Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,364)

Search Parameters:
Keywords = human-like interactive

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 338 KiB  
Article
ChatGPT as a Stable and Fair Tool for Automated Essay Scoring
by Francisco García-Varela, Miguel Nussbaum, Marcelo Mendoza, Carolina Martínez-Troncoso and Zvi Bekerman
Educ. Sci. 2025, 15(8), 946; https://doi.org/10.3390/educsci15080946 - 23 Jul 2025
Abstract
The evaluation of open-ended questions is typically performed by human instructors using predefined criteria to uphold academic standards. However, manual grading presents challenges, including high costs, rater fatigue, and potential bias, prompting interest in automated essay scoring systems. While automated essay scoring tools [...] Read more.
The evaluation of open-ended questions is typically performed by human instructors using predefined criteria to uphold academic standards. However, manual grading presents challenges, including high costs, rater fatigue, and potential bias, prompting interest in automated essay scoring systems. While automated essay scoring tools can assess content, coherence, and grammar, discrepancies between human and automated scoring have raised concerns about their reliability as standalone evaluators. Large language models like ChatGPT offer new possibilities, but their consistency and fairness in feedback remain underexplored. This study investigates whether ChatGPT can provide stable and fair essay scoring—specifically, whether identical student responses receive consistent evaluations across multiple AI interactions using the same criteria. The study was conducted in two marketing courses at an engineering school in Chile, involving 40 students. Results showed that ChatGPT, when unprompted or using minimal guidance, produced volatile grades and shifting criteria. Incorporating the instructor’s rubric reduced this variability but did not eliminate it. Only after providing an example-rich rubric, a standardized output format, low temperature settings, and a normalization process based on decision tables did ChatGPT-4o demonstrate consistent and fair grading. Based on these findings, we developed a scalable algorithm that automatically generates effective grading rubrics and decision tables with minimal human input. The added value of this work lies in the development of a scalable algorithm capable of automatically generating normalized rubrics and decision tables for new questions, thereby extending the accessibility and reliability of automated assessment. Full article
(This article belongs to the Section Technology Enhanced Education)
29 pages, 4988 KiB  
Article
Amphiphilic Oligonucleotide Derivatives as a Tool to Study DNA Repair Proteins
by Svetlana N. Khodyreva, Alexandra A. Yamskikh, Ekaterina S. Ilina, Mikhail M. Kutuzov, Ekaterina A. Belousova, Maxim S. Kupryushkin, Timofey D. Zharkov, Olga A. Koval, Sofia P. Zvereva and Olga I. Lavrik
Int. J. Mol. Sci. 2025, 26(15), 7078; https://doi.org/10.3390/ijms26157078 - 23 Jul 2025
Abstract
Modified oligonucleotides (oligos) are widely used as convenient tools in many scientific fields, including biomedical applications and therapies. In particular, oligos with lipophilic groups attached to the backbone ensure penetration of the cell membrane without the need for transfection. This study examines the [...] Read more.
Modified oligonucleotides (oligos) are widely used as convenient tools in many scientific fields, including biomedical applications and therapies. In particular, oligos with lipophilic groups attached to the backbone ensure penetration of the cell membrane without the need for transfection. This study examines the interaction between amphiphilic DNA duplexes, in which one of the chains contains a lipophilic substituent, and several DNA repair proteins, particularly DNA-damage-dependent PARPs, using various biochemical approaches. DNA with a lipophilic substituent (LS-DNA) demonstrates more efficient binding with DNA damage activated poly(AD-ribose) polymerases 1-3 (PARP1, PARP2, PARP3) and DNA polymerase β. Chemically reactive LS-DNA derivatives containing a photoactivatable nucleotide (photo-LS-DNAs) or a 5′ deoxyribose phosphate (dRP) group in the vicinity of double-strand breaks (DSBs) are used for the affinity labelling of PARPs and other proteins in several whole-cell extracts of human cells. In particular, photo-LS-DNAs are used to track the level of Ku antigen in the extracts of neuron-like differentiated SH-SY5Y, undifferentiated SH-SY5Y, and olfactory epithelial cells. In vitro, PARP1–PARP3 are shown to be able to slowly excise the 5′ dRP group at DSBs. LS-DNAs can activate PARP1 and PARP2 for autoPARylation, albeit less effectively than regular DNA duplexes. Full article
Show Figures

Figure 1

17 pages, 1310 KiB  
Article
Assessment of Suppressive Effects of Negative Air Ions on Fungal Growth, Sporulation and Airborne Viral Load
by Stefan Mijatović, Andrea Radalj, Andjelija Ilić, Marko Janković, Jelena Trajković, Stefan Djoković, Borko Gobeljić, Aleksandar Sovtić, Gordana Petrović, Miloš Kuzmanović, Jelena Antić Stanković, Predrag Kolarž and Irena Arandjelović
Atmosphere 2025, 16(8), 896; https://doi.org/10.3390/atmos16080896 - 22 Jul 2025
Abstract
Spores of filamentous fungi are common biological particles in indoor air that can negatively impact human health, particularly among immunocompromised individuals and patients with chronic respiratory conditions. Airborne viruses represent an equally pervasive threat, with some carrying the potential for pandemic spread, affecting [...] Read more.
Spores of filamentous fungi are common biological particles in indoor air that can negatively impact human health, particularly among immunocompromised individuals and patients with chronic respiratory conditions. Airborne viruses represent an equally pervasive threat, with some carrying the potential for pandemic spread, affecting both healthy individuals and the immunosuppressed alike. This study investigated the abundance and diversity of airborne fungal spores in both hospital and residential environments, using custom designed air samplers with or without the presence of negative air ions (NAIs) inside the sampler. The main purpose of investigation was the assessment of biological effects of NAIs on fungal spore viability, deposition, mycelial growth, and sporulation, as well as airborne viral load. The precise assessment of mentioned biological effects is otherwise difficult to carry out due to low concentrations of studied specimens; therefore, specially devised and designed, ion-bioaerosol interaction air samplers were used for prolonged collection of specimens of interest. The total fungal spore concentrations were quantified, and fungal isolates were identified using cultural and microscopic methods, complemented by MALDI-TOF mass spectrometry. Results indicated no significant difference in overall spore concentration between environments or treatments; however, presence of NAIs induced a delay in the sporulation process of Cladosporium herbarum, Aspergillus flavus, and Aspergillus niger within 72 h. These effects of NAIs are for the first time demonstrated in this work; most likely, they are mediated by oxidative stress mechanisms. A parallel experiment demonstrated a substantially reduced concentration of aerosolized equine herpesvirus 1 (EHV-1) DNA within 10–30 min of exposure to NAIs, with more than 98% genomic load reduction beyond natural decay. These new results on the NAIs interaction with a virus, as well as new findings regarding the fungal sporulation, resulted in part from a novel interaction setup designed for experiments with the bioaerosols. Our findings highlight the potential of NAIs as a possible approach for controlling fungal sporulation and reducing airborne viral particle quantities in indoor environments. Full article
(This article belongs to the Section Aerosols)
Show Figures

Figure 1

31 pages, 23687 KiB  
Article
Spatiotemporal Dynamics of Ecosystem Services and Human Well-Being in China’s Karst Regions: An Integrated Carbon Flow-Based Assessment
by Yinuo Zou, Yuefeng Lyu, Guan Li, Yanmei Ye and Cifang Wu
Land 2025, 14(8), 1506; https://doi.org/10.3390/land14081506 - 22 Jul 2025
Viewed by 45
Abstract
The relationship between ecosystem services (ESs) and human well-being (HWB) is a central issue of sustainable development. However, current research often relies on qualitative frameworks or indicator-based assessments, limiting a comprehensive understanding of the relationship between natural environment and human acquisition, which still [...] Read more.
The relationship between ecosystem services (ESs) and human well-being (HWB) is a central issue of sustainable development. However, current research often relies on qualitative frameworks or indicator-based assessments, limiting a comprehensive understanding of the relationship between natural environment and human acquisition, which still needs to be strengthened. As an element transferred in the natural–society coupling system, carbon can assist in characterizing the dynamic interactions within coupled human–natural systems. Carbon, as a fundamental element transferred across ecological and social spheres, offers a powerful lens to characterize these linkages. This study develops and applies a novel analytical framework that integrates carbon flow as a unifying metric to quantitatively assess the spatiotemporal dynamics of the land use and land cover change (LUCC)–ESs–HWB nexus in Guizhou Province, China, from 2000 to 2020. The results show that: (1) Ecosystem services in Guizhou showed distinct trends from 2000 to 2020: supporting and regulating services declined and then recovered, and provisioning services steadily increased, while cultural services remained stable but varied across cities. (2) Human well-being generally improved over time, with health remaining stable and the HSI rising across most cities, although security levels fluctuated and remained low in some areas. (3) The contribution of ecosystem services to human well-being peaked in 2010–2015, followed by declines in central and northern regions, while southern and western areas maintained or improved their levels. (4) Supporting and regulating services were positively correlated with HWB security, while cultural services showed mixed effects, with strong synergies between culture and health in cities like Liupanshui and Qiandongnan. Overall, this study quantified the coupled dynamics between ecosystem services and human well-being through a carbon flow framework, which not only offers a unified metric for cross-dimensional analysis but also reduces subjective bias in evaluation. This integrated approach provides critical insights for crafting spatially explicit land management policies in Guizhou and offers a replicable methodology for exploring sustainable development pathways in other ecologically fragile karst regions worldwide. Compared with conventional ecosystem service frameworks, the carbon flow approach provides a process-based, dynamic mediator that quantifies biogeochemical linkages in LUCC–ESs–HWB systems, which is particularly important in fragile karst regions. However, we acknowledge that further empirical comparison with traditional ESs metrics could strengthen the framework’s generalizability. Full article
(This article belongs to the Special Issue Advances in Land Consolidation and Land Ecology (Second Edition))
Show Figures

Graphical abstract

21 pages, 2094 KiB  
Article
Dysregulated Neuroimmune and Anhedonia-like Behavioral Response Following Peripheral Immune Challenge in Mice Carrying the Val66Met Brain-Derived Neurotrophic Factor Polymorphism
by Mustafa N. Mithaiwala, Allison M. Dugan, Miguel A. de la Flor, Sandeep K. Subramanian, Ashley Acheson and Jason C. O’Connor
Psychiatry Int. 2025, 6(3), 87; https://doi.org/10.3390/psychiatryint6030087 - 21 Jul 2025
Viewed by 182
Abstract
Dysregulated inflammatory processes contribute to depression, and gene–environment interactions may influence an individual’s risk and resilience. Reduced brain-derived neurotrophic factor (BDNF) expression increases susceptibility for developing depressive symptoms, and the Val66Met (rs6265) single-nucleotide polymorphism (SNP) on the BDNF gene is linked to mood [...] Read more.
Dysregulated inflammatory processes contribute to depression, and gene–environment interactions may influence an individual’s risk and resilience. Reduced brain-derived neurotrophic factor (BDNF) expression increases susceptibility for developing depressive symptoms, and the Val66Met (rs6265) single-nucleotide polymorphism (SNP) on the BDNF gene is linked to mood disorders. However, whether Val66Met confers increased vulnerability to inflammation-induced depressive tendencies is unknown. Here, we tested the hypothesis that the Val66Met SNP increases vulnerability to inflammation-induced depressive symptoms in a mouse model of lipopolysaccharide (LPS)-induced depression-like behavior. Behavior and neuroinflammation, following a 24 h LPS challenge, were measured in mice expressing the human BDNF Val66Met gene variant or Val66Val littermates (control). The Val66Met genotype did not affect the peripheral inflammatory response, acute neuroinflammation, or the acute sickness behavior response. Val66Met mice exhibited anhedonia-like behavioral responses following LPS challenge, and we found increased mRNA expression of IL-1β and TNFα in the cerebrum compared to controls. The mRNA expression of IL-1β and TNFα in the hippocampus and the nucleus accumbens of Val66Met mice was increased following LPS, and a significant genotype × LPS interaction was detected for CD68 expression in the nucleus accumbens. In summary, these data suggest that immune activation in Val66Met mice increased susceptibility to anhedonic behavior and dysregulated negative regulation of inflammation. Full article
Show Figures

Graphical abstract

14 pages, 9617 KiB  
Article
Disruption of FW2.2-like Genes Enhances Metallic Micronutrient Accumulation in Brown Rice
by Qingsong Gao, Rumeng Sun, Jiayi Ding, Xingdang Xu, Xun Ma, Xi Liu and Hao Zhang
Agronomy 2025, 15(7), 1747; https://doi.org/10.3390/agronomy15071747 - 20 Jul 2025
Viewed by 184
Abstract
Micronutrient deficiencies adversely affect human health and pose a significant global threat. Enhancing the accumulation of micronutrients in the edible parts of crops through genetic breeding is a promising strategy to mitigate micronutrient deficiencies in humans. FW2.2-like (FWL) genes play [...] Read more.
Micronutrient deficiencies adversely affect human health and pose a significant global threat. Enhancing the accumulation of micronutrients in the edible parts of crops through genetic breeding is a promising strategy to mitigate micronutrient deficiencies in humans. FW2.2-like (FWL) genes play crucial roles in regulating heavy metal homeostasis in plants. We previously obtained two allelic mutants for each of the rice OsFWL1 (osfwl1a and osfwl1b) and OsFWL2 (osfwl2a and osfwl2b) genes. In this study, we showed that disruption of either OsFWL1 or OsFWL2 significantly enhanced the accumulation of metallic micronutrients in brown rice. Compared with that in the wild type, the iron (Fe) concentration in brown rice was higher in the osfwl1a (+166.7%), osfwl1b (+24.3%), and osfwl2a (+99.2%) mutants; the manganese (Mn) concentration was elevated in all four mutants (+25.1% to 35.6%); the copper (Cu) concentration increased in osfwl2a (+31.0%) and osfwl2b (+29.0%); and the zinc (Zn) concentration increased in osfwl2a (+10.2%). Additionally, disruption of OsFWL1 or OsFWL2 affected the homeostasis of metallic micronutrients in seedlings. Transcriptome analysis suggested that OsFWL1 and OsFWL2 might regulate cell wall polysaccharide metabolism and the expression of heavy metal transporter genes. Protein interaction analysis revealed that OsFWL1 interacted with OsFWL2 on the cell membrane. These findings suggest that OsFWL1 and OsFWL2 can serve as genetic biofortification tools to increase the concentrations of metallic micronutrients in rice grains. Full article
(This article belongs to the Special Issue Innovative Research on Rice Breeding and Genetics)
Show Figures

Figure 1

11 pages, 676 KiB  
Perspective
Tailoring In-Flight Food Consumption to Alleviate Fear of Flying Through Sensory Stimulation
by Francesco Sansone, Francesca Gorini, Alessandro Tonacci and Francesca Venturi
Appl. Sci. 2025, 15(14), 8057; https://doi.org/10.3390/app15148057 - 19 Jul 2025
Viewed by 239
Abstract
Nowadays, society is becoming increasingly committed to traveling by plane for work, tourism, and leisure in general. However, either due to internal, specific factors or to external determinants, like terrorism and climate changes, a growing number of travelers have experienced the so-called fear [...] Read more.
Nowadays, society is becoming increasingly committed to traveling by plane for work, tourism, and leisure in general. However, either due to internal, specific factors or to external determinants, like terrorism and climate changes, a growing number of travelers have experienced the so-called fear of flying, a persistent, irrational fear of flight-related situations for which a clear, efficacious therapy does not yet exist. Based on the usual interaction with the surrounding environment, conducted by means of the five human senses, and particularly on the neurophysiological pathway followed by the chemical senses, in this study, we revise the findings in the related literature on the topic, proposing an alternative way to alleviate the anxiety related to the fear of flight. This is based on chemosensory stimulation being applied directly during a flight and is possibly concerned with the consumption of meals, an usual activity performed onboard. After an introductory section aimed at understanding the problem, we present some studies related to chemosensory perception during the flight, highlighting the specificities of the scenarios, followed by a description of findings related to the meals proposed by flight companies in this context, and finally wrapping up the possible alternative approaches that could be conducted by such providers to alleviate the fear of flying condition through chemosensory stimulation vehiculated by meals, and enhance the quality of flight experience related to food consumption onboard. Full article
Show Figures

Figure 1

17 pages, 2173 KiB  
Article
Unveiling the Solvent Effect: DMSO Interaction with Human Nerve Growth Factor and Its Implications for Drug Discovery
by Francesca Paoletti, Tjaša Goričan, Alberto Cassetta, Jože Grdadolnik, Mykola Toporash, Doriano Lamba, Simona Golič Grdadolnik and Sonia Covaceuszach
Molecules 2025, 30(14), 3030; https://doi.org/10.3390/molecules30143030 - 19 Jul 2025
Viewed by 180
Abstract
Background: The Nerve Growth Factor (NGF) is essential for neuronal survival and function and represents a key therapeutic target for pain and inflammation-related disorders, as well as for neurodegenerative diseases. Small-molecule antagonists of human NGF (hNGF) offer advantages over monoclonal antibodies, including oral [...] Read more.
Background: The Nerve Growth Factor (NGF) is essential for neuronal survival and function and represents a key therapeutic target for pain and inflammation-related disorders, as well as for neurodegenerative diseases. Small-molecule antagonists of human NGF (hNGF) offer advantages over monoclonal antibodies, including oral availability and reduced immunogenicity. However, their development is often hindered by solubility challenges, necessitating the use of solvents like dimethyl sulfoxide (DMSO). This study investigates whether DMSO directly interacts with hNGF and affects its receptor-binding properties. Methods: Integrative/hybrid computational and experimental biophysical approaches were used to assess DMSO-NGF interaction by combining machine-learning tools and Nuclear Magnetic Resonance (NMR), Fourier Transform Infrared (FT-IR) spectroscopy, Differential Scanning Fluorimetry (DSF) and Grating-Coupled Interferometry (GCI). These techniques evaluated binding affinity, conformational stability, and receptor-binding dynamics. Results: Our findings demonstrate that DMSO binds hNGF with low affinity in a specific yet non-disruptive manner. Importantly, DMSO does not induce significant conformational changes in hNGF nor affect its interactions with its receptors. Conclusions: These results highlight the importance of considering solvent–protein interactions in drug discovery, as these low-affinity yet specific interactions can affect experimental outcomes and potentially alter the small molecules binding to the target proteins. By characterizing DMSO-NGF interactions, this study provides valuable insights for the development of NGF-targeting small molecules, supporting their potential as effective alternatives to monoclonal antibodies for treating pain, inflammation, and neurodegenerative diseases. Full article
Show Figures

Graphical abstract

25 pages, 3050 KiB  
Review
REG3A: A Multifunctional Antioxidant Lectin at the Crossroads of Microbiota Regulation, Inflammation, and Cancer
by Jamila Faivre, Hala Shalhoub, Tung Son Nguyen, Haishen Xie and Nicolas Moniaux
Cancers 2025, 17(14), 2395; https://doi.org/10.3390/cancers17142395 - 19 Jul 2025
Viewed by 275
Abstract
REG3A, a prominent member of the human regenerating islet-derived (REG) lectin family, plays a pivotal and multifaceted role in immune defense, inflammation, and cancer biology. Primarily expressed in gastrointestinal epithelial cells, REG3A reinforces barrier integrity, orchestrates mucosal immune responses, and regulates host–microbiota interactions. [...] Read more.
REG3A, a prominent member of the human regenerating islet-derived (REG) lectin family, plays a pivotal and multifaceted role in immune defense, inflammation, and cancer biology. Primarily expressed in gastrointestinal epithelial cells, REG3A reinforces barrier integrity, orchestrates mucosal immune responses, and regulates host–microbiota interactions. It also functions as a potent non-enzymatic antioxidant, protecting tissues from oxidative stress. REG3A expression is tightly regulated by inflammatory stimuli and is robustly induced during immune activation, where it limits microbial invasion, dampens tissue injury, and promotes epithelial repair. Beyond its antimicrobial and immunomodulatory properties, REG3A contributes to the resolution of inflammation and the maintenance of tissue homeostasis. However, its role in cancer is highly context-dependent. In some tumor types, REG3A fosters malignant progression by enhancing cell survival, proliferation, and invasiveness. In others, it acts as a tumor suppressor, inhibiting growth and metastatic potential. These opposing effects are likely dictated by a combination of factors, including the tissue of origin, the composition and dynamics of the tumor microenvironment, and the stage of disease progression. Additionally, the secreted nature of REG3A implies both local and systemic effects, further modulated by organ-specific physiology. Experimental variability may also reflect differences in methodologies, analytical tools, and model systems used. This review synthesizes current knowledge on the pleiotropic functions of REG3A, emphasizing its roles in epithelial defense, immune regulation, redox homeostasis, and oncogenesis. A deeper understanding of REG3A’s pleiotropic effects could open up new therapeutic avenues in both inflammatory disorders and cancer. Full article
(This article belongs to the Special Issue Lectins in Cancer)
Show Figures

Figure 1

23 pages, 1654 KiB  
Review
The Small Intestinal Microbiota and the Gut–Brain Axis in Parkinson’s Disease: A Narrative Review
by Gloria Carrossa, Valentina Misenti, Sofia Faggin, Maria Cecilia Giron and Angelo Antonini
Biomedicines 2025, 13(7), 1769; https://doi.org/10.3390/biomedicines13071769 - 19 Jul 2025
Viewed by 389
Abstract
Researchers are increasingly focusing on understanding the microbiota’s influence on disease susceptibility and overall health. The vast number of microorganisms in our gastrointestinal tract and their extensive surface area underscore their undeniable impact on well-being. Viewing the gut microbiome as a distinct pool [...] Read more.
Researchers are increasingly focusing on understanding the microbiota’s influence on disease susceptibility and overall health. The vast number of microorganisms in our gastrointestinal tract and their extensive surface area underscore their undeniable impact on well-being. Viewing the gut microbiome as a distinct pool of microbial genetic information that interacts with the human genome highlights its pivotal role in genetically predisposed diseases. Investigating this complex crosstalk may lead to the development of novel therapeutic strategies—such as targeting dysbiosis—to complement conventional treatments and improve patient care. Parkinson’s disease (PD) is a multifactorial condition originating from a combination of genetic and environmental risk factors. Compelling evidence points to the enteric nervous system as an initial site of pathological processes that later extend to the brain—a pattern known as the ‘body-first’ model. Furthermore, most patients with PD exhibit both qualitative and quantitative alterations in the composition of the gut microbiota, including dysbiosis and small intestinal overgrowth. Nonetheless, the existing literature predominantly addresses fecal microbiota, while knowledge of upper intestinal sections, like the duodenum, remains scarce. Given the potential for microbiota modulation to impact both motor and gastrointestinal symptoms, further research exploring the therapeutic roles of balanced diets, probiotics, and fecal transplants in PD is warranted. Full article
Show Figures

Figure 1

19 pages, 2093 KiB  
Review
PHF20L1: An Epigenetic Regulator in Cancer and Beyond
by Yishan Wang, Qin Hu, Haixia Zhao, Lulu Zeng, Zhongwei Zhao, Xia Li, Qiaoyou Weng, Yang Yang, Minjiang Chen, Jiansong Ji and Rongfang Qiu
Biomolecules 2025, 15(7), 1048; https://doi.org/10.3390/biom15071048 - 18 Jul 2025
Viewed by 164
Abstract
Plant homeodomain (PHD) finger protein 20-like 1 (PHF20L1) is a novel epigenetic “reader” that specifically recognises histone post-translational modifications (PTMs) via its Tudor and PHD finger domains, thereby regulating chromatin remodelling, DNA damage repair, and oncogene transcriptional activation. This review comprehensively summarises the [...] Read more.
Plant homeodomain (PHD) finger protein 20-like 1 (PHF20L1) is a novel epigenetic “reader” that specifically recognises histone post-translational modifications (PTMs) via its Tudor and PHD finger domains, thereby regulating chromatin remodelling, DNA damage repair, and oncogene transcriptional activation. This review comprehensively summarises the role of PHF20L1 in various cancers, including breast, ovarian, and colorectal cancers, as well as retinoblastomas, and elucidates its molecular mechanisms of action in cancer pathogenesis. Accumulating evidence indicates that PHF20L1 is upregulated in these malignancies and drives tumour progression by promoting proliferation, metastasis, and immune evasion. Furthermore, PHF20L1 orchestrates tumour-related gene expression by interacting with key epigenetic complexes. Given its unique structural features, we propose novel strategies for developing small-molecule inhibitors and combinatorial therapies, providing a theoretical basis for targeted epigenetic regulation for precision treatment. Future research should further investigate the molecular regulatory networks of PHF20L1 in different cancers and other human diseases and focus on developing specific small-molecule inhibitors to enable precision-targeted therapies. Full article
(This article belongs to the Special Issue Tumor Genomics and Liquid Biopsy in Cancer Biology)
Show Figures

Figure 1

27 pages, 21524 KiB  
Article
Synergistic Combinations of Native Australian Plants For Skin Inflammation and Wound Healing
by Rotina Kapini, Dennis Chang, Gerald Münch, Lisa Carroll and Xian Zhou
Biomedicines 2025, 13(7), 1754; https://doi.org/10.3390/biomedicines13071754 - 17 Jul 2025
Viewed by 321
Abstract
Background: Inflammation and oxidative stress are key mechanisms in underlying skin conditions like psoriasis and eczema. While many plants, including Australian native plants, are proposed to target these pathways due to their phytochemical content, studies on whole extracts and their synergistic effects remain [...] Read more.
Background: Inflammation and oxidative stress are key mechanisms in underlying skin conditions like psoriasis and eczema. While many plants, including Australian native plants, are proposed to target these pathways due to their phytochemical content, studies on whole extracts and their synergistic effects remain limited. Objectives: This study aimed to investigate individual and combined effects of whole plant extracts on skin protection and healing, focusing on their anti-inflammatory and antioxidant properties. Methods: The antioxidant potential of the individual and combined plant extracts were investigated on 2,2-diphenyl-1-picrylhydrazyl (DPPH) and reactive oxygen species (ROS) assay followed by luciferase assay in MCF-7 AREc32 cells for nuclear factor erythroid 2-related factor 2 (Nrf2) activation. The anti-inflammatory activities were investigated on lipopolysaccharide (LPS)-induced RAW 264.7 murine macrophages for the inhibition of nitric oxide (NO), tumour necrosis factor (TNF)-α, and interleukin (IL)-6. Synergistic interaction was determined by the combination index model (CI < 1). Combination(s) showing synergistic and optimal activity were further investigated on LPS-induced human dermal fibroblasts (HDF) cells for IL-6 inhibition and wound healing activity. Results: Three of the tested Australian native plant extracts demonstrated prominent antioxidant and anti-inflammatory activities including bitter orange, mountain pepper berry and native river mint. In particular, their three-way combination (1:1:1, w/w) showed prominent synergistic (CI < 1) in reducing NO and IL-6, along with enhanced Nrf2 activation. In LPS-inflamed HDF cells, the combination maintained synergistic inhibition of IL-6 levels and promoted wound healing response. Conclusions: These findings highlight the therapeutic potential of Australian native plant as a whole extract for skin protection and repair attributed to antioxidant and anti-inflammatory activities. The observed synergistic anti-inflammatory and antioxidant effects support their use in the development of new cosmetic formulations for skin. Full article
Show Figures

Graphical abstract

18 pages, 1047 KiB  
Article
Protein Functional Effector (pfe) Noncoding RNAS Are Identical to Fragments from Various Noncoding RNAs
by Roberto Patarca and William A. Haseltine
Int. J. Mol. Sci. 2025, 26(14), 6870; https://doi.org/10.3390/ijms26146870 - 17 Jul 2025
Viewed by 148
Abstract
Protein functional effector (pfe)RNAs were introduced in 2015 as PIWI-interacting-like small noncoding (nc)RNAs and were later categorized as a novel group based on being 2′-O-methylated at their 3′-end, directly binding and affecting protein function, but not levels, and not matching known RNAs. Here, [...] Read more.
Protein functional effector (pfe)RNAs were introduced in 2015 as PIWI-interacting-like small noncoding (nc)RNAs and were later categorized as a novel group based on being 2′-O-methylated at their 3′-end, directly binding and affecting protein function, but not levels, and not matching known RNAs. Here, we document that human pfeRNAs match fragments of GenBank database-annotated human ncRNAs. PDLpfeRNAa matches the 3′-half fragment of a mitochondrial transfer (t)RNA, and PDLpfeRNAb matches a 28S ribosomal (r)RNA fragment. These PDLpfeRNAs are known to bind to tumor programmed death ligand (PD-L)1, enhancing or inhibiting its interaction with lymphocyte PD-1 and consequently tumor immune escape, respectively. In a validated 8-pfeRNA-set classifier for pulmonary nodule presence and benign vs. malignant nature, seven here match one or more of the following: transfer, micro, Y, PIWI, long (lnc)RNAs, and a PDLpfeRNAa fragment. The previously identified chromosomal locations of these pfeRNAs and their matches partially overlap. Another 2-pfeRNA set was previously determined to distinguish between controls, patients with pulmonary tuberculosis, and those with lung cancer. One pfeRNA, previously shown to bind p60-DMAD and affect apoptosis, complements small nucleolar RNA SNORD45C, matching smaller 18S rRNA and lncRNA segments. Thus, pfeRNAs appear to have a common origin with known multifunctional ncRNA fragments. Differential modification may contribute to the multifunctionality of ncRNAs. For instance, for tRNA fragments, stabilizing 3′-end 2′-O-methylation, 3′-aminoacylation, and glycosylation modifications may regulate protein function, translation, and extracellular effects, respectively. One ncRNA gene can encode multiple fragments, multiple genes can encode the same fragment, and differentially modified ncRNA fragments might synergize or antagonize each other. Full article
(This article belongs to the Special Issue Targeting RNA Molecules)
Show Figures

Graphical abstract

26 pages, 9214 KiB  
Article
Fishing-Related Plastic Pollution on Bocassette Spit (Northern Adriatic): Distribution Patterns and Stakeholder Perspectives
by Corinne Corbau, Alexandre Lazarou and Umberto Simeoni
J. Mar. Sci. Eng. 2025, 13(7), 1351; https://doi.org/10.3390/jmse13071351 - 16 Jul 2025
Viewed by 261
Abstract
Plastic pollution in marine environments is a globally recognized concern that poses ecological and economic threats. While 80% of plastic originates from land, 20% comes from sea-based sources like shipping and fishing. Comprehensive assessments of fishing-related plastics are limited but crucial for mitigation. [...] Read more.
Plastic pollution in marine environments is a globally recognized concern that poses ecological and economic threats. While 80% of plastic originates from land, 20% comes from sea-based sources like shipping and fishing. Comprehensive assessments of fishing-related plastics are limited but crucial for mitigation. This study analyzed the distribution and temporal evolution of three fishing-related items (EPS fish boxes, fragments, and buoys) along the Bocassette spit in the northern Adriatic Sea, a region with high fishing and aquaculture activity. UAV monitoring (November 2019, June/October 2020) and structured interviews with Po Delta fishermen were conducted. The collected debris was mainly EPS, with boxes (54.8%) and fragments (39.6%). Fishermen showed strong awareness of degradation, identifying plastic as the primary litter type and reporting gear loss. Litter concentrated in active dunes and the southern sector indicates human and riverine influence. Persistent items (61%) at higher elevations suggest longer residence times. Mapped EPS boxes could generate billions of micro-particles (e.g., ~1013). The results reveal a complex interaction between natural processes and human activities in litter distribution. This highlights the need for integrated management strategies, like improved waste management, targeted cleanup, and community involvement, to reduce long-term impacts on vulnerable coastal ecosystems. Full article
(This article belongs to the Section Marine Environmental Science)
Show Figures

Figure 1

15 pages, 4146 KiB  
Article
Monitoring Forest Cover Trends in Nepal: Insights from 2000–2020
by Aditya Eaturu
Sustainability 2025, 17(14), 6511; https://doi.org/10.3390/su17146511 - 16 Jul 2025
Viewed by 369
Abstract
This study investigates the spatial relationship between population distribution and tree cover loss in Nepal from 2000 to 2020, using satellite-based forest cover and population data along with statistical and geospatial analysis. Two statistical methods—linear regression (LR) and Geographically Weighted Regression (GWR)—were used [...] Read more.
This study investigates the spatial relationship between population distribution and tree cover loss in Nepal from 2000 to 2020, using satellite-based forest cover and population data along with statistical and geospatial analysis. Two statistical methods—linear regression (LR) and Geographically Weighted Regression (GWR)—were used to assess the influence of population on forest cover change. The correlation between total population and forest loss at the national level suggested little to no direct impact of population growth on forest loss. However, sub-national analysis revealed localized forest degradation, highlighting the importance of spatial and regional assessments to uncover land cover changes masked by national trends. While LR showed a weak national-level correlation, GWR revealed substantial spatial variation, with the coefficient of determination values increasing from 0.21 in 2000 to 0.59 in 2020. In some regions, local R2 exceeded 0.75 during 2015 and 2020, highlighting emerging hotspot clusters where population pressure is strongly linked to deforestation, especially along major infrastructure corridors. Using very high-resolution spatial data enabled pixel-level analysis, capturing fine-scale deforestation patterns, and confirming hotspot accuracy. Overall, the findings emphasize the value of spatially explicit models like GWR for understanding human–environment interactions guiding targeted land use planning to balance development with environmental sustainability in Nepal. Full article
Show Figures

Figure 1

Back to TopTop