Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,043)

Search Parameters:
Keywords = human gastrointestinal tract

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 1663 KiB  
Article
First Detection and Molecular Identification of Rhabditis (Rhabditella) axei from the Chinese Red Panda (Ailurus styani)
by Chanjuan Yue, Wanjing Yang, Dunwu Qi, Mei Yang, James Edward Ayala, Yanshan Zhou, Chao Chen, Xiaoyan Su, Rong Hou and Songrui Liu
Pathogens 2025, 14(8), 783; https://doi.org/10.3390/pathogens14080783 - 6 Aug 2025
Abstract
Rhabditis (Rhabditella) axei is a predominantly free-living nematode commonly found in sewage systems and decomposing organic matter. While primarily saprophytic, it has been documented as an opportunistic pathogen in human urinary and gastrointestinal tracts. The Chinese red panda (Ailurus styani [...] Read more.
Rhabditis (Rhabditella) axei is a predominantly free-living nematode commonly found in sewage systems and decomposing organic matter. While primarily saprophytic, it has been documented as an opportunistic pathogen in human urinary and gastrointestinal tracts. The Chinese red panda (Ailurus styani), a rare and protected species in China, has not previously been reported as a host for Rhabditis (Rhabditella) spp. infections. This study reports the first documented occurrence of R. axei in red panda feces, unambiguously confirmed through integrative taxonomic approaches combining morphological and molecular analyses. The nematodes exhibited key morphological features consistent with R. axei, including a cylindrical rhabditiform esophagus, sexually dimorphic tail structures, and diagnostic spicule morphology. Molecular analysis based on 18S-ITS-28S rDNA sequencing confirmed their identity, showing >99% sequence similarity to R. axei reference strains (GenBank: PP135624.1, PP135622.1). Phylogenetic reconstruction using 18S rDNA and ITS rDNA sequences placed the isolate within a well-supported R. axei clade, clearly distinguishing it from related species such as R. blumi and R. brassicae. The findings demonstrate the ecological plasticity of R. axei as a facultative parasite capable of infecting non-traditional hosts and further highlight potential zoonotic risks associated with environmental exposure in captive wildlife populations. Our results emphasize the indispensable role of molecular diagnostics in accurately distinguishing morphologically similar nematodes within the Rhabditidae family, while providing essential baseline data for health monitoring in both in situ and ex situ conservation programs for this endangered species. Full article
Show Figures

Figure 1

16 pages, 22496 KiB  
Article
Comparative Genomics and Adaptive Evolution of Bifidobacterium adolescentis in Geographically Distinct Human Gut Populations
by Pei Fu, Hao Qi and Wenjun Liu
Foods 2025, 14(15), 2747; https://doi.org/10.3390/foods14152747 - 6 Aug 2025
Abstract
Bifidobacterium adolescentis is prevalent in the gastrointestinal tract of healthy humans, and significantly influences host health. Recent studies have predominantly investigated the probiotic characteristics of individual strains and their specific metabolic roles, whereas analyses at the population genome level have been limited to [...] Read more.
Bifidobacterium adolescentis is prevalent in the gastrointestinal tract of healthy humans, and significantly influences host health. Recent studies have predominantly investigated the probiotic characteristics of individual strains and their specific metabolic roles, whereas analyses at the population genome level have been limited to date. This study conducted a comparative genomics analysis of 543 B. adolescentis genomes to explore genetic background variations and functional gene differences across geographically diverse populations. The results revealed significant differences in genome size and GC content among populations from Asia, Europe, and North America (p < 0.05). The pan-gene exhibited an open structure, reflecting the substantial genetic diversity within B. adolescentis. Functional annotation demonstrated that B. adolescentis possesses numerous protein-coding genes and abundant carbohydrate-active enzymes (CAZys) implicated in carbohydrate degradation and transformation. Population-specific CAZys were identified, suggesting adaptive evolution driven by distinct regional dietary patterns. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

21 pages, 1024 KiB  
Review
The Impact of Environmental Factors on the Secretion of Gastrointestinal Hormones
by Joanna Smarkusz-Zarzecka, Lucyna Ostrowska and Marcelina Radziszewska
Nutrients 2025, 17(15), 2544; https://doi.org/10.3390/nu17152544 - 2 Aug 2025
Viewed by 252
Abstract
The enteroendocrine system of the gastrointestinal (GI) tract is the largest endocrine organ in the human body, playing a central role in the regulation of hunger, satiety, digestion, and energy homeostasis. Numerous factors—including dietary components, physical activity, and the gut microbiota—affect the secretion [...] Read more.
The enteroendocrine system of the gastrointestinal (GI) tract is the largest endocrine organ in the human body, playing a central role in the regulation of hunger, satiety, digestion, and energy homeostasis. Numerous factors—including dietary components, physical activity, and the gut microbiota—affect the secretion of GI hormones. This study aims to analyze how these factors modulate enteroendocrine function and influence systemic metabolic regulation. This review synthesizes the current scientific literature on the physiology and distribution of enteroendocrine cells and mechanisms of hormone secretion in response to macronutrients, physical activity, and microbial metabolites. Special attention is given to the interactions between gut-derived signals and central nervous system pathways involved in appetite control. Different GI hormones are secreted in specific regions of the digestive tract in response to meal composition and timing. Macronutrients, particularly during absorption, stimulate hormone release, while physical activity influences hormone concentrations, decreasing ghrelin and increasing GLP-1, PYY, and leptin levels. The gut microbiota, through fermentation and metabolite production (e.g., SCFAs and bile acids), modulates enteroendocrine activity. Species such as Akkermansia muciniphila are associated with improved gut barrier integrity and enhanced GLP-1 secretion. These combined effects contribute to appetite regulation and energy balance. Diet composition, physical activity, and gut microbiota are key modulators of gastrointestinal hormone secretion. Their interplay significantly affects appetite regulation and metabolic health. A better understanding of these relationships may support the development of personalized strategies for managing obesity and related disorders. Full article
(This article belongs to the Section Nutritional Immunology)
Show Figures

Graphical abstract

18 pages, 3360 KiB  
Article
Hydrogen Sulfide Has a Minor Impact on Human Gut Microbiota Across Age Groups
by Linshu Liu, Johanna M. S. Lemons, Jenni Firrman, Karley K. Mahalak, Venkateswari J. Chetty, Adrienne B. Narrowe, Stephanie Higgins, Ahmed M. Moustafa, Aurélien Baudot, Stef Deyaert and Pieter Van den Abbeele
Sci 2025, 7(3), 102; https://doi.org/10.3390/sci7030102 - 1 Aug 2025
Viewed by 108
Abstract
Hydrogen sulfide (H2S) can be produced from the metabolism of foods containing sulfur in the gastrointestinal tract (GIT). At low doses, H2S regulates the gut microbial community and supports GIT health, but depending on dose, age, and individual health [...] Read more.
Hydrogen sulfide (H2S) can be produced from the metabolism of foods containing sulfur in the gastrointestinal tract (GIT). At low doses, H2S regulates the gut microbial community and supports GIT health, but depending on dose, age, and individual health conditions, it may also contribute to inflammatory responses and gut barrier dysfunction. Controlling H2S production in the GIT is important for maintaining a healthy gut microbiome. However, research on this subject is limited due to the gaseous nature of the chemical and the difficulty of accessing the GIT in situ. In the present ex vivo experiment, we used a single-dose sodium sulfide preparation (SSP) as a H2S precursor to test the effect of H2S on the human gut microbiome across different age groups, including breastfed infants, toddlers, adults, and older adults. Metagenomic sequencing and metabolite measurements revealed that the development of the gut microbial community and the production of short-chain fatty-acids (SCFAs) were age-dependent; that the infant and the older adult groups were more sensitive to SSP exposure; that exogeneous SSP suppressed SCFA production across all age groups, except for butyrate in the older adult group, suggesting that H2S selectively favors specific gut microbial processes. Full article
(This article belongs to the Section Biology Research and Life Sciences)
Show Figures

Figure 1

26 pages, 1300 KiB  
Review
The Human Mycobiome: Composition, Immune Interactions, and Impact on Disease
by Laura Carrillo-Serradell, Jade Liu-Tindall, Violeta Planells-Romeo, Lucía Aragón-Serrano, Marcos Isamat, Toni Gabaldón, Francisco Lozano and María Velasco-de Andrés
Int. J. Mol. Sci. 2025, 26(15), 7281; https://doi.org/10.3390/ijms26157281 - 28 Jul 2025
Viewed by 692
Abstract
The fungal component of microbiota, known as the mycobiome, inhabits different body niches such as the skin and the gastrointestinal, respiratory, and genitourinary tracts. Much information has been gained on the bacterial component of the human microbiota, but the mycobiome has remained somewhat [...] Read more.
The fungal component of microbiota, known as the mycobiome, inhabits different body niches such as the skin and the gastrointestinal, respiratory, and genitourinary tracts. Much information has been gained on the bacterial component of the human microbiota, but the mycobiome has remained somewhat elusive due to its sparsity, variability, susceptibility to environmental factors (e.g., early life colonization, diet, or pharmacological treatments), and the specific in vitro culture challenges. Functionally, the mycobiome is known to play a role in modulating innate and adaptive immune responses by interacting with microorganisms and immune cells. The latter elicits anti-fungal responses via the recognition of specific fungal cell-wall components (e.g., β-1,3-glucan, mannan, and chitin) by immune system receptors. These receptors then regulate the activation and differentiation of many innate and adaptive immune cells including mucocutaneous cell barriers, macrophages, neutrophils, dendritic cells, natural killer cells, innate-like lymphoid cells, and T and B lymphocytes. Mycobiome disruptions have been correlated with various diseases affecting mostly the brain, lungs, liver and pancreas. This work reviews our current knowledge on the mycobiome, focusing on its composition, research challenges, conditioning factors, interactions with the bacteriome and the immune system, and the known mycobiome alterations associated with disease. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

22 pages, 3781 KiB  
Article
Enhancing Parenteral Nutrition via Supplementation with Antioxidant Lutein in Human Serum Albumin-Based Nanosuspension
by Izabela Żółnowska, Aleksandra Gostyńska-Stawna, Katarzyna Dominiak, Barbara Jadach and Maciej Stawny
Pharmaceutics 2025, 17(8), 971; https://doi.org/10.3390/pharmaceutics17080971 - 26 Jul 2025
Viewed by 475
Abstract
Background/Objectives: Parenteral nutrition (PN) supports patients unable to receive nutrients via the gastrointestinal tract, but it lacks the health-promoting natural bioactive compounds found in a typical oral diet. This study aimed to develop a human serum albumin-based intravenous delivery system for lutein [...] Read more.
Background/Objectives: Parenteral nutrition (PN) supports patients unable to receive nutrients via the gastrointestinal tract, but it lacks the health-promoting natural bioactive compounds found in a typical oral diet. This study aimed to develop a human serum albumin-based intravenous delivery system for lutein (an antioxidant carotenoid with vision-supportive and hepatoprotective properties) as a PN additive. Methods: An albumin–lutein nanosuspension (AlbLuteN) was synthesized using a modified nanoparticle albumin-bound (nabTM) technology and characterized physicochemically. The nanoformulation was added to four commercial PN admixtures to assess the supplementation safety throughout the maximum infusion period. Visual inspection and measurements of fat globules larger than 5 µm (PFAT5) and the mean hydrodynamic diameter (Z-average), zeta potential, pH, osmolality, and lutein content were performed to detect potential interactions and evaluate the physicochemical stability. Results: AlbLuteN consisted of uniform particles (Z-average of 133.5 ± 2.8 nm) with a zeta potential of −28.1 ± 1.8 mV, lutein content of 4.76 ± 0.39%, and entrapment efficiency of 84.4 ± 6.3%. Differential scanning calorimetry confirmed the amorphous state of lutein in the nanosuspension. AlbLuteN was successfully incorporated into PN admixtures, without visible phase separation or significant changes in physicochemical parameters. The PFAT5 and Z-average values remained within pharmacopeial limits over 24 h. No substantial shifts in zeta potential, pH, or osmolality were observed. The lutein content remained stable, with losses below 3%. Conclusions: AlbLuteN can be safely added to representative PN admixtures without compromising their stability. This approach offers a novel strategy for intravenous lutein delivery and may contribute to improving the nutritional profile of PN. Full article
Show Figures

Figure 1

18 pages, 344 KiB  
Review
Intestinal Microbiota and Fecal Transplantation in Patients with Inflammatory Bowel Disease and Clostridioides difficile: An Updated Literature Review
by Chloe Lahoud, Toni Habib, Daniel Kalta, Reem Dimachkie, Suzanne El Sayegh and Liliane Deeb
J. Clin. Med. 2025, 14(15), 5260; https://doi.org/10.3390/jcm14155260 - 25 Jul 2025
Viewed by 449
Abstract
Background/Objectives: Inflammatory bowel disease (IBD) is characterized by chronic relapsing and remitting inflammation of the gastrointestinal tract. Fecal microbiota transplantation (FMT) has emerged as an FDA-approved treatment for recurrent Clostridioides difficile infections (CDIs), with promising potential in patients with IBD. This manuscript [...] Read more.
Background/Objectives: Inflammatory bowel disease (IBD) is characterized by chronic relapsing and remitting inflammation of the gastrointestinal tract. Fecal microbiota transplantation (FMT) has emerged as an FDA-approved treatment for recurrent Clostridioides difficile infections (CDIs), with promising potential in patients with IBD. This manuscript aimed to provide a comprehensive and updated review of the available literature on fecal microbiota transplantation, its clinical use in IBD in general, as well as in patients with IBD and CDI. Methods: An extensive literature search was performed from October 2024 to March 2025. All publications available within PubMed, Medline, Embase, Google Scholar, and Cochrane databases were reviewed. All original articles, case reports, review articles, systematic reviews, and meta-analyses were included. Qualitative and quantitative data were both extracted. Discussion: Intestinal microbiota is an integral part of the human body, and dysbiosis (an imbalance in the gut’s microbial community) has been linked with several pathologies. Dysbiosis in IBD is marked by reduced beneficial bacteria and increased pro-inflammatory pathogens, contributing to mucosal damage and immune dysregulation. FMT has emerged as a solution to dysbiosis, with the first case recorded in 1917. FMT has been successful in treating patients with CDI. The diagnostic value of the gut microbiome is currently being explored as a possible therapeutic approach to IBD. Several studies have assessed FMT in patients with IBD and CDI with promising results in both ulcerative colitis (UC) and Crohn’s disease (CD) but varying efficacy based on administration routes, donor selection, and processing methods. In the context of recurrent CDI in patients with IBD, FMT demonstrates a high cure rate and potential benefit in concurrently improving IBD activity. However, risks such as IBD flare-ups post-FMT remain a concern. Conclusions: FMT holds promising potential in the management of CDI in patients with IBD. By restoring microbial diversity and correcting dysbiosis, FMT offers a novel, microbiota-targeted alternative to conventional therapies. While data support its efficacy in improving disease remission, variability in outcomes underscores the need for standardized protocols and additional large-scale, controlled studies. Continued research efforts into donor selection, treatment regimens, and long-term safety will be critical to optimizing FMT’s role in IBD and CDI care as well as improving patient outcomes. Full article
(This article belongs to the Special Issue Emerging Treatment Options in Inflammatory Bowel Disease)
23 pages, 4192 KiB  
Article
Efficacy of Various Complexing Agents for Displacing Biologically Important Ligands from Eu(III) and Cm(III) Complexes in Artificial Body Fluids—An In Vitro Decorporation Study
by Sebastian Friedrich, Antoine Barberon, Ahmadabdurahman Shamoun, Björn Drobot, Katharina Müller, Thorsten Stumpf, Jerome Kretzschmar and Astrid Barkleit
Int. J. Mol. Sci. 2025, 26(15), 7112; https://doi.org/10.3390/ijms26157112 - 23 Jul 2025
Cited by 1 | Viewed by 339
Abstract
Incorporation of lanthanide (Ln) and actinide (An) ions into the human body poses significant chemotoxic and radiotoxic risks, necessitating effective decorporation strategies. This study investigates the displacement of biologically relevant ligands from trivalent ions of europium, Eu(III), and curium, Cm(III), in artificial biofluids [...] Read more.
Incorporation of lanthanide (Ln) and actinide (An) ions into the human body poses significant chemotoxic and radiotoxic risks, necessitating effective decorporation strategies. This study investigates the displacement of biologically relevant ligands from trivalent ions of europium, Eu(III), and curium, Cm(III), in artificial biofluids by various complexing agents, i.e., ethylenediaminetetraacetic acid (EDTA), ethylene glycol-bis(β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid (EGTA), diethylenetriaminepentaacetic acid (DTPA), and spermine-based hydroxypyridonate chelator 3,4,3-LI(1,2-HOPO) (HOPO). Utilizing a modified unified bioaccessibility method (UBM) to simulate gastrointestinal conditions, we conducted concentration-dependent displacement experiments at both room and body temperatures. Time-resolved laser-induced fluorescence spectroscopy (TRLFS) supported by 2H nuclear magnetic resonance (NMR) spectroscopy and thermodynamic modelling revealed the complexation efficacy of the agents under physiological conditions. Results demonstrate that high affinity, governed by complex stability constants and ligand pKa values, is critical to overcome cation and anion competition and leads to effective decorporation. Additionally, there is evidence that cyclic ligands are inferior to linear ligands for this application. HOPO and DTPA exhibited superior displacement efficacy, particularly in the complete gastrointestinal tract simulation. This study highlights the utility of in vitro workflows for evaluating decorporation agents and emphasizes the need for ligands with optimal binding characteristics for enhanced chelation therapies. Full article
(This article belongs to the Special Issue Toxicity of Heavy Metal Compounds)
Show Figures

Figure 1

23 pages, 1654 KiB  
Review
The Small Intestinal Microbiota and the Gut–Brain Axis in Parkinson’s Disease: A Narrative Review
by Gloria Carrossa, Valentina Misenti, Sofia Faggin, Maria Cecilia Giron and Angelo Antonini
Biomedicines 2025, 13(7), 1769; https://doi.org/10.3390/biomedicines13071769 - 19 Jul 2025
Viewed by 704
Abstract
Researchers are increasingly focusing on understanding the microbiota’s influence on disease susceptibility and overall health. The vast number of microorganisms in our gastrointestinal tract and their extensive surface area underscore their undeniable impact on well-being. Viewing the gut microbiome as a distinct pool [...] Read more.
Researchers are increasingly focusing on understanding the microbiota’s influence on disease susceptibility and overall health. The vast number of microorganisms in our gastrointestinal tract and their extensive surface area underscore their undeniable impact on well-being. Viewing the gut microbiome as a distinct pool of microbial genetic information that interacts with the human genome highlights its pivotal role in genetically predisposed diseases. Investigating this complex crosstalk may lead to the development of novel therapeutic strategies—such as targeting dysbiosis—to complement conventional treatments and improve patient care. Parkinson’s disease (PD) is a multifactorial condition originating from a combination of genetic and environmental risk factors. Compelling evidence points to the enteric nervous system as an initial site of pathological processes that later extend to the brain—a pattern known as the ‘body-first’ model. Furthermore, most patients with PD exhibit both qualitative and quantitative alterations in the composition of the gut microbiota, including dysbiosis and small intestinal overgrowth. Nonetheless, the existing literature predominantly addresses fecal microbiota, while knowledge of upper intestinal sections, like the duodenum, remains scarce. Given the potential for microbiota modulation to impact both motor and gastrointestinal symptoms, further research exploring the therapeutic roles of balanced diets, probiotics, and fecal transplants in PD is warranted. Full article
Show Figures

Figure 1

14 pages, 584 KiB  
Review
Pectin and Its Beneficial Effect on Health: New Contributions in Research and the Need to Increase Fruits and Vegetables Consumption—A Review
by Luis Valladares and Fernando Vio
Int. J. Mol. Sci. 2025, 26(14), 6852; https://doi.org/10.3390/ijms26146852 - 17 Jul 2025
Viewed by 488
Abstract
The beneficial effect of consuming fruits and vegetables in the prevention of chronic non-communicable diseases and healthy aging is well known. This is attributed to food and vegetable antioxidant and fiber content. The aim of this publication is to communicate the results of [...] Read more.
The beneficial effect of consuming fruits and vegetables in the prevention of chronic non-communicable diseases and healthy aging is well known. This is attributed to food and vegetable antioxidant and fiber content. The aim of this publication is to communicate the results of recent research on pectin in humans, to propose an increased consumption of fruits and vegetables, or their possible use as a food supplement. A comprehensive narrative review was conducted considering recent publications on pectin. The description of starch, pectin, the physicochemical changes caused by pectin, and the effect of pectin on the activity of amylase are reported. Dietary fiber and gut microbiota in human health are also described, with the production of saturated fatty acids with fewer than six carbon atoms. Finally, health effects such as anti-hyperglycemic and anti-hyperlipidemic activities, preventing and controlling obesity and heart disease, are analyzed, as well as other health effects in tumors, the gastrointestinal tract, and immunity. Considering the beneficial effects of pectin in health and the low consumption throughout the world, it is recommended to promote the consumption of fruits and vegetables to increase pectin intake in the human diet. Full article
(This article belongs to the Special Issue Molecular Mechanisms and Treatment of Cardiovascular Diseases)
Show Figures

Figure 1

21 pages, 1958 KiB  
Article
Potential Prebiotic Effect of Caatinga Bee Honeys from the Pajeú Hinterland (Pernambuco, Brazil) on Synbiotic Alcoholic Beverages Fermented by Saccharomyces boulardii CNCM I-745
by Walter de Paula Pinto-Neto, Luis Loureiro, Raquel F. S. Gonçalves, Márcia Cristina Teixeira Marques, Rui Miguel Martins Rodrigues, Luís Abrunhosa, Aline Magalhães de Barros, Neide Kazue Sakugawa Shinohara, Ana Cristina Pinheiro, Antonio Augusto Vicente, Rafael Barros de Souza and Marcos Antonio de Morais Junior
Fermentation 2025, 11(7), 405; https://doi.org/10.3390/fermentation11070405 - 15 Jul 2025
Viewed by 474
Abstract
The singular biodiversity of the Brazilian Caatinga inspires innovative solutions in food science. In this study, we evaluated the prebiotic potential of honeys produced by Apis mellifera in the Pajeú hinterland, Pernambuco, Brazil (Caatinga Biome), with different floral origins: Mastic (Aroeira), Mesquite (Algaroba), [...] Read more.
The singular biodiversity of the Brazilian Caatinga inspires innovative solutions in food science. In this study, we evaluated the prebiotic potential of honeys produced by Apis mellifera in the Pajeú hinterland, Pernambuco, Brazil (Caatinga Biome), with different floral origins: Mastic (Aroeira), Mesquite (Algaroba), and mixed flowers. These were used to formulate synbiotic and alcoholic beverages fermented by Saccharomyces boulardii CNCM I-745. Static and dynamic simulations of the human gastrointestinal tract (GIT) were used, as well as physicochemical, rheological, and microbiological analyses. The results revealed that honey positively influences the viability and resilience of probiotic yeast, especially honey with a predominance of Algaroba, which promoted the highest survival rate (>89%) even after 28 days of refrigeration and in dynamic in vitro simulation of the GIT (more realistic to human physio-anatomical conditions). The phenolic composition of the honeys showed a correlation with this tolerance. The use of complementary methodologies, such as flow cytometry, validated the findings and highlighted the functional value of these natural matrices, revealing an even greater longevity potential compared to conventional microbiological methodology. The data reinforces the potential of the Caatinga as a source of bioactive and sustainable compounds, proposing honey as a promising non-dairy synbiotic vehicle. This work contributes to the appreciation of the biome and the development of functional food products with a positive social, economic, and ecological impact. Full article
(This article belongs to the Section Probiotic Strains and Fermentation)
Show Figures

Figure 1

36 pages, 1401 KiB  
Review
Microbial Interconnections in One Health: A Critical Nexus Between Companion Animals and Human Microbiomes
by Stylianos Skoufos, Elisavet Stavropoulou, Christina Tsigalou and Chrysoula (Chrysa) Voidarou
Microorganisms 2025, 13(7), 1564; https://doi.org/10.3390/microorganisms13071564 - 3 Jul 2025
Viewed by 603
Abstract
The One Health approach is rapidly gaining the attention of the scientific community worldwide and is expected to be a major model of scientific reasoning in the 21st century, concerning medical, veterinary and environmental issues. The basic concept of One Health, that humans, [...] Read more.
The One Health approach is rapidly gaining the attention of the scientific community worldwide and is expected to be a major model of scientific reasoning in the 21st century, concerning medical, veterinary and environmental issues. The basic concept of One Health, that humans, animals and their environments are parts of the same natural world affecting each other, is rooted in most ethnic as well as in many religious traditions. Despite this unity and for historical reasons, medical, veterinary and environmental sciences developed independently. The One Health concept tries to reunite these and many other relevant sciences, aiming at a deeper understanding of the interconnection between the natural world, humans and animal health. The dynamic interplay between a host’s microbiome, the microbiomes of other hosts, and environmental microbial communities profoundly influences the host health, given the essential physiological functions the microbiome performs within the organism. The biodiversity of microbiomes is broad and complex. The different areas of the skin, the upper and lower respiratory systems, the ocular cavity, the oral cavity, the gastrointestinal tract and finally the urogenital system of pets and humans alike are niches where a multitude of microorganisms indigenous and transient—commensals and pathogens, thrive in a dynamic antagonistic balance of populations of different phyla, orders, genera and species. The description of these microbiomes attempted in this article is not meant to be exhaustive but rather demonstrative of their complexity. The study of microbiomes is a necessary step towards the One Health approach to pets and humans. Yet, despite the progress made on that subject, the scientific community faces challenges, such as the limitations of studies performed, the scarcity of studies concerning the microbiomes of cats, the multitude of environmental factors affecting the results and others. The two new terms proposed in this article, the “familiome” and the “oikiome”, will aid in the One Health theoretical analysis as well as in its practical approach. The authors strongly believe that new technological breakthroughs, like Big Data Analytics and Artificial Intelligence (AI), will significantly help to overcome these hazards. Full article
(This article belongs to the Section Microbiomes)
Show Figures

Figure 1

24 pages, 11631 KiB  
Article
Dissecting the High Esterase/Lipase Activity and Probiotic Traits in Lactiplantibacillus plantarum B22: A Genome-Guided Functional Characterization
by Yunmei Chai, Zhenzhu Li, Wentao Zheng, Xue Yang, Jinze He, Shaomei Hu, Jindou Shi, Yufang Li, Guangqiang Wei and Aixiang Huang
Foods 2025, 14(13), 2354; https://doi.org/10.3390/foods14132354 - 2 Jul 2025
Viewed by 481
Abstract
Lactiplantibacillus plantarum B22 exhibits a high esterase/lipase activity, but the genomic and probiotic potential remains unclear. We employed an integrated approach combining whole-genome sequencing, molecular docking studies, and phenotypic assays to dissect the genomic and functional basis underlying the high lipolytic activity and [...] Read more.
Lactiplantibacillus plantarum B22 exhibits a high esterase/lipase activity, but the genomic and probiotic potential remains unclear. We employed an integrated approach combining whole-genome sequencing, molecular docking studies, and phenotypic assays to dissect the genomic and functional basis underlying the high lipolytic activity and probiotic traits of L.plantarum B22. This strain exhibited a robust lipase activity (3.45 ± 0.13 U/mL), with whole-genome analysis revealing that the complete genome of this strain spans 2,027,325 bp, encoding 2005 genes with a guanine-cytosine (GC) content of 35.06%. Notably, 13 esterase/lipase genes were identified, 4 of which (gene3060, gene3059, gene2553, gene0798) harbor conserved catalytic triads (Ser-His-Gly/Ala), essential for lipase function. Molecular docking studies confirmed strong binding affinity to tributyrin (ΔG ≤ –5.52 kcal/mol) and elucidated the interaction mechanisms, involving hydrogen bonding and hydrophobic interactions between the esterase/lipase enzymes and tributyrin. Phenotypic and genomic analyses further demonstrated that L. plantarum B22 possesses excellent tolerance to simulated human gastrointestinal tract conditions, along with potent antioxidant and antimicrobial activities, highlighting its strong probiotic potential. Genomic annotation also identified 68 genes associated with lipid metabolism and an intact fatty acid synthesis pathway. Importantly, the analysis of phenotypes and genes involved in virulence factors, and the production of harmful metabolites suggests that L. plantarum B22 is safe. Collectively, this study offers novel insights into the genome-guided functional characterization of L. plantarum B22, providing a robust foundation for its development as a functional probiotic strain. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Graphical abstract

18 pages, 1104 KiB  
Systematic Review
Current Trends of Human Adenovirus Types Among Hospitalized Children—A Systematic Review
by Janina Soler Wenglein, Luca Scarsella, Christine Kotlewski, Albert Heim and Malik Aydin
Viruses 2025, 17(7), 914; https://doi.org/10.3390/v17070914 - 27 Jun 2025
Viewed by 556
Abstract
Human adenoviruses (HAdVs) are pathogens causing different illnesses, particularly in pediatric and immunocompromised patients in developed countries. The clinical spectrum of HAdV-infections ranges from mild to severe, and the clinical presentation varies widely. Certain HAdVs types, including types B3, E4, B7, B14, B21, [...] Read more.
Human adenoviruses (HAdVs) are pathogens causing different illnesses, particularly in pediatric and immunocompromised patients in developed countries. The clinical spectrum of HAdV-infections ranges from mild to severe, and the clinical presentation varies widely. Certain HAdVs types, including types B3, E4, B7, B14, B21, G55, and B66, may be associated with lower respiratory tract infections and thus lead to higher hospitalization, increased morbidity, as well as lethality rates. The aim of this article is to synthesize and analyze the prevalence of specific HAdV types in pediatric patients worldwide. A systematic literature search was performed using MEDLINE, Scopus, and Web of Science. In total, n = 1167 titles and abstracts were screened, and 105 full-text articles were assessed for eligibility. Screening, data extraction, and appraisal were analyzed by reviewers, in accordance with PRISMA guidelines and JBI recommendations. We included studies reporting on currently circulating HAdV types (n = 16). Based on a systematic and narrative approach, relevant types of HAdV biology and infections in children are presented. In detail, HAdV-B3 and HAdV-B7 were commonly associated with severe respiratory tract infections, while HAdV-F40 and HAdV-F41 caused acute gastroenteritis. Moreover, detailed research revealed the critical role of HAdV-C2 and the necessity for particular attention to HAdVs in acute neurological infections. This comprehensive analysis highlights the significant global distribution and diverse clinical implications of different HAdV types in children, pointing out the need for continued surveillance to better understand HAdVs epidemiology and its implications for public health, and future preventive measures, in particular among vulnerable patients. Full article
(This article belongs to the Special Issue Research and Clinical Application of Adenovirus (AdV), 3rd Edition)
Show Figures

Figure 1

15 pages, 1081 KiB  
Review
Age-Related Decline of Gastric Secretion: Facts and Controversies
by Francisco Vara-Luiz, Ivo Mendes, Carolina Palma, Paulo Mascarenhas, Gonçalo Nunes, Marta Patita and Jorge Fonseca
Biomedicines 2025, 13(7), 1546; https://doi.org/10.3390/biomedicines13071546 - 25 Jun 2025
Viewed by 708
Abstract
Aging is associated with structural and functional changes in the gastrointestinal tract; however, its impact on gastric secretion remains unclear. This scoping review examines whether gastric secretion declines with age and explores its clinical implications. Following the PRISMA guidelines, PubMed, Web of Science, [...] Read more.
Aging is associated with structural and functional changes in the gastrointestinal tract; however, its impact on gastric secretion remains unclear. This scoping review examines whether gastric secretion declines with age and explores its clinical implications. Following the PRISMA guidelines, PubMed, Web of Science, Embase, and Google Scholar were systematically searched from inception to December 2024. Fifteen studies (both animal and human) met the inclusion criteria: they were written in English, directly relevant to aging and gastric secretion, and had a clearly stated methodology. Evidence strength was assessed using the GRADE framework, revealing predominantly low to moderate certainty due to small sample sizes and observational study designs. Animal studies have demonstrated reduced acid secretion in older rats, which is attributed to mucosal atrophy and diminished responsiveness to gastrin. Recent human studies suggest that aging does not directly reduce acid output, as reduced acid secretion may result from a higher prevalence of atrophic gastritis, Helicobacter pylori infection, and the widespread use of proton pump inhibitors. Antisecretory therapy may lack benefits in older adult patients with hypochlorhydria/achlorhydria and increase the risk of adverse effects. Pepsin output declines with aging due to reduced chief cell function, although its clinical impact on digestion is unclear. Since intrinsic factor secretion far exceeds the amount necessary for its physiological function, even low amounts seem to be sufficient to prevent cobalamin deficiency. Age-related decline in gastric secretion is mostly attributed to age-associated disorders; however, impairment of secretory function in older people is frequent. Future research should prioritise longitudinal studies, larger cohorts, and histology-stratified analysis. Full article
(This article belongs to the Special Issue Feature Reviews in Gastrointestinal Diseases)
Show Figures

Figure 1

Back to TopTop