected for conducting case studies under various sailing conditions. The numerical results demonstrate that, compared to those obtained with the Double DQN algorithm, the PPO algorithm, and the DDPG algorithm without considering the PV system, the proposed DDPG algorithm reduces the total economic cost by 1.36%, 0.96%, and 4.42%, while effectively allocating power between the hydrogen fuel cell and the lithium battery and considering the uncertainty of on-board PV generation. The proposed approach can reduce energy waste and enhance economic benefits, sustainability, and green energy utilization while satisfying the energy demand for all-electric ships. Full article
(This article belongs to the Special Issue Advanced Technologies for New (Clean) Energy Ships—2nd Edition)
Show Figures

Figure 1

45 pages, 3618 KiB  
Review
Prospects of Solar Energy in the Context of Greening Maritime Transport
by Olga Petrychenko, Maksym Levinskyi, Sergey Goolak and Vaidas Lukoševičius
Sustainability 2025, 17(5), 2141; https://doi.org/10.3390/su17052141 - 1 Mar 2025
Cited by 7 | Viewed by 2208
Abstract
The aim of this article is to examine existing technologies for the use of electrical energy and to develop proposals for their improvement on maritime vessels. As a criterion for evaluating the effectiveness of alternative energy sources on ships, factors such as greenhouse [...] Read more.
The aim of this article is to examine existing technologies for the use of electrical energy and to develop proposals for their improvement on maritime vessels. As a criterion for evaluating the effectiveness of alternative energy sources on ships, factors such as greenhouse gas emissions levels, production and transportation characteristics, onboard storage conditions, and technoeconomic indicators have been proposed. The analysis of fuel types reveals that hydrogen has zero greenhouse gas emissions. However, transportation and storage issues, along with the high investment required for implementation, pose barriers to the widespread use of hydrogen as fuel for maritime vessels. This article demonstrates that solar energy can serve as an alternative to gases and liquid fuels in maritime transport. The technologies and challenges in utilizing solar energy for shipping are analyzed, trends in solar energy for maritime transport are discussed, and future research directions for the use of solar energy in the maritime sector are proposed. The most significant findings include the identification of future research directions in the application of solar energy in the maritime sector, including the adaptation of concentrated solar power (CSP) systems for maritime applications; the development of materials and designs for solar panels specifically tailored to marine conditions; the development of methods for assessing the long-term economic benefits of using solar energy on vessels; and the creation of regulatory frameworks and international standards for the use of solar energy on ships. Furthermore, for hybrid photovoltaic and diesel power systems, promising research directions could include efforts to implement direct torque control systems instead of field-orientated control systems, as well as working on compensating higher harmonics in the phase current spectra of asynchronous motors. Full article
(This article belongs to the Special Issue Transportation and Infrastructure for Sustainability)
Show Figures

Figure 1

34 pages, 6174 KiB  
Article
Optimization of Size and Operation of Stand-Alone Renewable-Based Systems with Diesel and Hybrid Pumped Hydro Storage–Battery Storage Considering Uncertainties
by Rodolfo Dufo-López and Juan M. Lujano-Rojas
Batteries 2025, 11(2), 70; https://doi.org/10.3390/batteries11020070 - 8 Feb 2025
Cited by 1 | Viewed by 831
Abstract
Currently, the electrical supply in stand-alone systems is usually composed of renewable sources with fossil-fuel generators and battery storage. This study shows a novel model for the metaheuristic–stochastic optimization (minimization of the net present cost, and NPC) of sizing and energy management for [...] Read more.
Currently, the electrical supply in stand-alone systems is usually composed of renewable sources with fossil-fuel generators and battery storage. This study shows a novel model for the metaheuristic–stochastic optimization (minimization of the net present cost, and NPC) of sizing and energy management for stand-alone photovoltaic (PV)–wind–diesel systems with hybrid pumped hydro storage (PHS)–battery storage systems. The model is implemented in C++ programming language. To optimize operations—thus reducing PHS losses and increasing battery lifetimes—optimal energy management can optimize the power limits of using the PHS or battery to supply or store energy. The probabilistic approach considers the variability of wind speed, irradiation, temperature, load, and diesel fuel price inflation. The variable efficiencies of the components and losses and advanced models for battery degradation are considered. This methodology was applied to Graciosa Island (Portugal), showing that, compared with the current system, the optimal system (with a much higher renewable power and a hybrid PHS–battery storage) can reduce the NPC by half, reduce life cycle emissions to 14%, expand renewable penetration to 96%, and reduce the reserve capacity shortage to zero. Full article
(This article belongs to the Section Battery Modelling, Simulation, Management and Application)
Show Figures

Graphical abstract

22 pages, 3142 KiB  
Article
Performance Improvement of a Standalone Hybrid Renewable Energy System Using a Bi-Level Predictive Optimization Technique
by Ayman Al-Quraan, Bashar Al-Mharat, Ahmed Koran and Ashraf Ghassab Radaideh
Sustainability 2025, 17(2), 725; https://doi.org/10.3390/su17020725 - 17 Jan 2025
Cited by 2 | Viewed by 937
Abstract
A standalone hybrid renewable energy system (HRES) that combines different types of renewable energy sources and storages offers a sustainable energy solution by reducing reliance on fossil fuels and minimizing greenhouse gas emissions. In this paper, a standalone hybrid renewable energy system (HRES) [...] Read more.
A standalone hybrid renewable energy system (HRES) that combines different types of renewable energy sources and storages offers a sustainable energy solution by reducing reliance on fossil fuels and minimizing greenhouse gas emissions. In this paper, a standalone hybrid renewable energy system (HRES) involving wind turbines, photovoltaic (PV) modules, diesel generators (DG), and battery banks is proposed. For this purpose, it is necessary to size and run the proposed system for feeding a residential load satisfactorily. For two typical winter and summer weeks, weather historical data, including irradiance, temperature, wind speed, and load profiles, are used as input data. The overall optimization framework is formulated as a bi-level mixed-integer nonlinear programming (BMINLP) problem. The upper-level part represents the sizing sub-problem that is solved based on economic and environmental multi-objectives. The lower-level part represents the energy management strategy (EMS) sub-problem. The EMS task utilizes the model predictive control (MPC) approach to achieve optimal technoeconomic operational performance. By the definition of BMINLP, the EMS sub-problem is defined within the constraints of the sizing sub-problem. The MATLAB R2023a environment is employed to execute and extract the results of the entire problem. The global optimization solver “ga” is utilized to implement the upper sub-problem while the “intlinprg” solver solves the lower sub-problem. The evaluation metrics used in this study are the operating, maintenance, and investment costs, storage unit degradation, and the number of CO2 emissions. Full article
Show Figures

Figure 1

15 pages, 3994 KiB  
Proceeding Paper
Novel Sustainable Optimal Marine Microgrid Active-Power Management and Control Including Hybrid Power Generation and Multiple-Energy Storage Devices
by Aimad Boudoucha, Nour El Yakine Kouba, Sara Touhant and Yasmine Saidoune
Eng. Proc. 2024, 67(1), 78; https://doi.org/10.3390/engproc2024067078 - 26 Nov 2024
Viewed by 690
Abstract
This paper deals with the design of an advanced optimal strategy to enhance power management and frequency control in marine microgrids. The investigated system incorporates a mix of renewable energy sources coordinated with hybrid energy storage devices. A new robust optimal PIDN controller [...] Read more.
This paper deals with the design of an advanced optimal strategy to enhance power management and frequency control in marine microgrids. The investigated system incorporates a mix of renewable energy sources coordinated with hybrid energy storage devices. A new robust optimal PIDN controller is employed to tackle the intermittency challenges associated with wind and marine power generation, ensuring precise frequency control via time-domain simulations. A multiple-energy storage system, which includes SMES/batteries/ultra-capacitors (UCs) and fuel cells (FCs), was implemented to manage frequency variations and optimize the charge/discharge cycles of batteries. To further mitigate power fluctuations and extend the life of batteries, a low-pass filter was applied, inspired by optimization techniques for hybrid storage systems. A notable innovation of this study is the introduction of an offshore photovoltaic (PV) array into the system, enhancing the diversity and capacity for renewable energy production in the microgrid. A comprehensive comparative study was conducted, exploring a range of scenarios: with and without energy storage, with the integration of PV energy, excluding the use of diesel, and implementing battery filtering. This approach allowed for an evaluation of the impact of each configuration on the overall performance of the marine microgrid, underscoring significant enhancements in sustainability, efficiency, and a reduction in the dependence on fossil fuels. Preliminary results point to a considerable improvement in the energy management of isolated marine environments, showcasing the potential of this strategy for future marine microgrid applications. This research makes a significant contribution to the advancement of renewable energy management systems, presenting a viable and sustainable option for powering marine microgrids. Full article
(This article belongs to the Proceedings of The 3rd International Electronic Conference on Processes)
Show Figures

Figure 1

19 pages, 6276 KiB  
Article
Hybrid Solar PV–Agro-Waste-Driven Combined Heat and Power Energy System as Feasible Energy Source for Schools in Sub-Saharan Africa
by Ogheneruona Endurance Diemuodeke, David Vera, Mohammed Moore Ojapah, Chinedum Oscar Nwachukwu, Harold U. Nwosu, Daniel O. Aikhuele, Joseph C. Ofodu and Banasco Seidu Nuhu
Biomass 2024, 4(4), 1200-1218; https://doi.org/10.3390/biomass4040067 - 19 Nov 2024
Cited by 1 | Viewed by 1981
Abstract
Poor access to electricity in rural communities has been linked to a poor educational system, as electricity is essential for supporting laboratories, technical practice, and long study hours for students. Therefore, this work presents the techno-economic analysis of a hybrid solar PV–agro-wastes (syngas) [...] Read more.
Poor access to electricity in rural communities has been linked to a poor educational system, as electricity is essential for supporting laboratories, technical practice, and long study hours for students. Therefore, this work presents the techno-economic analysis of a hybrid solar PV–agro-wastes (syngas) energy system for electricity, heat, and cooling generation to improve energy access in rural schools. The system is located in Ghana at Tuna (lat. 9°29′18.28″ N and long. 2°25′51.02″ W) and serves a secondary school for enhanced quality education. The system relies on agro-waste (gasifier-generator) and sunlight (solar PV), with a battery energy storage system, to meet the school’s energy demand. The study employs HOMER Pro Version 3.16.2 software to comprehensively analyze technical, economic, and environmental aspects. The system can generate 221,621 kWh of electricity (at a unit cost of electricity of 0.295 EUR/kWh) and 110,896 kWh of thermal energy yearly. The cost of electricity from the proposed system is cheaper than the cost of electricity from an equivalent diesel generator at 0.380 EUR/kWh. The thermal energy can meet the heating demand of the school in addition to powering a vapor absorption chiller. The system is environmentally friendly, with the capacity to sink 0.526 kg of CO2 yearly. Government policies that moderate interest rates for bioenergy/solar PV systems and social solution on feedstock pricing will favor the economic sustainability of the proposed system. The system will address the energy access challenge (SDG 7), enhance the quality of education (SDG 4), and contribute to climate mitigation through carbon sequestration (SDG 13). Full article
Show Figures

Figure 1

34 pages, 16736 KiB  
Article
Optimized Energy Management Strategy for an Autonomous DC Microgrid Integrating PV/Wind/Battery/Diesel-Based Hybrid PSO-GA-LADRC Through SAPF
by AL-Wesabi Ibrahim, Jiazhu Xu, Abdullrahman A. Al-Shamma’a, Hassan M. Hussein Farh, Imad Aboudrar, Youssef Oubail, Fahad Alaql and Walied Alfraidi
Technologies 2024, 12(11), 226; https://doi.org/10.3390/technologies12110226 - 11 Nov 2024
Cited by 3 | Viewed by 2837
Abstract
This study focuses on microgrid systems incorporating hybrid renewable energy sources (HRESs) with battery energy storage (BES), both essential for ensuring reliable and consistent operation in off-grid standalone systems. The proposed system includes solar energy, a wind energy source with a synchronous turbine, [...] Read more.
This study focuses on microgrid systems incorporating hybrid renewable energy sources (HRESs) with battery energy storage (BES), both essential for ensuring reliable and consistent operation in off-grid standalone systems. The proposed system includes solar energy, a wind energy source with a synchronous turbine, and BES. Hybrid particle swarm optimizer (PSO) and a genetic algorithm (GA) combined with active disturbance rejection control (ADRC) (PSO-GA-ADRC) are developed to regulate both the frequency and amplitude of the AC bus voltage via a load-side converter (LSC) under various operating conditions. This approach further enables efficient management of accessible generation and general consumption through a bidirectional battery-side converter (BSC). Additionally, the proposed method also enhances power quality across the AC link via mentoring the photovoltaic (PV) inverter to function as shunt active power filter (SAPF), providing the desired harmonic-current element to nonlinear local loads as well. Equipped with an extended state observer (ESO), the hybrid PSO-GA-ADRC provides efficient estimation of and compensation for disturbances such as modeling errors and parameter fluctuations, providing a stable control solution for interior voltage and current control loops. The positive results from hardware-in-the-loop (HIL) experimental results confirm the effectiveness and robustness of this control strategy in maintaining stable voltage and current in real-world scenarios. Full article
Show Figures

Figure 1

49 pages, 5903 KiB  
Systematic Review
Techno-Economic Analysis of Hybrid Renewable Energy Systems for Power Interruptions: A Systematic Review
by Bonginkosi A. Thango and Lawrence Obokoh
Eng 2024, 5(3), 2108-2156; https://doi.org/10.3390/eng5030112 - 2 Sep 2024
Cited by 4 | Viewed by 5096
Abstract
The challenge of providing reliable electricity during power interruptions, especially in rural and remote regions, has prompted the exploration of Hybrid Renewable Energy Systems (HRESs). This systematic review employs the PRISMA framework to conduct a comparative analysis of HRES configurations, specifically those integrating [...] Read more.
The challenge of providing reliable electricity during power interruptions, especially in rural and remote regions, has prompted the exploration of Hybrid Renewable Energy Systems (HRESs). This systematic review employs the PRISMA framework to conduct a comparative analysis of HRES configurations, specifically those integrating rooftop solar photovoltaic (PV), diesel generators (DGs), converters, and battery energy storage systems (BESSs). This review assesses the techno-economic performance of these systems in various countries, highlighting the cost efficiency, reliability, and environmental impact compared to traditional single-resource systems. The analysis reveals that HRESs offer significant advantages in managing energy supply during power interruptions, particularly in regions with high solar potential but unreliable grid access. A comparative analysis with other countries demonstrates that while HRES configurations are tailored to local conditions, the integration of solar PV with diesel generators is a consistently effective strategy across different contexts. This review provides essential insights for policymakers and stakeholders, facilitating the optimization of energy solutions tailored to regional needs. Full article
(This article belongs to the Special Issue Green Engineering for Sustainable Development 2024)
Show Figures

Figure 1

Back to TopTop