Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (237)

Search Parameters:
Keywords = humid and hot area

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 24023 KiB  
Article
Climate-Adaptive Archetypes of Vernacular Villages and Their Application in Public Building Design: A Case Study of a Visitor Center in Chaoshan, China
by Fengdeng Wan, Ziqiao Li, Huazhao Li, Li Li and Xiaomiao Xiao
Buildings 2025, 15(16), 2848; https://doi.org/10.3390/buildings15162848 - 12 Aug 2025
Viewed by 351
Abstract
The Sixth Assessment Report of the IPCC highlights that global surface temperatures have risen by 1.1 °C above pre-industrial levels, with a marked increase in the frequency and intensity of extreme heat events in hot–humid regions. Buildings in these areas urgently require passive [...] Read more.
The Sixth Assessment Report of the IPCC highlights that global surface temperatures have risen by 1.1 °C above pre-industrial levels, with a marked increase in the frequency and intensity of extreme heat events in hot–humid regions. Buildings in these areas urgently require passive design strategies to enhance climate adaptability. Employing Zhupu Ancient Village in Chaoshan region in China as an example, this study analyzes and evaluates the wind-driven ventilation archetype and buoyancy-driven ventilation archetype of the village through integrated meteorological data analysis (ECMWF) and computational fluid dynamics (CFD) simulations. The results indicate that the traditional climate-adaptive archetype facilitates wind speeds exceeding 0.5 m/s in over 80% of outdoor areas, achieving unobstructed airflow and a discernible stack ventilation effect. Through archetype translation, the visitor center design incorporates open alleyway systems and water-evaporative cooling strategies, demonstrating that over 80% of outdoor areas attain wind speeds of 0.5 m/s during summer, thereby achieving enhanced ventilation performance. The research provides a climate-response-archetype translation-performance validation framework and practical case studies for climate-adaptive design of public buildings in hot–humid regions. Full article
Show Figures

Figure 1

23 pages, 2327 KiB  
Review
Development and Application of Climate Zoning for Asphalt Pavements in China: A Review and Perspective
by Huanyu Chang, Xuesen Wang and Naren Fang
Atmosphere 2025, 16(8), 953; https://doi.org/10.3390/atmos16080953 - 10 Aug 2025
Viewed by 364
Abstract
Asphalt pavements are highly sensitive to climatic conditions, and their performance and longevity are significantly affected by temperature fluctuations, precipitation, and extreme weather events. With increasing climate variability, the development of refined and adaptive climate zoning systems for pavement engineering has become essential. [...] Read more.
Asphalt pavements are highly sensitive to climatic conditions, and their performance and longevity are significantly affected by temperature fluctuations, precipitation, and extreme weather events. With increasing climate variability, the development of refined and adaptive climate zoning systems for pavement engineering has become essential. This study reviews the evolution, methodologies, and applications of asphalt pavement climate zoning in China. First, it delineates the historical progression of climate zoning into three stages, from general natural zoning to the specialized three-indicator model and performance grade (PG) system, and finally to refined spatial processing based on meteorological data. Notably, 48% of provinces have conducted localized zoning studies, with South and Northeast China as key focus areas. Second, this study classifies existing zoning models into three major categories: the traditional three-indicator model (based on high temperature, low temperature, and precipitation), the hydrothermal coefficient model tailored to hot, humid climates, and clustering models incorporating spatial interpolation and multivariate analysis. While the three-indicator model remains the most widely applied due to its simplicity, it may result in coarse divisions in climatically diverse regions. The hydrothermal model offers general guidance but limited accuracy, whereas clustering methods provide high-resolution, adaptive zoning results at the cost of increased computational complexity. Third, the application of climate zoning results to the PG system for asphalt binder classification is analyzed. Although SHRP, LTPP, and C-SHRP formulas are commonly used, C-SHRP tends to overestimate pavement temperatures by 6.0–8.6 °C in China. Approximately 68.8% of studies rely on existing formulas, while 31.2% propose localized conversions to improve PG grading accuracy. Overall, this review identifies both the methodological diversity and key challenges in China’s climate zoning practices and provides a scientific foundation for more performance-oriented, climate-resilient pavement design strategies. Full article
(This article belongs to the Section Climatology)
Show Figures

Figure 1

15 pages, 1337 KiB  
Article
Application of Prefabricated Public Buildings in Rural Areas with Extreme Hot–Humid Climate: A Case Study of the Yongtai County Digital Industrial Park, Fuzhou, China
by Xin Wu, Jiaying Wang, Ruitao Zhang, Qianru Bi and Jinghan Pan
Buildings 2025, 15(15), 2767; https://doi.org/10.3390/buildings15152767 - 6 Aug 2025
Viewed by 326
Abstract
Accomplishing China’s national targets of carbon peaking and carbon neutrality necessitates proactive solutions, hinging critically on fundamentally transforming rural construction models. Current construction practices in rural areas are characterized by inefficiency, high resource consumption, and reliance on imported materials. These shortcomings not only [...] Read more.
Accomplishing China’s national targets of carbon peaking and carbon neutrality necessitates proactive solutions, hinging critically on fundamentally transforming rural construction models. Current construction practices in rural areas are characterized by inefficiency, high resource consumption, and reliance on imported materials. These shortcomings not only jeopardize the attainment of climate objectives, but also hinder equitable development between urban and rural regions. Using the Digital Industrial Park in Yongtai County, Fuzhou City, as a case study, this study focuses on prefabricated public buildings in regions with extreme hot–humid climate, and innovatively integrates BIM (Building Information Modeling)-driven carbon modeling with the Gaussian Two-Step Floating Catchment Area (G2SFCA) method for spatial accessibility assessment to investigate the carbon emissions and economic benefits of prefabricated buildings during the embodied stage, and analyzes the spatial accessibility of prefabricated building material suppliers in Fuzhou City and identifies associated bottlenecks, seeking pathways to promote sustainable rural revitalization. Compared with traditional cast-in-situ buildings, embodied carbon emissions of prefabricated during their materialization phase significantly reduced. This dual-perspective approach ensures that the proposed solutions possess both technical rigor and logistical feasibility. Promoting this model across rural areas sharing similar climatic conditions would advance the construction industry’s progress towards the dual carbon goals. Full article
Show Figures

Figure 1

17 pages, 1742 KiB  
Article
Assessment of Aerodynamic Properties of the Ventilated Cavity in Curtain Wall Systems Under Varying Climatic and Design Conditions
by Nurlan Zhangabay, Aizhan Zhangabay, Kenzhebek Akmalaiuly, Akmaral Utelbayeva and Bolat Duissenbekov
Buildings 2025, 15(15), 2637; https://doi.org/10.3390/buildings15152637 - 25 Jul 2025
Viewed by 395
Abstract
Creating a comfortable microclimate in the premises of buildings is currently becoming one of the priorities in the field of architecture, construction and engineering systems. The increased attention from the scientific community to this topic is due not only to the desire to [...] Read more.
Creating a comfortable microclimate in the premises of buildings is currently becoming one of the priorities in the field of architecture, construction and engineering systems. The increased attention from the scientific community to this topic is due not only to the desire to ensure healthy and favorable conditions for human life but also to the need for the rational use of energy resources. This area is becoming particularly relevant in the context of global challenges related to climate change, rising energy costs and increased environmental requirements. Practice shows that any technical solutions to ensure comfortable temperature, humidity and air exchange in rooms should be closely linked to the concept of energy efficiency. This allows one not only to reduce operating costs but also to significantly reduce greenhouse gas emissions, thereby contributing to sustainable development and environmental safety. In this connection, this study presents a parametric assessment of the influence of climatic and geometric factors on the aerodynamic characteristics of the air cavity, which affect the heat exchange process in the ventilated layer of curtain wall systems. The assessment was carried out using a combined analytical calculation method that provides averaged thermophysical parameters, such as mean air velocity (Vs), average internal surface temperature (tin.sav), and convective heat transfer coefficient (αs) within the air cavity. This study resulted in empirical average values, demonstrating that the air velocity within the cavity significantly depends on atmospheric pressure and façade height difference. For instance, a 10-fold increase in façade height leads to a 4.4-fold increase in air velocity. Furthermore, a three-fold variation in local resistance coefficients results in up to a two-fold change in airflow velocity. The cavity thickness, depending on atmospheric pressure, was also found to affect airflow velocity by up to 25%. Similar patterns were observed under ambient temperatures of +20 °C, +30 °C, and +40 °C. The analysis confirmed that airflow velocity is directly affected by cavity height, while the impact of solar radiation is negligible. However, based on the outcomes of the analytical model, it was concluded that the method does not adequately account for the effects of solar radiation and vertical temperature gradients on airflow within ventilated façades. This highlights the need for further full-scale experimental investigations under hot climate conditions in South Kazakhstan. The findings are expected to be applicable internationally to regions with comparable climatic characteristics. Ultimately, a correct understanding of thermophysical processes in such structures will support the advancement of trends such as Lightweight Design, Functionally Graded Design, and Value Engineering in the development of curtain wall systems, through the optimized selection of façade configurations, accounting for temperature loads under specific climatic and design conditions. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

29 pages, 6641 KiB  
Article
Climate-Adaptive Passive Design Strategies for Near-Zero-Energy Office Buildings in Central and Southern Anhui, China
by Jun Xu, Yu Gao and Lizhong Yang
Sustainability 2025, 17(14), 6535; https://doi.org/10.3390/su17146535 - 17 Jul 2025
Viewed by 530
Abstract
Driven by the global energy transition and China’s dual-carbon targets, Passive ultra-low-energy buildings are a key route for carbon reduction in the construction sector. This study addresses the high energy demand of office buildings and the limited suitability of current efficiency codes in [...] Read more.
Driven by the global energy transition and China’s dual-carbon targets, Passive ultra-low-energy buildings are a key route for carbon reduction in the construction sector. This study addresses the high energy demand of office buildings and the limited suitability of current efficiency codes in the hot-summer/cold-winter, high-humidity zone of central and southern Anhui. Using multi-year climate records and energy-use surveys from five cities and one scenic area (2013–2024), we systematically investigate climate-adaptive passive-design strategies. Climate-Consultant simulations identify composite envelopes, external shading, and natural ventilation as the three most effective measures. Empirical evidence confirms that optimized envelope thermal properties significantly curb heating and cooling loads; a Huangshan office-building case validates the performance of the proposed passive measures, while analysis of a near-zero-energy demonstration project in Chuzhou yields a coordinated insulation-and-heat-rejection scheme. The results demonstrate that region-specific passive design can provide a comprehensive technical framework for ultra-low-energy buildings in transitional climates and thereby supporting China’s carbon-neutrality targets. Full article
(This article belongs to the Special Issue Building Sustainability within a Smart Built Environment)
Show Figures

Figure 1

27 pages, 53601 KiB  
Article
Depositional Evolution and Controlling Factors of the Lower–Middle Jurassic in the Kuqa Depression, Tarim Basin, Northwest China
by Ming Ma, Changsong Lin, Yongfu Liu, Hao Li, Wenfang Yuan, Jingyan Liu, Chaoqun Shi, Manli Zhang and Fan Xu
Appl. Sci. 2025, 15(14), 7783; https://doi.org/10.3390/app15147783 - 11 Jul 2025
Viewed by 349
Abstract
The Lower–Middle Jurassic of the Kuqa Depression consists of terrestrial clastic deposits containing coal seams and thick lacustrine mudstones, and is of great significance for oil and gas exploration. Based on the comprehensive analysis of core, well-logging, outcrop, and seismic data, the sequence [...] Read more.
The Lower–Middle Jurassic of the Kuqa Depression consists of terrestrial clastic deposits containing coal seams and thick lacustrine mudstones, and is of great significance for oil and gas exploration. Based on the comprehensive analysis of core, well-logging, outcrop, and seismic data, the sequence stratigraphy, depositional systems, and the controlling factors of the basin filling in the depression are systematically documented. Four primary depositional systems, including braided river delta, meandering river delta, lacustrine, and swamp deposits, are identified within the Ahe, Yangxia, and Kezilenuer Formations of the Lower–Middle Jurassic. The basin fills can be classified into two second-order and nine third-order sequences (SQ1–SQ9) confined by regional or local unconformities and their correlative conformities. This study shows that the sedimentary evolution has undergone the following three stages: Stage I (SQ1–SQ2) primarily developed braided river, braided river delta, and shallow lacustrine deposits; Stage II (SQ3–SQ5) primarily developed meandering river, meandering river delta, and extensive deep and semi-deep lacustrine deposits; Stage III (SQ6–SQ9) primarily developed swamp (SQ6–SQ7), meandering river delta, and shore–shallow lacustrine deposits (SQ8–SQ9). The uplift of the Tianshan Orogenic Belt in the Early Jurassic (Stage I) may have facilitated the development of braided fluvial–deltaic deposits. The subsequential expansion of the sedimentary area and the weakened sediment supply can be attributed to the planation of the source area and widespread basin subsidence, with the transition of the depositional environments from braided river delta deposits to meandering river delta and swamp deposits. The regional expansion or rise of the lake during Stage II was likely triggered by the hot and humid climate conditions, possibly associated with the Early Jurassic Toarcian Oceanic Anoxic Event. The thick swamp deposits formed during Stage III may be controlled by the interplay of rational accommodation, warm and humid climatic conditions, and limited sediment supply. Milankovitch cycles identified in Stage III further reveal that coal accumulation was primarily modulated by long-period eccentricity forcing. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

22 pages, 3663 KiB  
Article
Simulation-Based Prediction of Office Buildings Energy Performance Under RCP Scenarios Across All U.S. Climate Zones
by Sepideh Niknia and Mehdi Ghiai
Architecture 2025, 5(2), 34; https://doi.org/10.3390/architecture5020034 - 29 May 2025
Cited by 1 | Viewed by 1553
Abstract
Buildings account for a significant portion of global energy consumption and are increasingly vulnerable to the adverse effects of climate change, including rising greenhouse gas emissions and shifting weather patterns. These disruptions significantly impact energy demand, necessitating proactive measures to ensure buildings remain [...] Read more.
Buildings account for a significant portion of global energy consumption and are increasingly vulnerable to the adverse effects of climate change, including rising greenhouse gas emissions and shifting weather patterns. These disruptions significantly impact energy demand, necessitating proactive measures to ensure buildings remain functional, sustainable, and energy efficient. This study offers a novel contribution by systematically comparing the energy performance of office building prototypes using a simulation-based method across all U.S. climate zones under projected Representative Concentration Pathways (RCPs) 4.5 (moderate emissions) and 8.5 (high emissions) for the years 2050 and 2080. This multi-scale and multi-scenario simulation provides a nationally comprehensive view of how building size and climate conditions interact to influence vulnerability to future energy demand shifts. The findings reveal that medium-sized office buildings are the most vulnerable to climate change, with an average Energy Unit Intensity (EUI) increase of 12.5% by 2080 under RCP 8.5, compared to a 7.4% rise for large office buildings and a slight decline of 2.5% for small office buildings. Hot and humid cities such as Miami, FL, experience the highest increases, with EUI projected to rise by 21.2% for medium offices, while colder regions like Fairbanks, AK, show reductions of up to 18.2% due to decreasing heating demands. These results underscore the urgent need for climate-compatible building design strategies, particularly in high-risk areas. As climate change intensifies, integrating resilience-focused policies will safeguard energy systems and ensure long-term occupant comfort. Full article
Show Figures

Figure 1

17 pages, 5030 KiB  
Review
Water Buffalo’s Adaptability to Different Environments and Farming Systems: A Review
by Antonella Chiariotti, Antonio Borghese, Carlo Boselli and Vittoria Lucia Barile
Animals 2025, 15(11), 1538; https://doi.org/10.3390/ani15111538 - 24 May 2025
Cited by 1 | Viewed by 1574
Abstract
The buffalo species (Bubalus bubalis) is crucial for the global economy, supplying high-nutritional-value animal proteins vital for children’s growth. These animals efficiently convert fiber into energy and thrive in various harsh environments, from frigid climates to hot, humid areas, including wetlands. [...] Read more.
The buffalo species (Bubalus bubalis) is crucial for the global economy, supplying high-nutritional-value animal proteins vital for children’s growth. These animals efficiently convert fiber into energy and thrive in various harsh environments, from frigid climates to hot, humid areas, including wetlands. They produce milk and meat while supporting the sustainability of ecosystems that other ruminants cannot inhabit. Buffalo offers a unique opportunity to supply resources for both rural communities and larger farms located in specific regions, such as marshlands and humid savannahs. They also thrive on extensive pastures and family farms, thus preserving biodiversity, habitats, and cultural practices. Intensive farming brings distinct challenges and is often criticized for its negative effects on climate change. To counter these impacts, multiple strategies have been researched and implemented. These include enhancing livestock genetics, adopting sustainable agricultural practices, optimizing local feed resources (including by-products), managing manure (with an emphasis on renewable energy), and improving animal health and welfare. This review explores various buffalo farming system applications in different global contexts. It is based on the hypothesis that the adaptable traits of buffalo, as well as the environmental and economic challenges that must be addressed for sustainability, are the key factors in determining the viability of such enterprises. Full article
(This article belongs to the Special Issue Buffalo Farming as a Tool for Sustainability)
Show Figures

Figure 1

26 pages, 15325 KiB  
Article
Impact of the Pilotis Ratio on the Summer Wind and Thermal Environment in Shaded Areas of Enclosed Courtyards in Hot and Humid Regions
by Zhihua Luo, Wangning Mu, Yingzhi Liang, Zhihui Xiao, Zhiqiang Zhou and Yuankui Li
Sustainability 2025, 17(10), 4689; https://doi.org/10.3390/su17104689 - 20 May 2025
Viewed by 386
Abstract
Enclosed courtyards with partially ground floor pilotis represent a prevalent architectural spatial configuration in hot-humid regions, where the shaded outdoor areas serve as frequently utilized spaces for heat avoidance and rest. This study employed a combined approach of ENVI-met simulations and field measurements [...] Read more.
Enclosed courtyards with partially ground floor pilotis represent a prevalent architectural spatial configuration in hot-humid regions, where the shaded outdoor areas serve as frequently utilized spaces for heat avoidance and rest. This study employed a combined approach of ENVI-met simulations and field measurements to investigate the wind and thermal environment in the shaded areas of courtyards under 40 different pilotis width configurations. The Comfortable Wind Zone Ratio (CWZR) and Physiological Equivalent Temperature (PET) were used as primary evaluation metrics to systematically investigate the influence of varying inlet/outlet width ratios in building pilotis on the wind-thermal environment within courtyard-shaded zones. The results demonstrate that: (1) Under a fixed outlet size, enlarging the inlet significantly enhances the CWZR in the shaded area, with a 28.66% difference observed between inlet sizes of L/4 and L. In contrast, under a fixed inlet size, expanding the outlet has a negligible effect on CWZR improvement. (2) Under a fixed outlet size, increasing the inlet width substantially reduces PET in the shaded zone, showing a 2.46 °C difference between inlet sizes of L/4 and L. Conversely, under a fixed inlet size, widening the outlet has a minimal impact on PET reduction. (3) A negative correlation exists between CWZR and PET in the shaded area, indicating that an increase in CWZR leads to a decrease in PET values. The findings provide bioclimatically quantified guidelines for the spatial design of courtyard pilotis in hot-humid regions, offering practical insights for optimizing thermal comfort in shaded outdoor environments. Full article
(This article belongs to the Section Environmental Sustainability and Applications)
Show Figures

Figure 1

27 pages, 19302 KiB  
Article
Daytime Surface Urban Heat Island Variation in Response to Future Urban Expansion: An Assessment of Different Climate Regimes
by Mohammad Karimi Firozjaei, Hamide Mahmoodi and Jamal Jokar Arsanjani
Remote Sens. 2025, 17(10), 1730; https://doi.org/10.3390/rs17101730 - 15 May 2025
Viewed by 1086
Abstract
This study focuses on assessing the physical growth of cities and the land-cover changes resulting from it, which play a crucial role in understanding the environmental impacts and managing phenomena such as the Daytime Urban Surface Heat Island Intensity (DSUHII). Predicting the trends [...] Read more.
This study focuses on assessing the physical growth of cities and the land-cover changes resulting from it, which play a crucial role in understanding the environmental impacts and managing phenomena such as the Daytime Urban Surface Heat Island Intensity (DSUHII). Predicting the trends of these changes for the future provides valuable insights for urban planning and mitigating thermal effects in arid environments. This research aims to evaluate the spatial and temporal changes in the intensity of urban surface heat islands in cities under different climatic conditions, resulting from land-cover changes in the past, and to predict future trends. For this purpose, Landsat satellite data products, including Surface Reflectance with a 30-m resolution and Land Surface Temperature (LST) originally at a 100 (120)-meter resolution for Landsat 8 (Landsat 5) (resampled to 30 m for compatibility), along with a database of underlying criteria affecting urban growth, were used to analyze land-cover and LST changes. The land-cover classification was carried out using the Support Vector Machine (SVM) algorithm, and its accuracy was assessed. Spatial and temporal changes in LST and land-cover classes were quantified using cross-tabulation models and subtraction operators. Subsequently, the impact of land-cover changes on LST in different climates was analyzed, and the trends of land-cover and DUSHII changes were simulated for the future using the CA–Markov model. The results showed that in the humid climate (Babol and Rasht), built-up areas increased by over 100% from 1990 to 2023 and are projected to grow further by 2055, while green spaces significantly decreased. In the cold–dry climate (Mashhad), urban development increased dramatically, and green spaces nearly halved. In the hot–dry climate (Yazd and Kerman), built-up areas tripled, and the reduction of green spaces will continue. Additionally, in cities with hot and dry climates, a significant area of barren land was converted into built-up areas, and this trend is predicted to continue in the future. DSUHII in Babol increased from 2.5 °C in 1990 to 5.4 °C in 2023 and is projected to rise to 7.8 °C by 2055. In Rasht, this value increased from 2.9 °C to 5.5 °C, and is expected to reach 7.6 °C. In Mashhad, the DSUHII was negative, decreasing from −1.1 °C in 1990 to −1.5 °C in 2023, and is projected to decline to −1.9 °C by 2055. In Yazd, DSUHII also remained negative, decreasing from −2.5 °C in 1990 to −3.3 °C in 2023, with an expected drop to −6.4 °C by 2055. Similarly, in Kerman, the intensity of DSUHII decreased from −2.8 °C to −5.1 °C, and it is expected to reach −7.1 °C by 2055. Overall, the conclusions highlight that in humid climates, DSUHII has significantly increased, while green spaces have decreased. In moderate, cold, and dry climates, a gradual reduction in DSUHII is observed. In the hot–dry climate, the most substantial decrease in DSUHII is evident, indicating the varying impacts of land-cover changes on DSUHII across these regions. Full article
(This article belongs to the Section Urban Remote Sensing)
Show Figures

Figure 1

42 pages, 2459 KiB  
Review
Climate-Responsive Design of Photovoltaic Façades in Hot Climates: Materials, Technologies, and Implementation Strategies
by Xiaohui Wu, Yanfeng Wang, Shile Deng and Ping Su
Buildings 2025, 15(10), 1648; https://doi.org/10.3390/buildings15101648 - 14 May 2025
Cited by 4 | Viewed by 2018
Abstract
With the intensification of global climate change, buildings in hot climate zones face increasing challenges related to high energy consumption and thermal comfort. Building integrated photovoltaic (BIPV) façades, which combine power generation and energy saving potential, require further optimization in their climate-adaptive design. [...] Read more.
With the intensification of global climate change, buildings in hot climate zones face increasing challenges related to high energy consumption and thermal comfort. Building integrated photovoltaic (BIPV) façades, which combine power generation and energy saving potential, require further optimization in their climate-adaptive design. Most existing studies primarily focus on the photoelectric conversion efficiency of PV modules, yet there is a lack of systematic analysis of the coupled effects of temperature, humidity, and solar radiation intensity on PV performance. Moreover, the current literature rarely addresses the regional material degradation patterns, integrated cooling solutions, or intelligent control systems suitable for hot and humid climates. There is also a lack of practical, climate specific design guidelines that connect theoretical technologies with real world applications. This paper systematically reviews BIPV façade design strategies following a climate zoning framework, summarizing research progress from 2019 to 2025 in the areas of material innovation, thermal management, light regulation strategies, and parametric design. A climate responsive strategy is proposed to address the distinct challenges of humid hot and dry hot climates. Finally, this study discusses the barriers and challenges of BIPV system applications in hot climates and highlights future research directions. Unlike previous reviews, this paper offers a multi-dimensional synthesis that integrates climatic classification, material suitability, passive and active cooling strategies, and intelligent optimization technologies. It further provides regionally differentiated recommendations for façade design and outlines a unified framework to guide future research and practical deployment of BIPV systems in hot climates. Full article
Show Figures

Figure 1

23 pages, 4867 KiB  
Article
Urban Forest Microclimates and Their Response to Heat Waves—A Case Study for London
by David Hidalgo-García, Dimitra Founda, Hamed Rezapouraghdam, Antonio Espínola Jiménez and Muaz Azinuddin
Forests 2025, 16(5), 790; https://doi.org/10.3390/f16050790 - 8 May 2025
Viewed by 887
Abstract
Extreme weather events and rising temperatures pose significant risks, not only in urban areas but also in metropolitan forests, that affect the well-being of the people who visit them. City forests are considered one of the best bets for mitigating high temperatures within [...] Read more.
Extreme weather events and rising temperatures pose significant risks, not only in urban areas but also in metropolitan forests, that affect the well-being of the people who visit them. City forests are considered one of the best bets for mitigating high temperatures within civic areas. Such areas modulate microclimates in contemporary cities, offering environmental, social, and economic advantages. Therefore, comprehending the intricate relationships between municipal forests and the climatic changes of various destinations is crucial for attaining healthier and more sustainable city environments for people. In this research, the thermal comfort index (Modified Temperature–Humidity Index (MTHI)) has been analysed using Landsat images of six urban forests in London during July 2022, when the area first experienced record-breaking temperatures of over 40 °C. Our results show a significant growth in the MTHI that goes from 2.5 (slightly hot) under normal conditions to 3.4 (hot) during the heat wave period. This situation intensifies the environmental discomfort for visitors and highlights the necessity to enhance their adaptability to future temperature increases. In turn, it was found that the places most affected by heat waves are those that have grass cover or that have small associated buildings. Conversely, forested regions or those with lakes and/or ponds exhibit lower temperatures, which results in enhanced resilience. These findings are noteworthy in their concentration on one of the UK’s most severe heat waves and illustrate the efficacy of integrating spectral measurements with statistical analyses to formulate customized regional initiatives. Therefore, the results reported will allow the implementation of new planning and adaptation policies such as incorporating thermal comfort into planning processes, improving green and blue amenities, increasing tree densities that are resilient to rising temperatures, and increasing environmental comfort conditions in metropolitan forests. Finally, the applicability of this approach in similar urban contexts is highlighted. Full article
(This article belongs to the Special Issue Microclimate Development in Urban Spaces)
Show Figures

Figure 1

25 pages, 2706 KiB  
Article
Spatiotemporal Analysis of Air Pollution and Climate Change Effects on Urban Green Spaces in Bucharest Metropolis
by Maria Zoran, Dan Savastru, Marina Tautan, Daniel Tenciu and Alexandru Stanciu
Atmosphere 2025, 16(5), 553; https://doi.org/10.3390/atmos16050553 - 7 May 2025
Viewed by 833
Abstract
Being an essential issue in global climate warming, the response of urban green spaces to air pollution and climate variability because of rapid urbanization has become an increasing concern at both the local and global levels. This study explored the response of urban [...] Read more.
Being an essential issue in global climate warming, the response of urban green spaces to air pollution and climate variability because of rapid urbanization has become an increasing concern at both the local and global levels. This study explored the response of urban vegetation to air pollution and climate variability in the Bucharest metropolis in Romania from a spatiotemporal perspective during 2000–2024, with a focus on the 2020–2024 period. Through the synergy of time series in situ air pollution and climate data, and derived vegetation biophysical variables from MODIS Terra/Aqua satellite data, this study applied statistical regression, correlation, and linear trend analysis to assess linear relationships between variables and their pairwise associations. Green spaces were measured with the MODIS normalized difference vegetation index (NDVI), leaf area index (LAI), photosynthetically active radiation (FPAR), evapotranspiration (ET), and net primary production (NPP), which capture the complex characteristics of urban vegetation systems (gardens, street trees, parks, and forests), periurban forests, and agricultural areas. For both the Bucharest center (6.5 km × 6.5 km) and metropolitan (40.5 km × 40.5 km) test areas, during the five-year investigated period, this study found negative correlations of the NDVI with ground-level concentrations of particulate matter in two size fractions, PM2.5 (city center r = −0.29; p < 0.01, and metropolitan r = −0.39; p < 0.01) and PM10 (city center r = −0.58; p < 0.01, and metropolitan r = −0.56; p < 0.01), as well as between the NDVI and gaseous air pollutants (nitrogen dioxide—NO2, sulfur dioxide—SO2, and carbon monoxide—CO. Also, negative correlations between NDVI and climate parameters, air relative humidity (RH), and land surface albedo (LSA) were observed. These results show the potential of urban green to improve air quality through air pollutant deposition, retention, and alteration of vegetation health, particularly during dry seasons and hot summers. For the same period of analysis, positive correlations between the NDVI and solar surface irradiance (SI) and planetary boundary layer height (PBL) were recorded. Because of the summer season’s (June–August) increase in ground-level ozone, significant negative correlations with the NDVI (r = −0.51, p < 0.01) were found for Bucharest city center and (r = −76; p < 0.01) for the metropolitan area, which may explain the degraded or devitalized vegetation under high ozone levels. Also, during hot summer seasons in the 2020–2024 period, this research reported negative correlations between air temperature at 2 m height (TA) and the NDVI for both the Bucharest city center (r = −0.84; p < 0.01) and metropolitan scale (r = −0.90; p < 0.01), as well as negative correlations between the land surface temperature (LST) and the NDVI for Bucharest (city center r = −0.29; p< 0.01) and the metropolitan area (r = −0.68, p < 0.01). During summer seasons, positive correlations between ET and climate parameters TA (r = 0.91; p < 0.01), SI (r = 0.91; p < 0.01), relative humidity RH (r = 0.65; p < 0.01), and NDVI (r = 0.83; p < 0.01) are associated with the cooling effects of urban vegetation, showing that a higher vegetation density is associated with lower air and land surface temperatures. The negative correlation between ET and LST (r = −0.92; p < 0.01) explains the imprint of evapotranspiration in the diurnal variations of LST in contrast with TA. The decreasing trend of NPP over 24 years highlighted the feedback response of vegetation to air pollution and climate warming. For future green cities, the results of this study contribute to the development of advanced strategies for urban vegetation protection and better mitigation of air quality under an increased frequency of extreme climate events. Full article
(This article belongs to the Section Biosphere/Hydrosphere/Land–Atmosphere Interactions)
Show Figures

Figure 1

10 pages, 1504 KiB  
Proceeding Paper
Air Quality Health Index and Discomfort Conditions in a Heatwave Episode During July 2024 in Rhodes Island
by Ioannis Logothetis, Adamantios Mitsotakis and Panagiotis Grammelis
Eng. Proc. 2025, 87(1), 59; https://doi.org/10.3390/engproc2025087059 - 29 Apr 2025
Viewed by 503
Abstract
Climate conditions in combination with the concentration of pollutants increase the human health stress and exacerbate systemic diseases. The city of Rhodes is a desirable tourist destination that is located in a sensitive climate region of the southeastern Aegean Sea in the Mediterranean [...] Read more.
Climate conditions in combination with the concentration of pollutants increase the human health stress and exacerbate systemic diseases. The city of Rhodes is a desirable tourist destination that is located in a sensitive climate region of the southeastern Aegean Sea in the Mediterranean region. In this work, hourly recordings from a mobile air quality monitoring system, which is located in an urban area of Rhodes city, are employed in order to measure the concentration of regulated pollutants (SO2,NO2,O3,PM10 and PM2.5) and meteorological factors (pressure, temperature, and relative humidity). The air quality health index (AQHI) and the discomfort index (DI) are calculated to study the impact of air quality and meteorological conditions on human health. The analysis is conducted during a hot summer period, from 29 June to 14 July 2024. During the second half of the studied period, a heatwave episode occurred that affected the bioclimatic conditions over the city. The results show that despite the fact that the concentration of pollutants is lower than the pollutant thresholds (according to Directive 2008/50/EC), the AQHI and DI conditions degrade significantly over the heatwave days. In particular, the AQHI is classified in the “Moderate” class, and the DI indicates that most of the population suffers discomfort. The AQHI and DI simultaneously increase during the days of the heat episode, showing a possible negative synergy for the health risk. Finally, both the day maximum and night minimum temperature are increased (about 0.8 and 0.6 °C, respectively) during the heatwave days as compared to the whole studied period. Full article
(This article belongs to the Proceedings of The 5th International Electronic Conference on Applied Sciences)
Show Figures

Figure 1

22 pages, 32909 KiB  
Article
Microclimate of Outdoor Tree-Lined Boulevards in University Campuses in Hot Summer and Cold Winter Regions: A Case Study of a University in Guilin
by Yinong Liu, Lufang Bi, Rong Hu, Lingjiang Ye, Wenheng Zheng and Yuncheng Lan
Buildings 2025, 15(9), 1476; https://doi.org/10.3390/buildings15091476 - 26 Apr 2025
Viewed by 377
Abstract
Tree-lined spaces as informal communication areas and important pathways for pedestrians are the second largest zones on university campuses, and they have a large impact on the microclimate. At present, the effects of the spatial form for tree-lined boulevards on microclimates have not [...] Read more.
Tree-lined spaces as informal communication areas and important pathways for pedestrians are the second largest zones on university campuses, and they have a large impact on the microclimate. At present, the effects of the spatial form for tree-lined boulevards on microclimates have not been investigated. Thus, this study applied experimental and simulation methods to investigate the effects of tree-lined boulevards on microclimates in hot summer and cold winter regions. The main meteorological parameters including air temperature, relative humidity, wind speed, and solar radiation of the boulevard were obtained by experiments. Furthermore, the experimental data as a boundary condition were input into ENVI-met software to investigate the effects of the aspect ratio and canopy diameter of double-row open-canopy boulevards on microclimate regulation. The results showed that when the aspect ratio was reduced from 1.5 to 0.9, the temperature and UTCI increased by 0.047 °C and 0.21 °C, while relative humidity decreased by 0.227%. Decreasing the aspect ratio can effectively improve the microenvironment. As the canopy diameter increased from 7 m to 11 m, the temperature and UTCI of the boulevard space decreased by 0.064 °C and 0.45 °C, while relative humidity increased by 0.245%. An increase in canopy diameter is unfavorable to the improvement of microclimates. This study aims to provide a scientific basis for the design and improvement of tree-lined boulevards on university campuses. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

Back to TopTop