Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (44)

Search Parameters:
Keywords = human tyrosinase related protein-1 (TRP-1)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2061 KiB  
Article
5,7-Dihydroxy-4-Methylcoumarin as a Functional Compound for Skin Pigmentation and Human Skin Safety
by Ye-Jin Lee, Yang Xu and Chang-Gu Hyun
Pharmaceuticals 2025, 18(4), 463; https://doi.org/10.3390/ph18040463 - 25 Mar 2025
Viewed by 707
Abstract
Background/Objectives: This study aims to investigate the effects of 5,7-dihydroxy-4-methylcoumarin (5,7D-4MC) on melanogenesis in B16F10 murine melanoma cells and to evaluate its safety as a potential ingredient for functional cosmetics and therapeutic agents targeting pigmentation-related disorders. Method: The cytotoxicity of 5,7D-4MC was assessed [...] Read more.
Background/Objectives: This study aims to investigate the effects of 5,7-dihydroxy-4-methylcoumarin (5,7D-4MC) on melanogenesis in B16F10 murine melanoma cells and to evaluate its safety as a potential ingredient for functional cosmetics and therapeutic agents targeting pigmentation-related disorders. Method: The cytotoxicity of 5,7D-4MC was assessed using an MTT assay, and melanin content and tyrosinase activity were measured at different concentrations (25, 50, 100 µM). Western blot analyses were conducted to evaluate the expression of key melanogenesis-related proteins (TYR, TRP-1, TRP-2, and MITF) and to investigate the regulation of major signaling pathways, including PKA/cAMP, GSK3β, and PI3K/AKT. Additionally, a human primary skin irritation test was performed on 32 participants to assess the dermatological safety of 5,7D-4MC. Results: 5,7D-4MC did not affect cell viability at concentrations below 100 µM and significantly promoted melanin production in a dose-dependent manner. Tyrosinase activity and the expression levels of melanogenic proteins increased significantly following 5,7D-4MC treatment. PKA and GSK3β pathways were activated, while the PI3K/AKT pathway was downregulated. The skin irritation test showed that 5,7D-4MC exhibited low irritation potential at concentrations of 50 µM and 100 µM. Conclusions: 5,7D-4MC enhances melanogenesis and demonstrates low skin irritation, making it a promising candidate for therapeutic applications in treating hypopigmentation disorders, such as vitiligo, as well as a functional cosmetic ingredient. However, further studies involving human melanocytes and clinical trials are required to validate their efficacy. Full article
Show Figures

Figure 1

18 pages, 2493 KiB  
Article
Rifampicin Repurposing Reveals Anti-Melanogenic Activity in B16F10 Melanoma Cells
by Ye-Jin Lee and Chang-Gu Hyun
Molecules 2025, 30(4), 900; https://doi.org/10.3390/molecules30040900 - 15 Feb 2025
Viewed by 1163
Abstract
Drug repurposing is a cost-effective and innovative strategy for identifying new therapeutic applications for existing drugs, thereby shortening development timelines and accelerating the availability of treatments. Applying this approach to the development of cosmeceutical ingredients enables the creation of functional compounds with proven [...] Read more.
Drug repurposing is a cost-effective and innovative strategy for identifying new therapeutic applications for existing drugs, thereby shortening development timelines and accelerating the availability of treatments. Applying this approach to the development of cosmeceutical ingredients enables the creation of functional compounds with proven safety and efficacy, adding significant value to the cosmetic industry. This study evaluated the potential of rifampicin, a drug widely used for the treatment of tuberculosis and leprosy, as a cosmeceutical agent. The anti-melanogenic effects of rifampicin were assessed in B16F10 melanoma cells, showing no cytotoxicity at concentrations up to 40 µM and a significant reduction in intracellular tyrosinase activity and melanin content. Mechanistically, rifampicin reduced the expression of melanogenic enzymes, including tyrosinase, tyrosinase-related protein (TRP)-1, and TRP-2, via a protein kinase A (PKA)-dependent pathway, leading to the suppression of microphthalmia-associated transcription factor (MITF), which is a key regulator of melanogenesis. Additionally, rifampicin inhibited the p38 signaling pathway but was independent of the PI3K/protein kinase B (Akt) pathway. Furthermore, it decreased Ser9 phosphorylation, enhancing glycogen synthase kinase-3β (GSK-3β) activity, promoted β-catenin phosphorylation, and facilitated β-catenin degradation, collectively contributing to the inhibition of melanin synthesis. To evaluate the topical applicability of rifampicin, primary human skin irritation tests were conducted, and no adverse effects were observed at concentrations of 20 µM and 40 µM. These findings demonstrate that rifampicin inhibits melanogenesis through multiple signaling pathways, including PKA, MAPKs, and GSK-3β/β-catenin. This study highlights the potential of rifampicin to be repurposed as a topical agent for managing hyperpigmentation disorders, offering valuable insights into novel therapeutic strategies for pigmentation-related conditions. Full article
(This article belongs to the Special Issue Advances in Chemistry of Cosmetics)
Show Figures

Figure 1

15 pages, 3522 KiB  
Article
Syringaresinol Attenuates α-Melanocyte-Stimulating Hormone-Induced Reactive Oxygen Species Generation and Melanogenesis
by Kyuri Kim, Jihyun Yoon and Kyung-Min Lim
Antioxidants 2024, 13(7), 876; https://doi.org/10.3390/antiox13070876 - 21 Jul 2024
Cited by 5 | Viewed by 2375
Abstract
Ginseng has been utilized for centuries in both the medicinal and cosmetic realms. Recent studies have actively investigated the biological activity of ginseng berry and its constituents. (+)-Syringaresinol [(+)-SYR], an active component of ginseng berry, has been demonstrated to have beneficial effects on [...] Read more.
Ginseng has been utilized for centuries in both the medicinal and cosmetic realms. Recent studies have actively investigated the biological activity of ginseng berry and its constituents. (+)-Syringaresinol [(+)-SYR], an active component of ginseng berry, has been demonstrated to have beneficial effects on the skin, but its potential impact on skin pigmentation has not been fully explored. Here, the antioxidant and anti-pigmentary activity of (+)-SYR were evaluated in B16F10 murine melanoma cells and in an artificial human pigmented skin model, Melanoderm™. A real-time PCR, Western blotting, immunofluorescence staining, and histochemistry staining were conducted to confirm the effects of (+)-SYR on pigmentation. (+)-SYR reduced melanogenesis and dendrite elongation in α-melanocyte-stimulating hormone (α-MSH)-primed B16F10 cells with low cytotoxicity. (+)-SYR suppressed the expression of melanogenic genes, namely tyrosinase (TYR), tyrosinase-related protein 1 (TRP-1), and tyrosinase-related protein 2 (TRP-2). Notably, (+)-SYR attenuated α-MSH-induced cytosolic and mitochondrial reactive oxygen species (ROS) generation, which was attributable at least in part to the suppression of NADPH oxidase-4 (NOX 4) expression. Finally, the brightening activities of (+)-SYR were verified using Melanoderm™, underscoring the potential of ginseng berry and (+)-SYR as functional ingredients in skin-brightening cosmetics. Full article
(This article belongs to the Special Issue Antioxidants for Skin Health)
Show Figures

Figure 1

23 pages, 5266 KiB  
Article
Anti-Melanogenic and Anti-Inflammatory Effects of 2′-Hydroxy-4′,6′-dimethoxychalcone in B16F10 and RAW264.7 Cells
by Sungmin Bae, Jung-No Lee and Chang-Gu Hyun
Curr. Issues Mol. Biol. 2024, 46(6), 6018-6040; https://doi.org/10.3390/cimb46060359 - 14 Jun 2024
Cited by 7 | Viewed by 1680
Abstract
Chalcone is a type of flavonoid compound that is widely biosynthesized in plants. Studies have shown that consuming flavonoids from fruits and vegetables or applying individual ingredients reduces the risk of skin disease. However, the effects of chalcone on melanogenesis and inflammation have [...] Read more.
Chalcone is a type of flavonoid compound that is widely biosynthesized in plants. Studies have shown that consuming flavonoids from fruits and vegetables or applying individual ingredients reduces the risk of skin disease. However, the effects of chalcone on melanogenesis and inflammation have not been fully investigated. The aim of this study was to evaluate the anti-melanogenic and anti-inflammatory effects of 2′-hydroxy-3,4′-dimethoxychalcone (3,4′-DMC), 2′-hydroxy-4,4′-dimethoxychalcone (4,4′-DMC), 2′-hydroxy-3′,4′-dimethoxychalcone (3′,4′-DMC), and 2′-hydroxy-4′,6′-dimethoxychalcone (4′,6′-DMC). Among the derivatives of 2′-hydroxy-4′-methoxychalcone, 4′,6′-DMC demonstrated the most potent melanogenesis-inhibitory and anti-inflammatory effects. As evidenced by various biological assays, 4′,6′-DMC showed no cytotoxicity and notably decreased the expression of tyrosinase, tyrosinase-related protein (TRP)-1, and TRP-2 enzymes. Furthermore, it reduced cellular melanin content and intracellular tyrosinase activity in B16F10 melanoma cells by downregulating microphthalmia-associated transcription factor (MITF), cAMP-dependent protein kinase (PKA), cAMP response element-binding protein (CREB), p38, c-Jun N-terminal kinase (JNK), β-catenin, glycogen synthase kinase-3β (GSK3β), and protein kinase B (AKT) proteins, while upregulating extracellular signal-regulated kinase (ERK) and p-β-catenin. Additionally, treatment with 4′,6′-DMC significantly mitigated the lipopolysaccharide (LPS)-induced expression of NO, PGE2, inflammatory cytokines, COX-2, and iNOS proteins. Overall, 4′,6′-DMC treatment notably alleviated LPS-induced damage by reducing nuclear factor kappa B (NF-κB), p38, JNK protein levels, and NF-kB/p65 nuclear translocation. Finally, the topical applicability of 4′,6′-DMC was evaluated in a preliminary human skin irritation test and no adverse effects were found. These findings suggest that 4′,6′-DMC may offer new possibilities for use as functional ingredients in cosmeceuticals and ointments. Full article
(This article belongs to the Special Issue Natural Product in Skin Inflammation and Barrier Function Damage)
Show Figures

Figure 1

29 pages, 10971 KiB  
Article
Anti-Melanogenic Activity of Ethanolic Extract from Garcinia atroviridis Fruits Using In Vitro Experiments, Network Pharmacology, Molecular Docking, and Molecular Dynamics Simulation
by Aman Tedasen, Anchalee Chiabchalard, Tewin Tencomnao, Kenshi Yamasaki, Hideyuki J. Majima, Atthaphong Phongphithakchai and Moragot Chatatikun
Antioxidants 2024, 13(6), 713; https://doi.org/10.3390/antiox13060713 - 12 Jun 2024
Cited by 7 | Viewed by 3644
Abstract
Melanin, the pigment responsible for human skin color, increases susceptibility to UV radiation, leading to excessive melanin production and hyperpigmentation disorders. This study investigated the ethanolic extract of Garcinia atroviridis fruits for its phenolic and flavonoid contents, antioxidant activity, and impact on melanogenesis [...] Read more.
Melanin, the pigment responsible for human skin color, increases susceptibility to UV radiation, leading to excessive melanin production and hyperpigmentation disorders. This study investigated the ethanolic extract of Garcinia atroviridis fruits for its phenolic and flavonoid contents, antioxidant activity, and impact on melanogenesis pathways using qRT-PCR and Western blot analysis. Utilizing network pharmacology, molecular docking, and dynamics simulations, researchers explored G. atroviridis fruit extract’s active compounds, targets, and pharmacological effects on hyperpigmentation. G. atroviridis fruit extract exhibited antioxidant properties, scavenging DPPH and ABTS•+ radicals radicals and chelating copper. It inhibited cellular tyrosinase activity and melanin content in stimulated B16F10 cells, downregulating TYR, TRP-1, phosphorylated CREB, CREB, and MITF proteins along with transcription levels of MITF, TYR, and TRP-2. LC-MS analysis identified thirty-three metabolites, with seventeen compounds selected for further investigation. Network pharmacology revealed 41 hyperpigmentation-associated genes and identified significant GO terms and KEGG pathways, including cancer-related pathways. Kaempferol-3-O-α-L-rhamnoside exhibited high binding affinity against MAPK3/ERK1, potentially regulating melanogenesis by inhibiting tyrosinase activity. Stable ligand–protein interactions in molecular dynamics simulations supported these findings. Overall, this study suggests that the ethanolic extract of G. atroviridis fruits possesses significant antioxidant, tyrosinase inhibitory, and anti-melanogenic properties mediated through key molecular targets and pathways. Full article
(This article belongs to the Special Issue Antioxidants for Skin Health)
Show Figures

Figure 1

17 pages, 4233 KiB  
Article
Patchouli Alcohol: A Potent Tyrosinase Inhibitor Derived from Patchouli Essential Oil with Potential in the Development of a Skin-Lightening Agent
by K. J. Senthil Kumar, M. Gokila Vani, Muthusamy Chinnasamy, Wan-Teng Lin and Sheng-Yang Wang
Cosmetics 2024, 11(2), 38; https://doi.org/10.3390/cosmetics11020038 - 5 Mar 2024
Cited by 3 | Viewed by 4959
Abstract
The inhibitory effects of Pogostemon cablin essential oil (patchouli essential oil, PEO) and its primary bioactive compound, patchouli alcohol (PA), on tyrosinase and melanin were investigated in vitro and ex vivo. Treatment with PEO and PA significantly, as well as dose-dependently, reduced forskolin [...] Read more.
The inhibitory effects of Pogostemon cablin essential oil (patchouli essential oil, PEO) and its primary bioactive compound, patchouli alcohol (PA), on tyrosinase and melanin were investigated in vitro and ex vivo. Treatment with PEO and PA significantly, as well as dose-dependently, reduced forskolin (FRK)-induced melanin biosynthesis, cellular tyrosinase activity, and tyrosinase (TYR) protein expression. However, the transcriptional levels of TYR and tyrosinase-related proteins (TRP-1 and TRP-2) remained unaffected. These results suggest that PEO and PA may directly interrupt tyrosinase enzyme activity, leading to a reduction in melanin biosynthesis. Further experiments supported this notion, revealing that both PEO and PA significantly and dose-dependently inhibited mushroom tyrosinase activity in both the monophenolase and diphenolase phases. Additionally, an in silico molecular docking analysis was performed, utilizing a homology model of human tyrosinase. In conclusion, these findings strongly suggest that patchouli essential oil and its primary bioactive component, patchouli alcohol, hold promise as potential treatments for hyperpigmentary skin conditions and in the development of cosmetic products designed to lighten the skin. Full article
Show Figures

Figure 1

13 pages, 2683 KiB  
Article
6-Methylcoumarin Promotes Melanogenesis through the PKA/CREB, MAPK, AKT/PI3K, and GSK3β/β-Catenin Signaling Pathways
by Taejin Kim, Jin-Kyu Kang and Chang-Gu Hyun
Molecules 2023, 28(11), 4551; https://doi.org/10.3390/molecules28114551 - 5 Jun 2023
Cited by 9 | Viewed by 2624
Abstract
We investigated the effects of four coumarin derivatives, namely, 6-methylcoumarin, 7-methylcoumarin, 4-hydroxy-6-methylcoumarin, and 4-hydroxy-7-methylcoumarin, which have similar structures on melanogenesis in a murine melanoma cell line from a C57BL/6J mouse called B16F10. Our results showed that only 6-methylcoumarin significantly increased the melanin synthesis [...] Read more.
We investigated the effects of four coumarin derivatives, namely, 6-methylcoumarin, 7-methylcoumarin, 4-hydroxy-6-methylcoumarin, and 4-hydroxy-7-methylcoumarin, which have similar structures on melanogenesis in a murine melanoma cell line from a C57BL/6J mouse called B16F10. Our results showed that only 6-methylcoumarin significantly increased the melanin synthesis in a concentration-dependent manner. In addition, the tyrosinase, TRP-1, TRP-2, and MITF protein levels were found to significantly increase in response to 6-methylcoumarin in a concentration-dependent manner. To elucidate the molecular mechanism whereby 6-methylcoumarin-induced melanogenesis influences the melanogenesis-related protein expression and melanogenesis-regulating protein activation, we further assessed the B16F10 cells. The inhibition of the ERK, Akt, and CREB phosphorylation, and conversely, the increased p38, JNK, and PKA phosphorylation activated the melanin synthesis via MITF upregulation, which ultimately led to increased melanin synthesis. Accordingly, 6-methylcoumarin increased the p38, JNK, and PKA phosphorylation in the B16F10 cells, whereas it decreased the phosphorylated ERK, Akt, and CREB expressions. In addition, the 6-methylcoumarin activated GSK3β and β-catenin phosphorylation and reduced the β-catenin protein level. These results suggest that 6-methylcoumarin stimulates melanogenesis through the GSK3β/β-catenin signal pathway, thereby affecting the pigmentation process. Finally, we tested the safety of 6-methylcoumarin for topical applications using a primary human skin irritation test on the normal skin of 31 healthy volunteers. We found that 6-methylcoumarin did not cause any adverse effects at concentrations of 125 and 250 μM. Our findings indicate that 6-methylcoumarin may be an effective pigmentation stimulator for use in cosmetics and the medical treatment of photoprotection and hypopigmentation disorders. Full article
(This article belongs to the Special Issue Natural Products for Cosmetic Applications II)
Show Figures

Figure 1

23 pages, 2534 KiB  
Review
Naturally-Occurring Tyrosinase Inhibitors Classified by Enzyme Kinetics and Copper Chelation
by Hee-Do Kim, Hyunju Choi, Fukushi Abekura, Jun-Young Park, Woong-Suk Yang, Seung-Hoon Yang and Cheorl-Ho Kim
Int. J. Mol. Sci. 2023, 24(9), 8226; https://doi.org/10.3390/ijms24098226 - 5 May 2023
Cited by 40 | Viewed by 12650
Abstract
Currently, there are three major assaying methods used to validate in vitro whitening activity from natural products: methods using mushroom tyrosinase, human tyrosinase, and dopachrome tautomerase (or tyrosinase-related protein-2, TRP-2). Whitening agent development consists of two ways, melanin synthesis inhibition in melanocytes and [...] Read more.
Currently, there are three major assaying methods used to validate in vitro whitening activity from natural products: methods using mushroom tyrosinase, human tyrosinase, and dopachrome tautomerase (or tyrosinase-related protein-2, TRP-2). Whitening agent development consists of two ways, melanin synthesis inhibition in melanocytes and downregulation of melanocyte stimulation. For melanin levels, the melanocyte cell line has been used to examine melanin synthesis with the expression levels of TRP-1 and TRP-2. The proliferation of epidermal surfaced cells and melanocytes is stimulated by cellular signaling receptors, factors, or mediators including endothelin-1, α-melanocyte-stimulating hormone, nitric oxide, histamine, paired box 3, microphthalmia-associated transcription factor, pyrimidine dimer, ceramide, stem cell factors, melanocortin-1 receptor, and cAMP. In addition, the promoter region of melanin synthetic genes including tyrosinase is upregulated by melanocyte-specific transcription factors. Thus, the inhibition of growth and melanin synthesis in gene expression levels represents a whitening research method that serves as an alternative to tyrosinase inhibition. Many researchers have recently presented the bioactivity-guided fractionation, discovery, purification, and identification of whitening agents. Melanogenesis inhibition can be obtained using three different methods: tyrosinase inhibition, copper chelation, and melanin-related protein downregulation. There are currently four different types of inhibitors characterized based on their enzyme inhibition mechanisms: competitive, uncompetitive, competitive/uncompetitive mixed-type, and noncompetitive inhibitors. Reversible inhibitor types act as suicide substrates, where traditional inhibitors are classified as inactivators and reversible inhibitors based on the molecule-recognizing properties of the enzyme. In a minor role, transcription factors can also be downregulated by inhibitors. Currently, the active site copper iron-binding inhibitors such as kojic acid and chalcone exhibit tyrosinase inhibitory activity. Because the tyrosinase catalysis site structure is important for the mechanism determination of tyrosinase inhibitors, understanding the enzyme recognition and inhibitory mechanism of inhibitors is essential for the new development of tyrosinase inhibitors. The present review intends to classify current natural products identified by means of enzyme kinetics and copper chelation to exhibit tyrosinase enzyme inhibition. Full article
(This article belongs to the Special Issue Latest Review Papers in Molecular and Cellular Biology 2023)
Show Figures

Graphical abstract

12 pages, 3080 KiB  
Article
Hydrolyzed Conchiolin Protein (HCP) Extracted from Pearls Antagonizes both ET-1 and α-MSH for Skin Whitening
by Shan Yang, Zhekun Wang, Yunwei Hu, Kaile Zong, Xingjiang Zhang, Hui Ke, Pan Wang, Yuyo Go, Xi Hui Felicia Chan, Jianxin Wu and Qing Huang
Int. J. Mol. Sci. 2023, 24(8), 7471; https://doi.org/10.3390/ijms24087471 - 18 Apr 2023
Cited by 5 | Viewed by 4114
Abstract
Pearl powder is a famous traditional Chinese medicine that has a long history in treating palpitations, insomnia, convulsions, epilepsy, ulcers, and skin lightining. Recently, several studies have demonstrated the effects of pearl extracts on protection of ultraviolet A (UVA) induced irritation on human [...] Read more.
Pearl powder is a famous traditional Chinese medicine that has a long history in treating palpitations, insomnia, convulsions, epilepsy, ulcers, and skin lightining. Recently, several studies have demonstrated the effects of pearl extracts on protection of ultraviolet A (UVA) induced irritation on human skin fibroblasts and inhibition of melanin genesis on B16F10 mouse melanoma cells. To further explore the effect we focused on the whitening efficacy of pearl hydrolyzed conchiolin protein (HCP) on human melanoma MNT-1 cells under the irritation of alpha-melanocyte-stimulating hormone (α-MSH) or endothelin 1 (ET-1) to evaluate the intracellular tyrosinase and melanin contents, as well as the expression levels of tyrosinase (TYR), tyrosinase related protein 1 (TRP-1), and dopachrome tautomerase (DCT) genes and related proteins. We found that HCP could decrease the intracellular melanin content by reducing the activity of intracellular tyrosinase and inhibiting the expression of TYR, TRP-1, DCT genes and proteins. At the same time, the effect of HCP on melanosome transfer effect was also investigated in the co-culture system of immortalized human keratinocyte HaCaT cells with MNT-1. The result indicated that HCP could promote the transfer of melanosomes in MNT-1 melanocytes to HaCaT cells, which might accelerate the skin whitening process by quickly transferring and metabolizing melanosomes during keratinocyte differentiation. Further study is needed to explore the mechanism of melanosome transfer with depigmentation. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
Show Figures

Figure 1

13 pages, 2431 KiB  
Article
Acenocoumarol, an Anticoagulant Drug, Prevents Melanogenesis in B16F10 Melanoma Cells
by Hyunju Han and Changgu Hyun
Pharmaceuticals 2023, 16(4), 604; https://doi.org/10.3390/ph16040604 - 17 Apr 2023
Cited by 14 | Viewed by 2964
Abstract
Hyperpigmentation can occur in abnormal skin conditions such as melanomas, as well as in conditions including melasma, freckles, age spots, seborrheic keratosis, and café-au-lait spots (flat brown spots). Thus, there is an increasing need for the development of depigmenting agents. We aimed to [...] Read more.
Hyperpigmentation can occur in abnormal skin conditions such as melanomas, as well as in conditions including melasma, freckles, age spots, seborrheic keratosis, and café-au-lait spots (flat brown spots). Thus, there is an increasing need for the development of depigmenting agents. We aimed to repurpose an anticoagulant drug as an effective ingredient against hyperpigmentation and apply cosmeceutical agents. In the present study, the anti-melanogenic effects of two anticoagulant drugs, acenocoumarol and warfarin, were investigated. The results showed that both acenocoumarol and warfarin did not cause any cytotoxicity and resulted in a significant reduction in intracellular tyrosinase activity and melanin content in B16F10 melanoma cells. Additionally, acenocoumarol inhibits the expression of melanogenic enzymes such as tyrosinase, tyrosinase-related protein (TRP)-1, and TRP-2, suppressing melanin synthesis through a cAMP-dependent, protein kinase (PKA)-dependent downregulation of microphthalmia-associated transcription factor (MITF), a master transcription factor in melanogenesis. Furthermore, anti-melanogenic effects were exerted by acenocoumarol through downregulation of the p38 and JNK signaling pathway and upregulation of extracellular signal-regulated kinase (ERK) and phosphatidylinositol 3 kinase (PI3K)/protein kinase B (Akt)/glycogen synthesis kinase-3β (GSK-3β) cascades. In addition, the β-catenin content in the cell cytoplasm and nucleus was increased by acenocoumarol through a reduction in the phosphorylated β-catenin (p-β-catenin content). Finally, we tested the potential of acenocoumarol for topical applications by conducting primary human skin irritation tests. Acenocoumarol did not induce any adverse reactions during these tests. Based on the results, it can be concluded that acenocoumarol regulates melanogenesis through various signaling pathways such as PKA, MAPKs, PI3K/Akt/GSK-3β, and β-catenin. These findings suggest that acenocoumarol has the potential to be repurposed as a drug for treating hyperpigmentation symptoms and could provide new insights into the development of therapeutic approaches for hyperpigmentation disorders. Full article
Show Figures

Figure 1

17 pages, 3908 KiB  
Article
A 7-Hydroxy 4-Methylcoumarin Enhances Melanogenesis in B16-F10 Melanoma Cells
by Taejin Kim, Kwan Bo Kim and Chang-Gu Hyun
Molecules 2023, 28(7), 3039; https://doi.org/10.3390/molecules28073039 - 29 Mar 2023
Cited by 9 | Viewed by 3791
Abstract
The objectives of this study were to investigate the melanogenetic potentials of the naturally occurring 7-hydroxy coumarin derivatives 7-hydroxy 5,6-dimethoxycoumarin (7H-5,6DM), 7-hydroxy 6,8-dimethoxycoumarin (7H-6,8DM), 7-hydroxy 6-methoxycoumarin (7H-6M), and 7-hydroxy 4-methylcoumarin (7H-4M) in the melanogenic cells model for murine B16F10 melanoma cells. The initial [...] Read more.
The objectives of this study were to investigate the melanogenetic potentials of the naturally occurring 7-hydroxy coumarin derivatives 7-hydroxy 5,6-dimethoxycoumarin (7H-5,6DM), 7-hydroxy 6,8-dimethoxycoumarin (7H-6,8DM), 7-hydroxy 6-methoxycoumarin (7H-6M), and 7-hydroxy 4-methylcoumarin (7H-4M) in the melanogenic cells model for murine B16F10 melanoma cells. The initial results indicated that melanin production and intracellular tyrosinase activity were significantly stimulated by 7H-4M but not by 7H-5,6DM, 7H-6,8DM, or 7H-6M. Therefore, our present study further investigated the melanogenic effects of 7H-4M in B16-F10 cells, as well as its mechanisms of action. In a concentration-dependent manner, 7H-4M increased intracellular tyrosinase activity, leading to the accumulation of melanin without affecting the viability of B16-F10 cells. Our study further investigated the effects of 7H-4M on melanogenesis, including its ability to promote tyrosinase activity, increase melanin content, and activate molecular signaling pathways. The results indicate that 7H-4M effectively stimulated tyrosinase activity and significantly increased the expression of melanin synthesis-associated proteins, such as microphthalmia-associated transcription factor (MITF), tyrosinase, tyrosinase-related protein-1 (TRP1), and TRP2. Based on our findings, we can conclude that 7H-4M has the ability to activate the melanogenesis process through the upregulation of cAMP-dependent protein kinase (PKA) and the cAMP response element-binding protein (CREB). Additionally, our study showed that 7H-4M induced melanogenic effects by downregulating the extracellular signal-regulated kinase (ERK) and the phosphatidylinositol 3 kinase (PI3K)/protein kinase B (Akt)/glycogen synthesis kinase-3β (GSK-3β) cascades, while upregulating the JNK and p38 signaling pathways. Finally, the potential of using 7H-4M in topical applications was tested through primary human skin irritation tests. During these tests, no adverse reactions were induced by 7H-4M. In summary, our results indicate that 7H-4M regulates melanogenesis through various signaling pathways such as GSK3β/β-catenin, AKT, PKA/CREB, and MAPK. These findings suggest that 7H-4M has the potential to prevent the development of pigmentation diseases. Full article
(This article belongs to the Special Issue Coumarin and Its Derivatives II)
Show Figures

Figure 1

21 pages, 6326 KiB  
Article
Antioxidant Potential-Rich Betel Leaves (Piper betle L.) Exert Depigmenting Action by Triggering Autophagy and Downregulating MITF/Tyrosinase In Vitro and In Vivo
by Md Badrul Alam, Na Hyun Park, Bo-Rim Song and Sang-Han Lee
Antioxidants 2023, 12(2), 374; https://doi.org/10.3390/antiox12020374 - 3 Feb 2023
Cited by 15 | Viewed by 5032
Abstract
Each individual has a unique skin tone based on the types and quantities of melanin pigment, and oxidative stress is a key element in melanogenesis regulation. This research sought to understand the in vitro and in vivo antioxidant and depigmenting properties of betel [...] Read more.
Each individual has a unique skin tone based on the types and quantities of melanin pigment, and oxidative stress is a key element in melanogenesis regulation. This research sought to understand the in vitro and in vivo antioxidant and depigmenting properties of betel leaves (Piper betle L.) extract (PBL) and the underlying mechanism. Ethyl acetate fractions of PBL (PBLA) demonstrated excellent phenolic content (342 ± 4.02 mgGAE/g) and strong DPPH, ABTS radicals, and nitric oxide (NO) scavenging activity with an IC50 value of 41.52 ± 1.02 μg/mL, 45.60 ± 0.56 μg/mL, and 51.42 ± 1.25 μg/mL, respectively. Contrarily, ethanolic extract of PBL (PBLE) showed potent mushroom, mice, and human tyrosinase inhibition activity (IC50 = 7.72 ± 0.98 μg/mL, 20.59 ± 0.83 μg/mL and 24.78 ± 0.56 μg/mL, respectively). According to gas chromatography–mass spectrometry, PBL is abundant in caryophyllene, eugenol, O-eugenol, 3-Allyl-6-methoxyphenyl acetate, and chavicol. An in vitro and in vivo investigation showed that PBLE suppressed tyrosinase (Tyr), tyrosinase-related protein-1 and -2 (Trp-1 and Trp-2), and microphthalmia-associated transcription factors (MITF), decreasing the formation of melanin in contrast to the untreated control. PBLE reduced the cyclic adenosine monophosphate (cAMP) response to an element-binding protein (CREB) phosphorylation by preventing the synthesis of cAMP. Additionally, it activates c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinases (p38), destroying Tyr and MITF and avoiding melanin production. Higher levels of microtubule-associated protein-light chain 3 (LC3-II), autophagy-related protein 5 (Atg5), Beclin 1, and lower levels of p62 demonstrate that PBLE exhibits significant anti-melanogenic effects via an autophagy-induction mechanism, both in vitro and in vivo. Additionally, PBLE significantly reduced the amount of lipid peroxidation while increasing the activity of several antioxidant enzymes in vivo, such as catalase, glutathione, superoxide dismutase, and thioredoxin. PBLE can therefore be employed in topical formulations as a potent skin-whitening agent. Full article
Show Figures

Figure 1

12 pages, 2664 KiB  
Communication
Miglitol, an Oral Antidiabetic Drug, Downregulates Melanogenesis in B16F10 Melanoma Cells through the PKA, MAPK, and GSK3β/β-Catenin Signaling Pathways
by Hyeon-Mi Kim and Chang-Gu Hyun
Molecules 2023, 28(1), 115; https://doi.org/10.3390/molecules28010115 - 23 Dec 2022
Cited by 19 | Viewed by 2947
Abstract
Hyperpigmentation is a common condition that causes darker spots or patches on the skin, which often look brown, black, gray, red, or pink. This results in unresolved psychological impact due to high anxiety, depression, and somatoform disorder. We aimed to repurpose an antidiabetic [...] Read more.
Hyperpigmentation is a common condition that causes darker spots or patches on the skin, which often look brown, black, gray, red, or pink. This results in unresolved psychological impact due to high anxiety, depression, and somatoform disorder. We aimed to repurpose an antidiabetic drug, miglitol, as an effective compound against hyperpigmentation when applied as a cosmeceutical agent. The present study investigated the antimelanogenic effects of miglitol and the trehalase inhibitor validamycin A. Miglitol in isolation exhibited no cytotoxicity and significantly reduced the melanin production and intracellular tyrosinase activity in B16F10 melanoma cells. The Western blotting results showed that miglitol reduces the expression of melanogenic regulatory factors, including tyrosinase, tyrosinase-related protein (TRP)-1, TRP-2, and microphthalmia-associated transcription factor (MITF). Mechanistically, miglitol appears to suppress melanin synthesis through cAMP-dependent protein kinase (PKA)-dependent downregulation of MITF, a master transcription factor in melanogenesis. The antimelanogenic effects of miglitol was mediated by downregulation of the p38 signaling pathway and upregulation of extracellular signal-regulated kinase (ERK). Moreover, miglitol decreases P-GSK3β and β-catenin levels compared to those in the untreated group. However, miglitol activated P-β-catenin expression compared to that in the untreated group. Finally, we tested the potential of miglitol in topical application through primary human skin irritation tests on the normal skin (upper back) of 33 volunteers. In these assays, miglitol (125 and 250 μM) did not induce any adverse reactions. Taken together, these findings suggest that the regulation of melanogenesis by miglitol may be mediated by the PKA, MAPK, and GSK3β/β-Catenin signaling pathways and that miglitol might provide new insights into drug repurposing for the treatment of hyperpigmentation symptoms. Full article
(This article belongs to the Special Issue Natural Products for Cosmetic Applications)
Show Figures

Figure 1

18 pages, 7474 KiB  
Article
A Novel Furocoumarin Derivative, 5-((diethylamino)me-13 thyl)-3-phenyl-7H-furo [3,2-g] chromen-7-one Upregulates Melanin Synthesis via the Activation of cAMP/PKA and MAPKs Signal Pathway: In Vitro and In Vivo Study
by Deng Zang, Chao Niu, Xueying Lu and Haji Akber Aisa
Int. J. Mol. Sci. 2022, 23(22), 14190; https://doi.org/10.3390/ijms232214190 - 16 Nov 2022
Cited by 9 | Viewed by 2782
Abstract
Psoralen, a major furocoumarin component of the Fructus Psoralen (FP), in combination with ultraviolet radiation, cures abnormal pigmentation disorder. In a previous study, we synthesized a series of linear furocoumarins with different substituents, out of which 5-((diethylamino)methyl)-3-phenyl-7H-furo [3,2-g] chromen-7-one (encoded as 5D3PC) showed [...] Read more.
Psoralen, a major furocoumarin component of the Fructus Psoralen (FP), in combination with ultraviolet radiation, cures abnormal pigmentation disorder. In a previous study, we synthesized a series of linear furocoumarins with different substituents, out of which 5-((diethylamino)methyl)-3-phenyl-7H-furo [3,2-g] chromen-7-one (encoded as 5D3PC) showed better pigmenting effect than others in B16 cells. In this study, we examined the mechanism underlying the melanogenic effect of 5D3PC both in vivo and in vitro. To examine the pigmentation effect, the B16 and human melanocyte cell lines, PIG1 and PIG3V melanocytes were incubated with 5D3PC. In animal experiments, C57BL/6 mice received 5% hydroquinone and were administrated with 5D3PC for 30 days. 5D3PC upregulated the melanin synthesis and tyrosinase in B16 cell, PIG1 and PIG3V. The expression level of tyrosinase (TYR), tyrosinase-related protein-1 (TRP-1) and tyrosinase-related protein-2 (TRP-2), microphthalmia-associated transcription factor (MITF), cyclic adenosine monophosphate (cAMP), phosphorylation of cAMP-responsive element binding protein (p-CREB), phosphorylation of p38 mitogen-activated protein kinase (MAPK), c- phosphorylation of Jun N-terminal kinase (p-JNK) was significantly higher in 5D3PC-treated B16 cells. The oral administration of 5D3PC attenuated the depigmentation of the C57BL/6 vitiligo mice model by increasing the numbers of melanin-containing hair follicles, melanogenic protein, and melanogenesis-relative genes expression in skin tissues. Full article
(This article belongs to the Special Issue Melanins and Melanogenesis 3.0: From Nature to Applications)
Show Figures

Figure 1

18 pages, 2472 KiB  
Article
Molecular Analysis of the Melanogenesis Inhibitory Effect of Saponins-Rich Fraction of Argania spinosa Leaves Extract
by Myra O. Villareal, Thanyanan Chaochaiphat, Rachida Makbal, Chemseddoha Gadhi and Hiroko Isoda
Molecules 2022, 27(19), 6762; https://doi.org/10.3390/molecules27196762 - 10 Oct 2022
Cited by 7 | Viewed by 3122
Abstract
Plant saponins are abundant and diverse natural products with a great potential for use in drug-discovery research. Here, we evaluated extracts of saponins-rich fractions of argan leaves and argan oil extraction byproducts (shell, pulp, press cake) for their effect on melanogenesis. Results show [...] Read more.
Plant saponins are abundant and diverse natural products with a great potential for use in drug-discovery research. Here, we evaluated extracts of saponins-rich fractions of argan leaves and argan oil extraction byproducts (shell, pulp, press cake) for their effect on melanogenesis. Results show that from among the samples tested, only the saponins-rich fraction from leaves (ALS) inhibited melanin production in B16 murine melanoma (B16) cells. The mechanism of the melanogenesis inhibition was elucidated by determining the protein and mRNA expression of melanogenesis-associated enzymes tyrosinase (TYR), tyrosinase-related protein 1 (TRP1), and dopachrome tautomerase (DCT), and microphthalmia-associated transcription factor (MITF), and performing DNA microarray analysis. Results showed that 10 µg/mL ALS significantly inhibited melanogenesis in B16 cells and human epidermal melanocytes by 59% and 48%, respectively, without cytotoxicity. The effect of ALS on melanogenesis can be attributed to the decrease in TYR, TRP1, and MITF expression at the protein and mRNA levels. MITF inhibition naturally led to the downregulation of the expression of Tyr and Trp1 genes. Results of the DNA microarray analysis revealed the effect on melanogenesis-associated cAMP and Wnt signaling pathways’ genes. The results of this study suggest that ALS may be used in cosmeceuticals preparations for hyperpigmentation treatment. Full article
Show Figures

Figure 1

Back to TopTop