Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (7,224)

Search Parameters:
Keywords = humanization of medicine

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 3951 KiB  
Article
Exploring the Bioactive Potential and Chemical Profile of Schinus molle Essential Oil: An Integrated In Silico and In Vitro Evaluation
by Rómulo Oses, Matías Ferrando, Flavia Bruna, Patricio Retamales, Myriam Navarro, Katia Fernández, Waleska Vera, María José Larrazábal, Iván Neira, Adrián Paredes, Manuel Osorio, Osvaldo Yáñez, Martina Jacobs and Jessica Bravo
Plants 2025, 14(15), 2449; https://doi.org/10.3390/plants14152449 - 7 Aug 2025
Abstract
Chilean Schinus molle has been used in traditional medicine for effects such as antibacterial, antifungal, anti-inflammatory, analgesic, antiviral, antitumoral, antioxidant, antispasmodic, astringent, antipyretic, cicatrizant, cytotoxic, diuretic, among others. In this study, we evaluated the pharmacological potential of Schinus molle seed essential oil extract [...] Read more.
Chilean Schinus molle has been used in traditional medicine for effects such as antibacterial, antifungal, anti-inflammatory, analgesic, antiviral, antitumoral, antioxidant, antispasmodic, astringent, antipyretic, cicatrizant, cytotoxic, diuretic, among others. In this study, we evaluated the pharmacological potential of Schinus molle seed essential oil extract (SM_EO) through in vitro and in silico approaches. In vitro, the antioxidant potential was analyzed, and antitumor activity was evaluated in non-tumor and human epithelial tumor cell lines. Caenorhabditis elegans was used as a model for evaluating toxicity, and the chemical composition of the SM_EO was analyzed using gas chromatography–mass spectrometry. The oil contained four major monoterpenes: α-phellandrene (34%), β-myrcene (23%), limonene (13%), and β-phellandrene (7%). Based on quantum mechanical calculations, the reactivity of the molecules present in the SM_EO was estimated. The results indicated that α- phellandrene, β-phellandrene, and β-myrcene showed the highest nucleophilic activity. In addition, the compounds following these as candidates for antioxidant and antiproliferative activities were α-phellandrene, β-phellandrene, ρ-cymene, sabinene, caryophyllene, l-limonene, and α-pinene, highlighting β-myrcene. Based on ADME-Tox properties, it is feasible to use these compounds as new drug candidates. Moreover, the antibacterial activity MIC value obtained for B. cereus was equivalent to 2 μg/mL, and for Y. enterocolitica, S. enteritidis, and S. typhimurium, the MIC value was 32.5 μg/μL. SM_EO could selectively inhibit the proliferation of human epithelial mammary tumor MCF7 cells treated with SM_EOs at 64 and 16 ug/mL—a significant increase in BCL-2 in a dose-dependent manner—and showed low toxicity against Caenorhabditis elegans (from 10 to 0.078 mg·mL−1). These findings suggest that SM_EO may be a potential source of bioactive compounds, encouraging further investigation for applications in veterinary medicine, cosmetics, and sanitation. Full article
Show Figures

Graphical abstract

15 pages, 837 KiB  
Review
Resetting Time: The Role of Exercise Timing in Circadian Reprogramming for Metabolic Health
by Stuart J. Hesketh
Obesities 2025, 5(3), 59; https://doi.org/10.3390/obesities5030059 - 7 Aug 2025
Abstract
Circadian rhythms are intrinsic 24 h cycles that regulate metabolic processes across multiple tissues, with skeletal muscle emerging as a central node in this temporal network. Muscle clocks govern gene expression, fuel utilisation, mitochondrial function, and insulin sensitivity, thereby maintaining systemic energy homeostasis. [...] Read more.
Circadian rhythms are intrinsic 24 h cycles that regulate metabolic processes across multiple tissues, with skeletal muscle emerging as a central node in this temporal network. Muscle clocks govern gene expression, fuel utilisation, mitochondrial function, and insulin sensitivity, thereby maintaining systemic energy homeostasis. However, circadian misalignment, whether due to behavioural disruption, nutrient excess, or metabolic disease, impairs these rhythms and contributes to insulin resistance, and the development of obesity, and type 2 diabetes mellitus. Notably, the muscle clock remains responsive to non-photic cues, particularly exercise, which can reset and amplify circadian rhythms even in metabolically impaired states. This work synthesises multi-level evidence from rodent models, human trials, and in vitro studies to elucidate the role of skeletal muscle clocks in circadian metabolic health. It explores how exercise entrains the muscle clock via molecular pathways involving AMPK, SIRT1, and PGC-1α, and highlights the time-of-day dependency of these effects. Emerging data demonstrate that optimally timed exercise enhances glucose uptake, mitochondrial biogenesis, and circadian gene expression more effectively than time-agnostic training, especially in individuals with metabolic dysfunction. Finally, findings are integrated from multi-omic approaches that have uncovered dynamic, time-dependent molecular signatures that underpin circadian regulation and its disruption in obesity. These technologies are uncovering biomarkers and signalling nodes that may inform personalised, temporally targeted interventions. By combining mechanistic insights with translational implications, this review positions skeletal muscle clocks as both regulators and therapeutic targets in metabolic disease. It offers a conceptual framework for chrono-exercise strategies and highlights the promise of multi-omics in developing precision chrono-medicine approaches aimed at restoring circadian alignment and improving metabolic health outcomes. Full article
Show Figures

Figure 1

7 pages, 199 KiB  
Case Report
Thoracic Epidural Anesthesia in Cats: A Retrospective Case Series
by Elena Lardone, Alessandra Landi, Greta Martinelli and Paolo Franci
Vet. Sci. 2025, 12(8), 738; https://doi.org/10.3390/vetsci12080738 - 7 Aug 2025
Abstract
Thoracic epidural anesthesia (TEA) is widely used in human medicine to provide effective perioperative analgesia, yet its application in veterinary species—particularly cats—remains underexplored. This retrospective case study describes the use of TEA in nine client-owned cats undergoing major surgeries. All cats received a [...] Read more.
Thoracic epidural anesthesia (TEA) is widely used in human medicine to provide effective perioperative analgesia, yet its application in veterinary species—particularly cats—remains underexplored. This retrospective case study describes the use of TEA in nine client-owned cats undergoing major surgeries. All cats received a single epidural injection of 0.2 mL/kg of 0.5% ropivacaine combined with 0.1 mg/kg morphine at the T12–T13 interspace using a 25 G × 25 mm Quincke needle. Intraoperative physiological parameters were continuously monitored, and postoperative analgesia was assessed using a validated pain scale. Only one cat exhibited inadequate analgesic coverage, likely due to TEA failure. Of the nine cats, seven required minimal to no intraoperative rescue analgesia, while five received postoperative opioids on the day following surgery. Hemodynamic stability was observed in most cases, with no significant complications reported. These findings suggest that TEA is a feasible and effective technique for perioperative pain management in cats undergoing major surgery. Further prospective studies are warranted to confirm these initial findings and investigate the safety of the technique in a larger population. Full article
(This article belongs to the Special Issue Advanced Therapy in Companion Animals—2nd Edition)
31 pages, 3977 KiB  
Article
Exploring the Cytokinin Profile of Doliocarpus dentatus (Aubl.) Standl. From Guyana and Its Relationship with Secondary Metabolites: Insights into Potential Therapeutic Benefits
by Ewart A. Smith, Ainsely Lewis, Erin N. Morrison, Kimberly Molina-Bean, Suresh S. Narine and R. J. Neil Emery
Metabolites 2025, 15(8), 533; https://doi.org/10.3390/metabo15080533 - 6 Aug 2025
Abstract
Background/Objectives: Possessing red and white ecotypes, and utilized in traditional Guyanese medicine, Doliocarpus dentatus’ red ecotype is preferred locally for its purported superior therapeutic efficacy. Although therapeutic metabolites were detected in D. dentatus previously, phytohormones remain largely unexplored, until now. Cytokinins, [...] Read more.
Background/Objectives: Possessing red and white ecotypes, and utilized in traditional Guyanese medicine, Doliocarpus dentatus’ red ecotype is preferred locally for its purported superior therapeutic efficacy. Although therapeutic metabolites were detected in D. dentatus previously, phytohormones remain largely unexplored, until now. Cytokinins, phytohormones responsible for plant cell division, growth and differentiation, are gaining traction for their therapeutic potential in human health. This study screened and quantified endogenous cytokinins and correlated detected cytokinins with selected secondary metabolites. Methods: Liquid chromatography–mass spectrometry was used to acquire phytohormone and metabolite data. Bioinformatics tools were used to assess untargeted metabolomics datasets via statistical and pathway analyses, and chemical groupings of putative metabolites. Results: In total, 20 of the 35 phytohormones were detected and quantified in both ecotypes, with the red ecotype displaying higher free base and glucoside cytokinin concentrations and exhibited 6.2 times the total CK content when compared to the white ecotype. Pathway analysis revealed flavonoid and monoterpenoid biosynthesis in red and white ecotypes, respectively. Positive correlations between specific cytokinins and alkaloids, and between trans-Zeatin and isopentenyladenosine riboside with phenolic compounds were observed. Conclusions: These results suggest that the red ecotype’s elevated cytokinin levels coupled with flavonoid biosynthesis enrichment support its preference in Guyanese traditional medicine. Full article
(This article belongs to the Section Plant Metabolism)
Show Figures

Figure 1

18 pages, 4635 KiB  
Article
Nylon Affinity Networks Capture and Sequester Two Model Bacteria Spiked in Human Plasma
by Fatema Hashemi, Silvia Cachaco, Rocio Prisby, Weidong Zhou, Gregory Petruncio, Elsa Ronzier, Remi Veneziano, Barbara Birkaya, Alessandra Luchini and Luisa Gregori
Pathogens 2025, 14(8), 778; https://doi.org/10.3390/pathogens14080778 - 6 Aug 2025
Abstract
Ensuring bacterial safety of blood transfusions remains a critical focus in medicine. We investigated a novel pathogen reduction technology utilizing nylon functionalized with synthetic dyes (nylon affinity networks) to capture and remove bacteria from plasma. In the initial screening process, we spiked phosphate [...] Read more.
Ensuring bacterial safety of blood transfusions remains a critical focus in medicine. We investigated a novel pathogen reduction technology utilizing nylon functionalized with synthetic dyes (nylon affinity networks) to capture and remove bacteria from plasma. In the initial screening process, we spiked phosphate buffer solution (PBS) and human plasma (1 mL each) with 10 or 100 colony forming units (cfu) of either Escherichia coli or Staphylococcus epidermidis, exposed the suspensions to affinity networks and assessed the extent of bacterial reduction using agar plate cultures as the assay output. Nineteen synthetic dyes were tested. Among these, Alcian Blue exhibited the best performance with both bacterial strains in both PBS and plasma. Next, bacterial suspensions of approximately 1 and 2 cfu/mL in 10 and 50 mL, respectively, were treated with Alcian Blue affinity networks in three sequential capture steps. This procedure resulted in complete bacterial depletion, as demonstrated by the lack of bacterial growth in the remaining fraction. The viability of the captured bacteria was confirmed by plating the post-treatment affinity networks on agar. Alcian Blue affinity networks captured and sequestered a few plasma proteins identified by liquid chromatography tandem mass spectrometry. These findings support the potential applicability of nylon affinity networks to enhance transfusion safety, although additional investigations are needed. Full article
(This article belongs to the Section Bacterial Pathogens)
Show Figures

Figure 1

41 pages, 3389 KiB  
Review
Fully Green Particles Loaded with Essential Oils as Phytobiotics: A Review on Preparation and Application in Animal Feed
by Maria Sokol, Ivan Gulayev, Margarita Chirkina, Maksim Klimenko, Olga Kamaeva, Nikita Yabbarov, Mariia Mollaeva and Elena Nikolskaya
Antibiotics 2025, 14(8), 803; https://doi.org/10.3390/antibiotics14080803 - 6 Aug 2025
Abstract
The modern livestock industry incorporates widely used antibiotic growth promoters into animal feed at sub-therapeutic levels to enhance growth performance and feed efficiency. However, this practice contributes to the emergence of antibiotic-resistant pathogens in livestock, which may be transmitted to humans through the [...] Read more.
The modern livestock industry incorporates widely used antibiotic growth promoters into animal feed at sub-therapeutic levels to enhance growth performance and feed efficiency. However, this practice contributes to the emergence of antibiotic-resistant pathogens in livestock, which may be transmitted to humans through the food chain, thereby diminishing the efficacy of antibiotics in treating bacterial infections. Current research explores the potential of essential oils from derived medicinal plants as alternative phytobiotics. This review examines modern encapsulation strategies that incorporate essential oils into natural-origin matrices to improve their stability and control their release both in vitro and in vivo. We discuss a range of encapsulation approaches utilizing polysaccharides, gums, proteins, and lipid-based carriers. This review highlights the increasing demand for antibiotic alternatives in animal nutrition driven by regulatory restrictions, and the potential benefits of essential oils in enhancing feed palatability and stabilizing the intestinal microbiome in monogastric animals and ruminants. Additionally, we address the economic viability and encapsulation efficiency of different matrix formulations. Full article
Show Figures

Graphical abstract

20 pages, 941 KiB  
Article
Bioanalytical Method Validations of Three Alpha1-Antitrypsin Measurement Methods Required for Clinical Sample Analysis
by Andrea Engelmaier, Martin Zimmermann, Harald A. Butterweck and Alfred Weber
Pharmaceuticals 2025, 18(8), 1165; https://doi.org/10.3390/ph18081165 - 6 Aug 2025
Abstract
Background/Objectives: The quality of clinical studies is largely determined by the bioanalytical methods used for testing study samples. Rigorous assay validation following defined criteria, for example, the European Medicines Agency guideline for bioanalytical method validation, is a prerequisite for such assays. Alpha1-antitrypsin [...] Read more.
Background/Objectives: The quality of clinical studies is largely determined by the bioanalytical methods used for testing study samples. Rigorous assay validation following defined criteria, for example, the European Medicines Agency guideline for bioanalytical method validation, is a prerequisite for such assays. Alpha1-antitrypsin (AAT) measurement, i.e., the specific measurement of AAT protein and its associated elastase-inhibitory activity, is an integral part of assay panels for clinical studies addressing AAT deficiency. Specifically, AAT must be measured in the matrix of citrated human plasma as well as in diluted solutions with high salt concentrations obtained through bronchoalveolar lavage (BAL). Sensitive and selective measurement methods are required, as BAL has a low level of AAT. Methods: We present the validation data obtained for three AAT measurement methods. Two of them, nephelometry and the enzyme-linked immunosorbent assay, which clearly differ in their sensitivity, provide AAT protein concentrations. The third is the highly sensitive, newly developed elastase complex formation immunosorbent assay that specifically measures the inhibitory activity of AAT against its pivotal target, protease neutrophil elastase. Using samples with relevant AAT concentrations, we addressed the assays’ characteristics: accuracy, precision, linearity, selectivity, specificity, limit of quantification and short-term analyte stability Results: Overall, the three methods demonstrated low total errors, a combined measure reflecting accuracy and precision, even at low analyte concentrations of less than 0.5 µg/mL; adequate linearity over the required assay range; and acceptable selectivity and specificity. Furthermore, the short-time stability of the analyte was also demonstrated. Conclusions: All three AAT measurement methods met the acceptance criteria defined by the guidelines on bioanalytical assay validation, qualifying these methods for clinical sample analysis. Full article
(This article belongs to the Section Biopharmaceuticals)
Show Figures

Graphical abstract

17 pages, 1027 KiB  
Review
Chimeric Antigen Receptor Immunotherapy for Infectious Diseases: Current Advances and Future Perspectives
by Maria Kourti, Paschalis Evangelidis, Emmanuel Roilides and Elias Iosifidis
Pathogens 2025, 14(8), 774; https://doi.org/10.3390/pathogens14080774 - 5 Aug 2025
Abstract
Chimeric antigen receptor (CAR)-T immunotherapy has revolutionized the management of patients with relapsed/refractory B-cell hematological malignancies. There is emerging evidence that CAR-engineered cells—not only T cells, but also natural killers and macrophages—might have a crucial role in the treatment of autoimmune disorders and [...] Read more.
Chimeric antigen receptor (CAR)-T immunotherapy has revolutionized the management of patients with relapsed/refractory B-cell hematological malignancies. There is emerging evidence that CAR-engineered cells—not only T cells, but also natural killers and macrophages—might have a crucial role in the treatment of autoimmune disorders and solid tumors. Moreover, given the burden of chronic infectious diseases, the mortality and morbidity of infections in immunocompromised individuals, and the development of multidrug-resistant pathogens, including bacteria, fungi, and mycobacteria, a need for novel and personalized therapeutics in this field is emerging. To this end, the development of CAR cells for the management of chronic infections has been reported. In this literature review, we summarize the ongoing clinical and pre-clinical data about CAR cell products in the field of infectious diseases. Currently, clinical studies on CAR immunotherapy for infections mainly concern human immunodeficiency virus infection treatment, and data regarding other infections largely originate from preclinical in vitro and in vivo models. In the era of personalized medicine, effective and safe therapies for the management of chronic infections and infectious complications in immunocompromised patients are crucial. Full article
(This article belongs to the Special Issue Bacterial Resistance and Novel Therapeutic Approaches)
Show Figures

Figure 1

51 pages, 2918 KiB  
Review
Therapeutic Applications and Mechanisms of Superoxide Dismutase (SOD) in Different Pathogenesis
by Shehwaz Anwar, Tarique Sarwar, Amjad Ali Khan and Arshad Husain Rahmani
Biomolecules 2025, 15(8), 1130; https://doi.org/10.3390/biom15081130 - 5 Aug 2025
Abstract
An imbalance between the generation of reactive oxygen species (ROS) and antioxidant defenses is known as oxidative stress, and it is implicated in a number of diseases. The superoxide radical O2– is produced by numerous biochemically relevant redox processes and is thought [...] Read more.
An imbalance between the generation of reactive oxygen species (ROS) and antioxidant defenses is known as oxidative stress, and it is implicated in a number of diseases. The superoxide radical O2– is produced by numerous biochemically relevant redox processes and is thought to play role in diseases and pathological processes, such as aging, cancer, membrane or DNA damage, etc.; SOD, or superoxide dismutase, is essential for reducing oxidative stress. As a result, the elimination of ROS by SOD may be a useful disease prevention tactic. There have been reports of protective effects against neurodegeneration, apoptosis, carcinogenesis, and radiation. Exogenous SODs’ low bioavailability has drawn criticism. However, this restriction might be removed, and interest in SOD’s medicinal qualities increased with advancements in its formulation. This review discusses the findings of human and animal studies that support the benefits of SOD enzyme regulation in reducing oxidative stress in various ways. Additionally, this review summarizes contemporary understandings of the biology of Cu/Zn superoxide dismutase 1 (SOD1) from SOD1 genetics and its therapeutic potential. Full article
(This article belongs to the Topic Enzymes and Enzyme Inhibitors in Drug Research)
Show Figures

Figure 1

14 pages, 1058 KiB  
Article
Sex- and Age-Specific Utilization Patterns of Nuclear Medicine Procedures at a Public Tertiary Hospital in Jamaica
by Tracia-Gay Kennedy-Dixon, Mellanie Didier, Fedrica Paul, Andre Gordon, Marvin Reid and Maxine Gossell-Williams
Hospitals 2025, 2(3), 21; https://doi.org/10.3390/hospitals2030021 - 5 Aug 2025
Viewed by 34
Abstract
Understanding the utilization patterns of nuclear medicine (NM) services is essential for optimizing resource allocation and service provision. This study aimed to address the regional evidence gap by reporting the demand for NM services by sex and age at a public hospital in [...] Read more.
Understanding the utilization patterns of nuclear medicine (NM) services is essential for optimizing resource allocation and service provision. This study aimed to address the regional evidence gap by reporting the demand for NM services by sex and age at a public hospital in Jamaica. This was a non-experimental, retrospective study of NM scans that were completed at the University Hospital of the West Indies from 1 June 2022 to 31 May 2024. While all scans were reported in the descriptive totals, for patients with multiple scans during the study period, only the data from the first visit was used in the inferential statistical analysis. This was performed with the IBM SPSS (version 29.0) software and involved the use of chi-square goodness of fit and multinomial logistic regression. A total of 1135 NM scans for 1098 patients were completed (37 patients had more than one scan); 596 (54.3%) were female and 502 (45.7%) were male, with the ages ranging from 3 days to 94 years old. Among the female patients, there was a greater demand in the ≥60 years age group for cardiac amyloid scans (χ2 = 6.40, p < 0.05), while females 18–59 years had a greater demand for thyroid scans (χ2 = 7.714, p < 0.05) and bone scans (χ2 = 3.904, p < 0.05). On the other hand, significantly more males in the ≥60 age group presented for cardiac amyloid (χ2 = 4.167; p < 0.05) and bone scans (χ2 = 145.79, p < 0.01). Males were significantly less likely to undergo a thyroid scan than females (p < 0.01, OR = 0.072, 95% CI: 0.021, 0.243) while individuals aged 18–59 years were more likely to undergo this scan than patients aged 60 or older (p = 0.02, OR = 3.565, 95% CI: 1.258, 10.104). Males were more likely to do a cardiac amyloid scan (p < 0.05, OR = 2.237, 95% CI: 1.023, 4.891) but less likely to undergo a cardiac rest/stress test than females (p = 0.02, OR = 0.307, 95% CI: 0.114, 0.828). Prolonged life expectancy and an aging population have the potential to impact NM utilization, thus requiring planning for infrastructure, equipment, work force, and supplies. Cancer-related and cardiovascular indications are a top priority at this facility; hence, age- and sex-specific analysis are useful in establishing models for policy makers with regard to the allocation of economic and human resources for the sustainability of this specialized service. Full article
Show Figures

Figure 1

14 pages, 1032 KiB  
Article
Impact of Donor Age on Graft Failure After Deceased Donor Liver Transplantation by Donor-Recipient Sex Combinations: An Analysis of the UNOS OPTN Database
by Sangbin Han, Vatche A. Agopian, Justin A. Steggerda, Irene K. Kim, Alison Sanford, Yi-Te Lee, Ji-Hye Kwon, Jin Soo Rhu, Gaab Soo Kim and Ju-Dong Yang
J. Pers. Med. 2025, 15(8), 357; https://doi.org/10.3390/jpm15080357 - 5 Aug 2025
Viewed by 78
Abstract
Background Sex disparity has been highlighted in personalized medicine for various human diseases including acute/chronic liver diseases. In the transplant community, greater graft failure risk in female-to-male liver transplantation (LT) has been repeatedly reported, and a recent study in living donor LT reported [...] Read more.
Background Sex disparity has been highlighted in personalized medicine for various human diseases including acute/chronic liver diseases. In the transplant community, greater graft failure risk in female-to-male liver transplantation (LT) has been repeatedly reported, and a recent study in living donor LT reported that the inferiority of female-to-male LT is shown only when donor age is ≤40 y. We aimed to analyze the United Network for Organ Sharing (UNOS) database to test if the poorer outcome of female-to-male LT changes by donor age of 40 y in deceased donor LT, as shown in living donor LT. Methods In this retrospective cohort study, 11,752 adult patients in the UNOS registry who underwent deceased donor LT between 2000–2023 were analyzed. Multivariable analysis was performed to adjust the effects from transplant years, graft ischemia time, disease severity, and others. The primary outcome was graft failure. Results Within the subgroup of recipients with ≤40 y donors, graft failure risk was significantly greater in female-to-male LT than others (vs. female-to-female, HR = 1.43 [1.16–1.76], p < 0.001; vs. male-to-female, HR = 1.46 [1.18–1.81], p < 0.001; vs. male-to-male, HR = 1.26 [1.16–1.49], p = 0.009). In contrast, within the subgroup of recipients with >40 y donors, the risk was comparable between female-to-male LT and other donor-recipient sex groups (vs. female-to-female, p = 0.907; vs. male-to-female, p = 0.781; vs. male-to-male, p = 0.937). We tested various cutoff donor ages and determined that 40 y is the best cutoff value to define the risk subgroup in female-to-male LT. Conclusions In the current study, we found that the sex disparity shown in living donor LT is also observed in deceased donor LT. That is, post-transplant graft failure risk was greater in female-to-male LT than other donor–recipient sex groups only when donor age was ≤40 y. In contrast, graft failure risk was comparable irrespective of donor-recipient sex combinations when donor age was >40 y. Full article
(This article belongs to the Special Issue Sex and Gender-Related Issues in the Era of Personalized Medicine)
Show Figures

Figure 1

38 pages, 9437 KiB  
Review
Antibacterial Polysaccharides in Dental Implantology
by Lubica Hallmann and Mark Daniel Gerngroß
Mar. Drugs 2025, 23(8), 321; https://doi.org/10.3390/md23080321 - 4 Aug 2025
Viewed by 238
Abstract
Background: The aim of this review is to summarize and evaluate the properties of antibacterial polysaccharides for application in dental implantology to identify knowledge gaps and provide new research ideas. Methods: The electronic databases PubMed, Medline, ProQuest, and Google Scholar were used [...] Read more.
Background: The aim of this review is to summarize and evaluate the properties of antibacterial polysaccharides for application in dental implantology to identify knowledge gaps and provide new research ideas. Methods: The electronic databases PubMed, Medline, ProQuest, and Google Scholar were used to search for peer-reviewed scientific publications published between 2018 and 2025 that provide insights to answer research questions on the role of antibacterial polysaccharides in combating pathogens in dental implantology without triggering immune reactions and inflammation. Further research questions relate to the efficacy against various dental pathogens and the understanding of the antibacterial mechanism, which may enable the development of functionalized polysaccharides with long-term antibacterial activity. Results: Biomedical implants have revolutionized medicine but also increased the risk of infections. Implant infections are a major problem in implantology and lead to implant failure and replacement. An antibacterial coating could be an excellent strategy to extend the lifespan of implants and improve the quality of the patient’s life. Bacterial resistance to antibiotics poses significant challenges for researchers, forcing them to search for new ways to prevent bacterial infections in implantology. Antibacterial natural polymers have recently received considerable research attention due to their long-term antibacterial activity. Polysaccharides from marine sources, such as chitosan and alginate, or pectin, xanthan, etc., from various plants, appear to be promising biopolymers for such applications in implantology due to their antibacterial activity, biocompatibility, and osteogenic properties. The antibacterial activity of these natural biopolymers depends on their chemical and physical properties. Nanopolysaccharides exhibit higher antibacterial activity than conventional polysaccharides, but their toxicity to human cells must be considered. Their antibacterial activity is based on the disruption of bacterial DNA or RNA synthesis, increased cell wall permeability, membrane disruption, and cytoplasmic leakage. Conclusions: Polysaccharides are a class of natural polymers with a broad spectrum of biological activities. They exhibit antioxidant, immunomodulatory, anticoagulant, anticancer, anti-inflammatory, antibacterial, and antiviral activity. Furthermore, polysaccharides are non-cytotoxic and exhibit good biocompatibility with osteogenic cells. Bactericidal polysaccharides are attractive new antibacterial materials against implant infections and open up new perspectives in implantology. Full article
(This article belongs to the Special Issue Marine Biomaterials for Dental Applications)
Show Figures

Figure 1

42 pages, 1407 KiB  
Review
Antioxidants and Reactive Oxygen Species: Shaping Human Health and Disease Outcomes
by Charles F. Manful, Eric Fordjour, Dasinaa Subramaniam, Albert A. Sey, Lord Abbey and Raymond Thomas
Int. J. Mol. Sci. 2025, 26(15), 7520; https://doi.org/10.3390/ijms26157520 - 4 Aug 2025
Viewed by 264
Abstract
Reactive molecules, including oxygen and nitrogen species, serve dual roles in human physiology. While they function as essential signaling molecules under normal physiological conditions, they contribute to cellular dysfunction and damage when produced in excess by normal metabolism or in response to stressors. [...] Read more.
Reactive molecules, including oxygen and nitrogen species, serve dual roles in human physiology. While they function as essential signaling molecules under normal physiological conditions, they contribute to cellular dysfunction and damage when produced in excess by normal metabolism or in response to stressors. Oxidative/nitrosative stress is a pathological state, resulting from the overproduction of reactive species exceeding the antioxidant capacity of the body, which is implicated in several chronic human diseases. Antioxidant therapies aimed at restoring redox balance and preventing oxidative/nitrosative stress have demonstrated efficacy in preclinical models. However, their clinical applications have met with inconsistent success owing to efficacy, safety, and bioavailability concerns. This summative review analyzes the role of reactive species in human pathophysiology, the mechanisms of action of antioxidant protection, and the challenges that hinder their translation into effective clinical therapies in order to evaluate potential emerging strategies such as targeted delivery systems, precision medicine, and synergistic therapeutic approaches, among others, to overcome current limitations. By integrating recent advances, this review highlights the value of targeting reactive species in the prevention and management of chronic diseases. Full article
Show Figures

Figure 1

12 pages, 737 KiB  
Article
Hematologic Ratios in Donkeys: Reference Intervals and Response to Experimentally Induced Endotoxemia
by Carmen Davias, Francisco J. Mendoza, Adelaida De Las Heras, Carlos Gonzalez-De-Cara, Antonio Buzon-Cuevas and Alejandro Perez-Ecija
Animals 2025, 15(15), 2272; https://doi.org/10.3390/ani15152272 - 4 Aug 2025
Viewed by 137
Abstract
Endotoxemia is commonly observed in donkeys, secondary to colic, pleuropneumonia, or diarrhea among other disorders. Hematologic ratios are new biomarkers widely used in the diagnosis and prognosis of multiple conditions in human medicine, including sepsis. While the utility of these ratios has been [...] Read more.
Endotoxemia is commonly observed in donkeys, secondary to colic, pleuropneumonia, or diarrhea among other disorders. Hematologic ratios are new biomarkers widely used in the diagnosis and prognosis of multiple conditions in human medicine, including sepsis. While the utility of these ratios has been proved in septic foals, no data are available on donkeys. Moreover, reference intervals (RIs) have not been studied in this species. In this study, RIs of the most commonly reported hematologic ratios were determined in 73 healthy adult donkeys. In addition, variations in these ratios in response to LPS infusion were also evaluated in six healthy adult donkeys. Most of the ratios evaluated showed significant variations after induced endotoxemia, with most of them showing values outside of the established RIs. Similarly to septic foals, the neutrophil to lymphocyte ratio was significantly reduced after LPS infusion. No significant changes were observed in the red cell distribution width to platelet ratio, contrary to reports on septic foals. Previously reported cut-off values for both of these ratios should not be extrapolated to donkeys. Future studies evaluating these ratios in natural endotoxemia or other diseases in donkeys, as well as establishing species-specific cut-off values, are necessary. Full article
(This article belongs to the Special Issue Current Research on Donkeys and Mules)
Show Figures

Figure 1

12 pages, 1164 KiB  
Case Report
Chronic Hyperplastic Candidiasis—An Adverse Event of Secukinumab in the Oral Cavity: A Case Report and Literature Review
by Ana Glavina, Bruno Špiljak, Merica Glavina Durdov, Ivan Milić, Marija Ana Perko, Dora Mešin Delić and Liborija Lugović-Mihić
Diseases 2025, 13(8), 243; https://doi.org/10.3390/diseases13080243 - 3 Aug 2025
Viewed by 140
Abstract
Secukinumab (SEC) is a recombinant, fully human monoclonal antibody that is selective for interleukin-17A (IL-17A). SEC may increase the risk of developing infections such as oral herpes and oral candidiasis. The aim of this case report and literature review was to describe chronic [...] Read more.
Secukinumab (SEC) is a recombinant, fully human monoclonal antibody that is selective for interleukin-17A (IL-17A). SEC may increase the risk of developing infections such as oral herpes and oral candidiasis. The aim of this case report and literature review was to describe chronic hyperplastic candidiasis (CHC) in a patient with psoriasis (PsO) and psoriatic arthritis (PsA) treated with SEC. CHC is a rare and atypical clinical entity. A definitive diagnosis requires biopsy of the oral mucosa for histopathological diagnosis (PHD). The differential diagnosis includes hairy tongue, hairy leukoplakia, oral lichen planus (OLP), oral lichenoid reaction (OLR), leukoplakia, frictional keratosis, morsication, oral psoriasis, syphilis, and oral lesions associated with coronavirus disease (COVID-19). In addition to the usual factors (xerostomia, smoking, antibiotics, vitamin deficiency, immunosuppression, comorbidities), the new biological therapies/immunotherapies are a predisposing factor for oral candidiasis. The therapeutic approach must be multidisciplinary and in consultation with a clinical immunologist. Dentists and specialists (oral medicine, dermatologists, rheumatologists) must be familiar with the oral adverse events of the new biological therapies. Simultaneous monitoring of patients by clinical immunology and oral medicine specialists is crucial for timely diagnosis and therapeutic intervention to avoid possible adverse events and improve quality of life (QoL). Full article
(This article belongs to the Special Issue Oral Health and Care)
Show Figures

Figure 1

Back to TopTop