Hybrid Solar PV–Agro-Waste-Driven Combined Heat and Power Energy System as Feasible Energy Source for Schools in Sub-Saharan Africa
Abstract
:1. Introduction
2. Problem Formulation and Solution Methods
2.1. Study Location
2.2. System Description
2.3. Solution Formulation
2.3.1. Solar PV Power
2.3.2. Gasifier
Gas Engine
2.3.3. Vapor Absorption Refrigeration System (VARS)
2.3.4. HOMER Analysis
3. Energy Demand and Resource Assessments
3.1. Energy Demands
3.2. Resource Assessments
3.3. Cost Analysis
4. Results and Discussion
4.1. Simulations
4.1.1. Electrical Energy Consumption
4.1.2. Thermal Energy Consumption
4.1.3. Solar PV Energy Production
4.1.4. Syngas Generator Energy Generation
4.1.5. Lithium-Ion Battery Storage
4.2. Sensitivity Analysis
5. Conclusions
- (i)
- The potential for using agro-waste to energy technology combined with solar PV to provide electricity, heat, and cooling, especially in off-grid rural agrarian communities.
- (ii)
- The potential to improve the quality of education in rural community schools by improving laboratories, technical practice, and long study hours for students.
- (iii)
- The potential to provide negative carbon emission energy conversion systems.
- (iv)
- A hybrid energy system with the potential to positively drive SDG 4 (quality education), SDG 7 (affordable and clean energy), and SDG 13 (climate action).
- (v)
- Techno-economic evidence to support policymakers in formulating public policies that balance energy cost and environmental sustainability.
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ritchie, H.; Roser, M. Energy. Our World in Data 2022. Available online: https://ourworldindata.org/energy-access (accessed on 25 August 2023).
- Ntsiful, E.; Dramani, J.B.; Adusah-Poku, F.; Frimpong, P.B. Effect of electricity access on the value of women’s labour and time in Ghana. World Dev. Perspect. 2024, 35, 100614. [Google Scholar] [CrossRef]
- United Nations. Sustainable Development Goal 7: Ensure Access to Affordable Reliable Sustainable and Modern Energy. 2023. Available online: https://www.un.org/sustainabledevelopment/energy/ (accessed on 25 August 2023).
- Atuahene, S.A.; Sheng, Q.X. Powering Ghana’s future: Unraveling the dynamics of electricity generation and the path to sustainable energy. Environ. Sci. Eur. 2023, 35, 25. [Google Scholar] [CrossRef]
- Peprah, F.; Gyamfi, S.; Effah-Donyina, E.; Amo-Boateng, M. The pathway for electricity prosumption in Ghana. Energy Policy 2023, 177, 113582. [Google Scholar] [CrossRef]
- Kumi, E.N. The Electricity Situation in Ghana: Challenges and Opportunities; Center for Global Development: Washington, DC, USA, 2017; p. 30. [Google Scholar]
- Mulugetta, Y.; Sokona, Y.; Trotter, P.A.; Fankhauser, S.; Omukuti, J.; Croxatto, L.S.; Steffen, B.; Tesfamichael, M.; Abraham, E.; Adam, J.-P.; et al. Africa needs context-relevant evidence to shape its clean energy future. Nat. Energy 2022, 7, 1015–1022. [Google Scholar] [CrossRef]
- Nduhuura, P.; Garschagen, M.; Zerga, A. Impacts of electricity outages in urban households in developing countries: A case of Accra, Ghana. Energies 2021, 14, 3676. [Google Scholar] [CrossRef]
- Anlimachie, M.A.; Avoada, C. Socio-economic impact of closing the rural-urban gap in pre-tertiary education in Ghana: Context and strategies. Int. J. Educ. Dev. 2020, 77, 102236. [Google Scholar] [CrossRef]
- Kuamoah, C. Renewable energy deployment in Ghana: The hype, hope and reality. Insight Afr. 2020, 12, 45–64. [Google Scholar] [CrossRef]
- Gyimah, J.; Liu, Y.; Nyantakyi, G.; Yao, X. The effect of mini-grid rural electrification on urbanization: Evidence from the pilot mini-grid systems in Ghana. Rev. Dev. Econ. 2024, 28, 1108–1130. [Google Scholar] [CrossRef]
- Sovacool, B.; Vera, I. Electricity and education: The benefits, barriers, and recommendations for achieving the electrification of primary and secondary schools. In Energy and Education; 2014; pp. 1–36. Available online: https://sustainabledevelopment.un.org/content/documents/1608Electricity%20and%20Education.pdf (accessed on 14 August 2023).
- Ahali, A.Y. Improving electricity access in Ghana challenges and the way forward. Int. J. Energy Power Eng. 2016, 5, 9–17. [Google Scholar] [CrossRef]
- Cobbold, E.Y.; Owusu, D.; Bathuure, I. An assessment of Ghana’s electricity sector, challenges, and remedies. Int. J. Multidiscip. Res. Dev. 2019, 6, 242–247. [Google Scholar]
- Sensix. Effects of Lack of Energy on Education. 2022. Available online: https://sensix.io/blog/effects-of-lack-of-energy-on-education (accessed on 26 August 2023).
- Knoth, G. A Classroom’s Worst Nighmare? Energy Poverty. 2015. Available online: https://www.one.org/us/blog/a-classrooms-worst-nightmare-energy-poverty/ (accessed on 26 August 2023).
- Jones, L.E.; Akyeampong, E.K.; Kutarna, C.; Jasieniak, J.J. Energy for Dducation Is Vital for Developing Economies. 2018. Available online: https://www.brinknews.com/energy-for-education-is-vital-for-developing-economies/ (accessed on 25 August 2023).
- Nyasapoh, M.A.; Elorm, M.D.; Derkyi, N.S.A. The role of renewable energies in sustainable development of Ghana. Sci. Afr. 2022, 16, e01199. [Google Scholar] [CrossRef]
- Asumadu-Sarkodie, S.; Owusu, P.A. A review of Ghana’s solar energy potential. Aims Energy 2016, 4, 675–696. [Google Scholar] [CrossRef]
- Ibrahim, I.D.; Hamam, Y.; Alayli, Y.; Jamiru, T.; Sadiku, E.; Kupolati, W.; Ndambuki, J.; Eze, A. A review on Africa energy supply through renewable energy production: Nigeria, Cameroon, Ghana and South Africa as a case study. Energy Strategy Rev. 2021, 38, 100740. [Google Scholar] [CrossRef]
- Yang, L.; Danwana, S.B.; Yassaanah, I.F.-L. An empirical study of renewable energy technology acceptance in Ghana using an extended technology acceptance model. Sustainability 2021, 13, 10791. [Google Scholar] [CrossRef]
- United States Energy Information Administration. Solar Explained: Photovoltaics and Electricity. Basics 2023. Available online: https://www.eia.gov/energyexplained/solar/photovoltaics-and-electricity.php (accessed on 26 August 2023).
- International Energy Agency. Solar PV. 2022. Available online: https://www.iea.org/energy-system/renewables/solar-pv (accessed on 26 August 2023).
- Amoako, S.; Andoh, F.K.; Asmah, E.E. Structural change and energy use in Ghana’s manufacturing and agriculture sectors. Energy Rep. 2022, 8, 11112–11121. [Google Scholar] [CrossRef]
- Seglah, P.A.; Neglo, K.A.W.; Wang, H.; Cudjoe, D.; Kemausuor, F.; Gao, C.; Bi, Y.; Wang, Y. Electricity generation in Ghana: Evaluation of crop residues and the associated greenhouse gas mitigation potential. J. Clean. Prod. 2023, 395, 136340. [Google Scholar] [CrossRef]
- Shukla, I. Potential of renewable agricultural wastes in the smart and sustainable steelmaking process. J. Clean. Prod. 2022, 370, 133422. [Google Scholar] [CrossRef]
- Majeed, Y.; Khan, M.U.; Waseem, M.; Zahid, U.; Mahmood, F.; Majeed, F.; Sultan, M.; Raza, A. Renewable energy as an alternative source for energy management in agriculture. Energy Rep. 2023, 10, 344–359. [Google Scholar] [CrossRef]
- Seglah, P.A.; Wang, Y.; Wang, H.; Gao, C.; Bi, Y. Sustainable biofuel production from animal manure and crop residues in Ghana. Energies 2022, 15, 5800. [Google Scholar] [CrossRef]
- Awafo, E.A.; Akolgo, G.A.; Awaafo, A. Assessment of agricultural residue potential for electrification of off-grid communities in the Sawla-Tuna-Kalba District of Ghana. Energy Sustain. Soc. 2024, 14, 50. [Google Scholar] [CrossRef]
- Nelson, N.; Darkwa, J.; Calautit, J. Prospects of bioenergy production for sustainable rural development in Ghana. J. Sustain. Bioenergy Syst. 2021, 11, 227–259. [Google Scholar] [CrossRef]
- Kabeyi, M.J.B.; Olanrewaju, O.A. Biogas production and applications in the sustainable energy transition. J. Energy 2022, 2022, 1–43. [Google Scholar] [CrossRef]
- Diemuodeke, E.O.; Owebor, K.; Nwachukwu, C.O.; Ukoba, M.O. Agricultural Waste-Derived Management for Bioenergy: A Paradigm Shift in the Waste Perceptions. In Handbook of Waste Biorefinery: Circular Economy of Renewable Energy; Jacob-Lopes, E., Zepka, L.Q., Deprá, M.C., Eds.; Springer: Berlin/Heidelberg, Germany, 2022; pp. 345–367. [Google Scholar]
- Li, L.; Wang, X. Design and operation of hybrid renewable energy systems: Current status and future perspectives. Curr. Opin. Chem. Eng. 2021, 31, 100669. [Google Scholar] [CrossRef]
- Tetteh, N.; Kebir, N. Determinants of Rooftop Solar PV adoption among urban households in Ghana. Renew. Energy Focus 2022, 43, 317–328. [Google Scholar] [CrossRef]
- Lambert, T.; Gilman, P.; Lilienthal, P. Micropower system modeling with HOMER. Integr. Altern. Sources Energy 2006, 1, 379–385. [Google Scholar]
- Olatomiwa, L. Optimal configuration assessments of hybrid renewable power supply for rural healthcare facilities. Energy Rep. 2016, 2, 141–146. [Google Scholar] [CrossRef]
- Duffie, J.A.; Beckman, W.A. Solar Engineering of Thermal Processes, 4th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Bhattacharya, T.; Chakraborty, A.K.; Pal, K. Effects of ambient temperature and wind speed on performance of monocrystalline solar photovoltaic module in Tripura, India. J. Sol. Energy 2014, 2014, 817078. [Google Scholar] [CrossRef]
- Kaldellis, J.K.; Kapsali, M.; Kavadias, K.A. Temperature and wind speed impact on the efficiency of PV installations. Experience obtained from outdoor measurements in Greece. Renew. Energy 2014, 66, 612–624. [Google Scholar] [CrossRef]
- Arafat, H.A.; Jijakli, K. Modeling and comparative assessment of municipal solid waste gasification for energy production. Waste Manag. 2013, 33, 1704–1713. [Google Scholar] [CrossRef]
- Allesina, G.; Pedrazzi, S.; Guidetti, L.; Tartarini, P. Modeling of coupling gasification and anaerobic digestion processes for maize bioenergy conversion. Biomass Bioenergy 2015, 81, 444–451. [Google Scholar] [CrossRef]
- Chandrappa, R.; Das, D.B. Waste quantities and characteristics. In Solid Waste Management: Principles and Practice; Springer: Berlin/Heidelberg, Germany, 2012; pp. 47–63. [Google Scholar]
- Houshfar, E.; Becidan, M.; Lundstrøm, P.; Grimshaw, A. A simplified approach for municipal solid waste gasification modelling. In Proceedings of the Sardinia 2013, Fourteenth International Waste Management and Landfill Symposium, Cagliari, Italy, 30 September–4 October 2013; CISA Publisher Italy: Padova, Italy, 2013. [Google Scholar]
- Jarungthammachote, S.; Dutta, A. Thermodynamic equilibrium model and second law analysis of a downdraft waste gasifier. Energy 2007, 32, 1660–1669. [Google Scholar] [CrossRef]
- Diemuodeke, E.; Addo, A.; Oko, C.O.C.; Mulugetta, Y.; Ojapah, M.M. Optimal mapping of hybrid renewable energy systems for locations using multi-criteria decision-making algorithm. Renew. Energy 2019, 134, 461–477. [Google Scholar] [CrossRef]
- Shahzad, M.K.; Zahid, A.; ur Rashid, T.; Rehan, M.A.; Ali, M.; Ahmad, M. Techno-economic feasibility analysis of a solar-biomass off grid system for the electrification of remote rural areas in Pakistan using HOMER software. Renew. Energy 2017, 106, 264–273. [Google Scholar] [CrossRef]
- Quansah, A.D.; Dogbey, F.; Asilevi, P.J.; Boakye, P.; Darkwah, L.; Oduro-Kwarteng, S.; Sokama-Neuyam, Y.A.; Mensah, P. Assessment of solar radiation resource from the NASA-POWER reanalysis products for tropical climates in Ghana towards clean energy application. Sci. Rep. 2022, 12, 10684. [Google Scholar] [CrossRef] [PubMed]
- Kemausuor, F.; Kamp, A.; Thomsen, S.T.; Bensah, E.C.; Østergård, H. Assessment of biomass residue availability and bioenergy yields in Ghana. Resour. Conserv. Recycl. 2014, 86, 28–37. [Google Scholar] [CrossRef]
- Asare-Addo, M. Optimal techno-economic potential and site evaluation for solar PV and CSP systems in Ghana. A geospatial AHP multi-criteria approach. Renew. Energy Focus 2022, 41, 216–229. [Google Scholar] [CrossRef]
- Statista. Electricity prices in Ghana as of March 2023, by User Group (Ghanaian Cedis per Kilowatt Hour). 2023. Available online: https://www.statista.com/statistics/1310775/electricity-prices-in-ghana-by-user-group/ (accessed on 6 December 2023).
- Agyekum, E.B.; Nutakor, C. Feasibility study and economic analysis of stand-alone hybrid energy system for southern Ghana. Sustain. Energy Technol. Assess. 2020, 39, 100695. [Google Scholar] [CrossRef]
- Odoi-Yorke, F.; Abaase, S.; Zebilila, M.; Atepor, L. Feasibility analysis of solar PV/biogas hybrid energy system for rural electrification in Ghana. Cogent Eng. 2022, 9, 2034376. [Google Scholar] [CrossRef]
Parameter | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Solar GHI (kWh/m2/day) | 5.74 | 5.98 | 6.11 | 5.92 | 5.73 | 5.03 | 4.51 | 4.22 | 4.66 | 5.32 | 5.46 | 5.63 |
Biomass (Mton/day) | 14.66 | 14.66 | 14.66 | 14.66 | 14.66 | 14.66 | 14.66 | 14.66 | 14.66 | 14.66 | 14.66 | 14.66 |
Components | Initial Cost | Replacement Cost | O&M | Source |
---|---|---|---|---|
Solar PV | 834.15 (EUR/kW) | 834.15 (EUR/kW) | 9.43 (EUR/year) | [49] |
NPT 20GFT gas genset | 3000 (EUR/kW) | 2500 (EUR/kW) | 0.085 (EUR/op. h) | Authors c |
Battery (Li-Ion) | 518.40 (EUR/kWh) | 518.40 (USD/kWh) | 9.43 (EUR/year) | Website a |
Converter | 622.08 (EUR/kW) | 622.08 (EUR/kW) | 94.30 (EUR/kW) | HOMER database and Authors b |
TLC | 188.51 (EUR/kW) | 188.51 (EUR/kW) | 200 (EUR/kW) | HOMER database and Authors b |
Component | Unit | Value |
---|---|---|
Solar PV | kWp | 20 |
Gasifier-generator | kW | 24 |
Cooling capacity | kW | 7.7 |
Cool room temperature | °C | 15 |
Battery | kWh | 78 |
Thermal Load Control (TLC) | kW | 1 |
Converter | kW | 24.8 |
Bus voltage | V | 12 |
Autonomy | h | 2.52 |
Electricity production | kWh/year | 221,621 |
Thermal production | kWh/year | 110,896 |
Excess thermal | kWh/year | 14,536 |
Levelized cost of energy | EUR/kWh | 0.295 |
System CO2 emission | kg/year | −0.526 |
Control type | - | FL |
Parameter | Unit | Value |
---|---|---|
Capital cost | EUR | 16,645 |
Specific yield | kWh/kW | 1794 |
PV penetration | % | 16.5 |
Total generation | kW | 35,886 |
Maintenance cost | EUR/yr | 189 |
LCOE | EUR/kWh | 0.0469 |
Parameter | Unit | Value |
---|---|---|
Capital cost | EUR | 72,000 |
Fuel consumption | MT/yr | 167 |
Electrical generation | kWhe/yr | 185,735 |
Thermal generation | kWhth/yr | 140,661 |
Maintenance cost | EUR/yr | 15,851 |
Fixed generation cost | EUR/hr | 6.04 |
Parameter | Unit | Value |
---|---|---|
Rated capacity | kWh | 78.0 |
Maintenance cost | EUR/yr | 780 |
Capital cost | EUR | 40,435 |
Autonomy | h | 2.5 |
Expected life | Yr | 10.2 |
Losses | kWh/yr | 2427 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Diemuodeke, O.E.; Vera, D.; Ojapah, M.M.; Nwachukwu, C.O.; Nwosu, H.U.; Aikhuele, D.O.; Ofodu, J.C.; Seidu Nuhu, B. Hybrid Solar PV–Agro-Waste-Driven Combined Heat and Power Energy System as Feasible Energy Source for Schools in Sub-Saharan Africa. Biomass 2024, 4, 1200-1218. https://doi.org/10.3390/biomass4040067
Diemuodeke OE, Vera D, Ojapah MM, Nwachukwu CO, Nwosu HU, Aikhuele DO, Ofodu JC, Seidu Nuhu B. Hybrid Solar PV–Agro-Waste-Driven Combined Heat and Power Energy System as Feasible Energy Source for Schools in Sub-Saharan Africa. Biomass. 2024; 4(4):1200-1218. https://doi.org/10.3390/biomass4040067
Chicago/Turabian StyleDiemuodeke, Ogheneruona Endurance, David Vera, Mohammed Moore Ojapah, Chinedum Oscar Nwachukwu, Harold U. Nwosu, Daniel O. Aikhuele, Joseph C. Ofodu, and Banasco Seidu Nuhu. 2024. "Hybrid Solar PV–Agro-Waste-Driven Combined Heat and Power Energy System as Feasible Energy Source for Schools in Sub-Saharan Africa" Biomass 4, no. 4: 1200-1218. https://doi.org/10.3390/biomass4040067
APA StyleDiemuodeke, O. E., Vera, D., Ojapah, M. M., Nwachukwu, C. O., Nwosu, H. U., Aikhuele, D. O., Ofodu, J. C., & Seidu Nuhu, B. (2024). Hybrid Solar PV–Agro-Waste-Driven Combined Heat and Power Energy System as Feasible Energy Source for Schools in Sub-Saharan Africa. Biomass, 4(4), 1200-1218. https://doi.org/10.3390/biomass4040067