Intestinal Microbiota and Fecal Transplantation in Patients with Inflammatory Bowel Disease and Clostridioides difficile: An Updated Literature Review
Abstract
1. Introduction
2. Materials and Methods
3. Discussion
3.1. Role of Intestinal Microbiota in Health and Immune Development
3.2. Fecal Microbiota Transplantation
3.3. Microbiome-Based Diagnostics in IBD
3.4. Clinical Use of FMT in IBD
3.4.1. Pathogenesis of the Gut Microbiome in IBD
3.4.2. Therapeutic Role of Fecal Microbiota Transplant in IBD
3.5. FMT in IBD Patients with Recurrent Clostridioides difficile Infection
3.6. FMT Adverse Events
3.7. Clinical Use of Vowst in Recurrent CDI
4. Limitations
5. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
IBD | inflammatory bowel disease |
CDIs | Clostridioides difficile infections |
FMT | fecal microbiota transplantation |
CD | Crohn’s disease |
UC | ulcerative colitis |
SCFA | short-chain fatty acid |
LCM | laser capture microdissection |
DNA | deoxyribonucleic acid |
RNA | ribonucleic acid |
AIEC | adherent-invasive Escherichia coli |
IFN-γ | interferon-γ |
SNV | single-nucleotide variants |
MNV | murine norovirus |
References
- McDowell, C.; Farooq, U.; Haseeb, M. Inflammatory Bowel Disease. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: http://www.ncbi.nlm.nih.gov/books/NBK470312/ (accessed on 18 February 2025).
- Belizário, J.E.; Faintuch, J. Microbiome and Gut Dysbiosis. In Metabolic Interaction in Infection; Silvestre, R., Torrado, E., Eds.; Experientia Supplementum; Springer International Publishing: Cham, Switzerland, 2018; Volume 109, pp. 459–476. [Google Scholar] [CrossRef]
- Guarner, F.; Malagelada, J.-R. Gut flora in health and disease. Lancet 2003, 361, 512–519. [Google Scholar] [CrossRef] [PubMed]
- Kelly, C.R.; Khoruts, A.; Staley, C.; Sadowsky, M.J.; Abd, M.; Alani, M.; Bakow, B.; Curran, P.; McKenney, J.; Tisch, A.; et al. Effect of Fecal Microbiota Transplantation on Recurrence in Multiply Recurrent Clostridium difficile Infection: A Randomized Trial. Ann. Intern. Med. 2016, 165, 609–616. [Google Scholar] [CrossRef] [PubMed]
- Turnbaugh, P.J.; Ley, R.E.; Mahowald, M.A.; Magrini, V.; Mardis, E.R.; Gordon, J.I. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 2006, 444, 1027–1031. [Google Scholar] [CrossRef] [PubMed]
- Mekler, L.B. On the problem of oncogene of tumour viruses. Acta Virol. 1975, 19, 501–508. [Google Scholar]
- Cash, H.L.; Whitham, C.V.; Behrendt, C.L.; Hooper, L.V. Symbiotic Bacteria Direct Expression of an Intestinal Bactericidal Lectin. Science 2006, 313, 1126–1130. [Google Scholar] [CrossRef]
- Hooper, L.V.; Stappenbeck, T.S.; Hong, C.V.; Gordon, J.I. Angiogenins: A new class of microbicidal proteins involved in innate immunity. Nat. Immunol. 2003, 4, 269–273. [Google Scholar] [CrossRef]
- Ivanov, I.I.; Atarashi, K.; Manel, N.; Brodie, E.L.; Shima, T.; Karaoz, U.; Wei, D.; Goldfarb, K.C.; Santee, C.A.; Lynch, S.V.; et al. Induction of Intestinal Th17 Cells by Segmented Filamentous Bacteria. Cell 2009, 139, 485–498. [Google Scholar] [CrossRef]
- Sekirov, I.; Russell, S.L.; Antunes, L.C.M.; Finlay, B.B. Gut Microbiota in Health and Disease. Physiol. Rev. 2010, 90, 859–904. [Google Scholar] [CrossRef]
- Turnbaugh, P.J.; Ley, R.E.; Hamady, M.; Fraser-Liggett, C.M.; Knight, R.; Gordon, J.I. The Human Microbiome Project. Nature 2007, 449, 804–810. [Google Scholar] [CrossRef]
- Marques, T.M.; Wall, R.; Ross, R.P.; Fitzgerald, G.F.; Ryan, C.A.; Stanton, C. Programming infant gut microbiota: Influence of dietary and environmental factors. Curr. Opin. Biotechnol. 2010, 21, 149–156. [Google Scholar] [CrossRef]
- El Aidy, S.; Hooiveld, G.; Tremaroli, V.; Bäckhed, F.; Kleerebezem, M. The gut microbiota and mucosal homeostasis: Colonized at birth or at adulthood, does it matter? Gut Microbes 2013, 4, 118–124. [Google Scholar] [CrossRef]
- De Agüero, M.G.; Ganal-Vonarburg, S.C.; Fuhrer, T.; Rupp, S.; Uchimura, Y.; Li, H.; Steinert, A.; Heikenwalder, M.; Hapfelmeier, S.; Sauer, U.; et al. The maternal microbiota drives early postnatal innate immune development. Science 2016, 351, 1296–1302. [Google Scholar] [CrossRef] [PubMed]
- Shaw, S.Y.; Blanchard, J.F.; Bernstein, C.N. Association Between the Use of Antibiotics in the First Year of Life and Pediatric Inflammatory Bowel Disease. Am. J. Gastroenterol. 2010, 105, 2687–2692. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Luo, W.; Shi, Y.; Fan, Z.; Ji, G. Should We Standardize the 1,700-Year-Old Fecal Microbiota Transplantation? Am. J. Gastroenterol. 2012, 107, 1755. [Google Scholar] [CrossRef]
- De Groot, P.F.; Frissen, M.N.; De Clercq, N.C.; Nieuwdorp, M. Fecal microbiota transplantation in metabolic syndrome: History, present and future. Gut Microbes 2017, 8, 253–267. [Google Scholar] [CrossRef]
- Sonnenborn, U. Escherichia coli strain Nissle 1917—From bench to bedside and back: History of a special Escherichia coli strain with probiotic properties. FEMS Microbiol. Lett. 2016, 363, fnw212. [Google Scholar] [CrossRef]
- Bowden, T.A.; Mansberger, A.R.; Lykins, L.E. Pseudomembraneous enterocolitis: Mechanism for restoring floral homeostasis. Am. Surg. 1981, 47, 178–183. [Google Scholar]
- Schultz, M. Clinical use of E. coli Nissle 1917 in inflammatory bowel disease. Inflamm. Bowel Dis. 2008, 14, 1012–1018. [Google Scholar] [CrossRef]
- Di Luccia, B.; Mazzoli, A.; Cigliano, L.; Venditti, P.; Walser, J.-C.; Widmer, A.; Baccigalupi, L.; Ricca, E.; Iossa, S. Rescue of Fructose-Induced Metabolic Syndrome by Antibiotics or Faecal Transplantation in a Rat Model of Obesity. PLoS ONE 2015, 10, e0134893. [Google Scholar] [CrossRef]
- Li, J.; Lin, S.; Vanhoutte, P.M.; Woo, C.W.; Xu, A. Akkermansia muciniphila Protects Against Atherosclerosis by Preventing Metabolic Endotoxemia-Induced Inflammation in Apoe-/- Mice. Circulation 2016, 133, 2434–2446. [Google Scholar] [CrossRef]
- Glassner, K.L.; Abraham, B.P.; Quigley, E.M.M. The microbiome and inflammatory bowel disease. J. Allergy Clin. Immunol. 2020, 145, 16–27. [Google Scholar] [CrossRef] [PubMed]
- D’Haens, G.R.; Geboes, K.; Peeters, M.; Baert, F.; Penninckx, F.; Rutgeerts, P. Early lesions of recurrent Crohn’s disease caused by infusion of intestinal contents in excluded ileum. Gastroenterology 1998, 114, 262–267. [Google Scholar] [CrossRef] [PubMed]
- Huse, S.M.; Young, V.B.; Morrison, H.G.; Antonopoulos, D.A.; Kwon, J.; Dalal, S.; Arrieta, R.; Hubert, N.A.; Shen, L.; Vineis, J.H.; et al. Comparison of brush and biopsy sampling methods of the ileal pouch for assessment of mucosa-associated microbiota of human subjects. Microbiome 2014, 2, 5. [Google Scholar] [CrossRef] [PubMed]
- Lavelle, A.; Lennon, G.; Docherty, N.; Balfe, A.; Mulcahy, H.; Doherty, G.; O′Donoghue, D.; Hyland, J.; Shanahan, K.; Coffey, J.; et al. Depth-Dependent Differences in Community Structure of the Human Colonic Microbiota in Health. PLoS ONE 2013, 8, e78835. [Google Scholar] [CrossRef]
- Berlinberg, A.J.; Brar, A.; Stahly, A.; Gerich, M.E.; Fennimore, B.P.; Scott, F.I.; Kuhn, K.A. A Novel Approach toward Less Invasive Multiomics Gut Analyses: A Pilot Study. Microbiol. Spectr. 2022, 10, e02446-21. [Google Scholar] [CrossRef]
- Clément-Ziza, M.; Munnich, A.; Lyonnet, S.; Jaubert, F.; Besmond, C. Stabilization of RNA during laser capture microdissection by performing experiments under argon atmosphere or using ethanol as a solvent in staining solutions. RNA 2008, 14, 2698–2704. [Google Scholar] [CrossRef]
- Kalantar-Zadeh, K.; Berean, K.J.; Burgell, R.E.; Muir, J.G.; Gibson, P.R. Intestinal gases: Influence on gut disorders and the role of dietary manipulations. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 733–747. [Google Scholar] [CrossRef]
- Abdelbary, M.M.H.; Hatting, M.; Bott, A.; Dahlhausen, A.; Keller, D.; Trautwein, C.; Conrads, G. The oral-gut axis: Salivary and fecal microbiome dysbiosis in patients with inflammatory bowel disease. Front. Cell. Infect. Microbiol. 2022, 12, 1010853. [Google Scholar] [CrossRef]
- Han, A.; Sun, H.; Mei, Q.; Zhu, L.; Xiong, M.; Yang, M.; Chen, B.; Cao, G.; Xu, J.; Meng, T.; et al. Microbiome and its relevance to indigenous inflammatory bowel diseases in China. Gene 2024, 909, 148257. [Google Scholar] [CrossRef]
- Kang, S.-B.; Kim, H.; Kim, S.; Kim, J.; Park, S.-K.; Lee, C.-W.; Kim, K.O.; Seo, G.-S.; Kim, M.S.; Cha, J.M.; et al. Potential Oral Microbial Markers for Differential Diagnosis of Crohn’s Disease and Ulcerative Colitis Using Machine Learning Models. Microorganisms 2023, 11, 1665. [Google Scholar] [CrossRef]
- Bang, E.; Oh, S.; Ju, U.; Chang, H.E.; Hong, J.-S.; Baek, H.J.; Kim, K.-S.; Lee, H.-J.; Park, K.U. Factors influencing oral microbiome analysis: From saliva sampling methods to next-generation sequencing platforms. Sci. Rep. 2023, 13, 10086. [Google Scholar] [CrossRef]
- Park, Y.E.; Moon, H.S.; Yong, D.; Seo, H.; Yang, J.; Shin, T.-S.; Kim, Y.K.; Kim, J.R.; Lee, Y.N.; Kim, Y.H.; et al. Microbial changes in stool, saliva, serum, and urine before and after anti-TNF-α therapy in patients with inflammatory bowel diseases. Sci. Rep. 2022, 12, 6359. [Google Scholar] [CrossRef]
- Sendid, B.; Frenais, M.; Fradin, C.; Hercé, S.; Join-Lambert, O.; Papon, N.; Poirot, S.; Brunel, L.; Jouault, T.; Coste, A.; et al. A Pilot Clinical Study on Post-Operative Recurrence Provides Biological Clues for a Role of Candida Yeasts and Fluconazole in Crohn’s Disease. J. Fungi 2021, 7, 324. [Google Scholar] [CrossRef] [PubMed]
- Nishikawa, J.; Kudo, T.; Sakata, S.; Benno, Y.; Sugiyama, T. Diversity of mucosa-associated microbiota in active and inactive ulcerative colitis. Scand. J. Gastroenterol. 2009, 44, 180–186. [Google Scholar] [CrossRef] [PubMed]
- Gevers, D.; Kugathasan, S.; Denson, L.A.; Vázquez-Baeza, Y.; Van Treuren, W.; Ren, B.; Schwager, E.; Knights, D.; Song, S.J.; Yassour, M.; et al. The treatment-naive microbiome in new-onset Crohn’s disease. Cell Host Microbe 2014, 15, 382–392. [Google Scholar] [CrossRef] [PubMed]
- Sokol, H.; Pigneur, B.; Watterlot, L.; Lakhdari, O.; Bermúdez-Humarán, L.G.; Gratadoux, J.-J.; Blugeon, S.; Bridonneau, C.; Furet, J.-P.; Corthier, G.; et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc. Natl. Acad. Sci. USA 2008, 105, 16731–16736. [Google Scholar] [CrossRef] [PubMed]
- Machiels, K.; del Río, M.P.; la Torre, A.M.-D.; Xie, Z.; Andreu, V.P.; Sabino, J.; Santiago, A.; Campos, D.; Wolthuis, A.; D’hOore, A.; et al. Early Postoperative Endoscopic Recurrence in Crohn’s Disease Is Characterised by Distinct Microbiota Recolonisation. J. Crohns Colitis 2020, 14, 1535–1546. [Google Scholar] [CrossRef]
- Wright, E.K.; Kamm, M.A.; Teo, S.M.; Inouye, M.; Wagner, J.; Kirkwood, C.D.; Hewison, M.; Cameron, D.J.; Jones, M.B.; Kumar, N.; et al. Microbial Factors Associated with Postoperative Crohn’s Disease Recurrence. ECCOJC 2017, 11, 191–203. [Google Scholar] [CrossRef]
- Buisson, A.; El Oussini, A.; Seksik, P.; Peyrin-Biroulet, L.; Allez, M.; Fumery, M.; Nancey, S.; Pariente, B.; Ballet, N.; Filippi, J.; et al. Role of adherent and invasive Escherichia coli in Crohn’s disease: Lessons from the postoperative recurrence model. Gut 2023, 72, 39–48. [Google Scholar] [CrossRef]
- Zuo, T.; Lu, X.-J.; Zhang, Y.; Geng, J.; Cheung, C.P.; Lui, G.C.-Y.; Tso, E.; Ling, L.; Yu, J.; Chan, F.; et al. Gut mucosal virome alterations in ulcerative colitis. Gut 2019, 68, 1169–1179. [Google Scholar] [CrossRef]
- Gogokhia, L.; Buhrke, K.; Bell, R.; Hoffman, B.; Brown, D.G.; Hanke-Gogokhia, C.; Ajami, N.J.; Wong, M.C.; Ghazaryan, A.; Valentine, J.F.; et al. Expansion of Bacteriophages Is Linked to Aggravated Intestinal Inflammation and Colitis. Cell Host Microbe 2019, 25, 285–299.e8. [Google Scholar] [CrossRef]
- Massimino, L.; Fernandes, L.; Brito, F.; Rocha, V.; Ribeiro, T.; Moreira-Ramos, S.; Santos-Araujo, F. Gut virome-colonising Orthohepadnavirus genus is associated with ulcerative colitis pathogenesis and induces intestinal inflammation in vivo. Gut 2023, 72, 1838–1847. [Google Scholar] [CrossRef]
- Basic, M.; Keubler, L.M.; Buettner, M.; Achard, M.; Breves, G.; Schröder, B.; Smoczek, A.; Jörns, A.; Wedekind, D.; Zschemisch, N.H.; et al. Norovirus Triggered Microbiota-driven Mucosal Inflammation in Interleukin 10-deficient Mice. Inflamm. Bowel Dis. 2014, 20, 431–443. [Google Scholar] [CrossRef]
- Martini, G.R.; Tikhonova, E.; Rosati, E.; DeCelie, M.B.; Sievers, L.K.; Tran, F.; Lessing, M.; Bergfeld, A.; Hinz, S.; Nikolaus, S.; et al. Selection of cross-reactive T cells by commensal and food-derived yeasts drives cytotoxic TH1 cell responses in Crohn’s disease. Nat. Med. 2023, 29, 2602–2614. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Leonardi, I.; Semon, A.; Doron, I.; Gao, I.H.; Putzel, G.G.; Kim, Y.; Kabata, H.; Artis, D.; Fiers, W.D.; et al. Response to Fungal Dysbiosis by Gut-Resident CX3CR1+ Mononuclear Phagocytes Aggravates Allergic Airway Disease. Cell Host Microbe 2018, 24, 847–856.e4. [Google Scholar] [CrossRef] [PubMed]
- Li, X.V.; Leonardi, I.; Putzel, G.G.; Semon, A.; Fiers, W.D.; Kusakabe, T.; Lin, W.-Y.; Gao, I.H.; Doron, I.; Gutierrez-Guerrero, A.; et al. Immune regulation by fungal strain diversity in inflammatory bowel disease. Nature 2022, 603, 672–678. [Google Scholar] [CrossRef] [PubMed]
- Jain, U.; Heul, A.M.V.; Xiong, S.; Gregory, M.H.; Demers, E.G.; Kern, J.T.; Lai, C.-W.; Muegge, B.D.; Barisas, D.A.G.; Leal-Ekman, J.S.; et al. Debaryomyces is enriched in Crohn’s disease intestinal tissue and impairs healing in mice. Science 2021, 371, 1154–1159. [Google Scholar] [CrossRef]
- Limon, J.J.; Tang, J.; Li, D.; Wolf, A.J.; Michelsen, K.S.; Funari, V.; Gargus, M.; Nguyen, C.; Sharma, P.; Maymi, V.I.; et al. Malassezia Is Associated with Crohn’s Disease and Exacerbates Colitis in Mouse Models. Cell Host Microbe 2019, 25, 377–388.e6. [Google Scholar] [CrossRef]
- Yu, M.; Ding, H.; Gong, S.; Luo, Y.; Lin, H.; Mu, Y.; Li, H.; Li, X.; Zhong, M. Fungal dysbiosis facilitates inflammatory bowel disease by enhancing CD4+ T cell glutaminolysis. Front. Cell. Infect. Microbiol. 2023, 13, 1140757. [Google Scholar] [CrossRef]
- Jin, J.; Tang, Y.; Cao, L.; Wang, X.; Chen, Y.; An, G.; Zhang, H.; Pan, G.; Bao, J.; Zhou, Z.; et al. Microsporidia persistence in host impairs epithelial barriers and increases chances of inflammatory bowel disease. Microbiol. Spectr. 2024, 12, e03610-23. [Google Scholar] [CrossRef]
- Sancak, B.; Akyön, Y. Microsporidia: General characteristics, infections and laboratory diagnosis. Mikrobiyol. Bul. 2005, 39, 513–522. [Google Scholar] [PubMed]
- Lopez-Siles, M.; Enrich-Cabruja, J.; Sabat-Mari, M.; Duncan, S.H.; Aldeguer, X.; Garcia-Galan, C.; Hernandez, C.; Martínez-Martínez, M.; Maneu-Vázquez, M. Alterations in the Abundance and Co-occurrence of Akkermansia muciniphila and Faecalibacterium prausnitzii in the Colonic Mucosa of Inflammatory Bowel Disease Subjects. Front. Cell. Infect. Microbiol. 2018, 8, 281. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Siles, M.; Enrich-Cabruja, J.; Aldeguer, X.; Martínez-Martínez, M.; Sabat-Mari, M.; Duncan, S.H.; Garcia-Galan, C.; Hernandez, C.; Maneu-Vázquez, M. Mucosa-associated Faecalibacterium prausnitzii and Escherichia coli co-abundance can distinguish Irritable Bowel Syndrome and Inflammatory Bowel Disease phenotypes. Int. J. Med. Microbiol. 2014, 304, 464–475. [Google Scholar] [CrossRef]
- Gao, S.; Gao, X.; Zhu, R.; Wu, D.; Feng, Z.; Jiao, N.; Sun, R.; Gao, W.; He, Q.; Liu, Z.; et al. Microbial genes outperform species and SNVs as diagnostic markers for Crohn’s disease on multicohort fecal metagenomes empowered by artificial intelligence. Gut Microbes 2023, 15, 2221428. [Google Scholar] [CrossRef]
- Zhou, Y.; Xu, Z.Z.; He, Y.; Yang, Y.; Liu, L.; Lin, Q.; Nie, Y.; Li, M.; Zhi, F.; Liu, S.; et al. Gut Microbiota Offers Universal Biomarkers across Ethnicity in Inflammatory Bowel Disease Diagnosis and Infliximab Response Prediction. mSystems 2018, 3, e00188-17. [Google Scholar] [CrossRef]
- Xu, X.; Ocansey, D.K.W.; Hang, S.; Wang, B.; Amoah, S.; Yi, C.; Zhang, X.; Liu, L.; Mao, F. The gut metagenomics and metabolomics signature in patients with inflammatory bowel disease. Gut Pathog. 2022, 14, 26. [Google Scholar] [CrossRef]
- Wu, X.; Li, Y.; Shang, Y.; Wang, W.; Wu, L.; Han, L.; Wang, Q.; Wang, Z.; Xu, H.; Liu, W. Application of two-dimensional polymerase chain reaction to detect four types of microorganisms in feces for assisted diagnosis of IBD. Clin. Chim. Acta 2024, 555, 117802. [Google Scholar] [CrossRef]
- Kolho, K.-L.; Korpela, K.; Jaakkola, T.; Madharasi, P.; Zoetendal, E.; Salonen, A.; de Vos, W. Fecal Microbiota in Pediatric Inflammatory Bowel Disease and Its Relation to Inflammation. Am. J. Gastroenterol. 2015, 110, 921–930. [Google Scholar] [CrossRef]
- Rees, N.P.; Shaheena, W.; Quincec, C.; Tselepisa, C.; Horniblow, R.; Sharma, N.; Beggs, A.; Iqbal, T.; Quraishi, M. Systematic review of donor and recipient predictive biomarkers of response to faecal microbiota transplantation in patients with ulcerative colitis. eBioMedicine 2022, 81, 104088. [Google Scholar] [CrossRef]
- Pittayanon, R.; Lau, J.T.; Yuan, Y.; Leontiadis, G.I.; Tse, F.; Surette, M. Gut Microbiota in Patients with Irritable Bowel Syndrome—A Systematic Review. Gastroenterology 2019, 157, 97–108. [Google Scholar] [CrossRef] [PubMed]
- Al Radi, Z.M.A.; Prins, F.; Collij, V.; Vich Vila, A.; Festen, E.; Dijkstra, G.; Weersma, R.; Klaassen, M.; Gacesa, R. Exploring the Predictive Value of Gut Microbiome Signatures for Therapy Intensification in Patients with Inflammatory Bowel Disease: A 10-Year Follow-up Study. Inflamm. Bowel Dis. 2024, 30, 1642–1653. [Google Scholar] [CrossRef] [PubMed]
- Rojas-Velazquez, D.; Kidawi, S.; Kraneveld, A.; Tonda, A.; Oberski, D.; Garssen, J.; Lopez-Rincon, A. Methodology for biomarker discovery with reproducibility in microbiome data using machine learning. BMC Bioinform. 2024, 25, 26. [Google Scholar] [CrossRef] [PubMed]
- Kang, D.Y.; Park, J.L.; Yeo, M.K.; Kang, S.B.; Kim, J.M.; Kim, J.S.; Kim, S.Y. Diagnosis of Crohn’s disease and ulcerative colitis using the microbiome. BMC Microbiol. 2023, 23, 336. [Google Scholar] [CrossRef] [PubMed]
- Zwezerijnen-Jiwa, F.H.; Sivov, H.; Paizs, P.; Zafeiropoulou, K.; Kinross, J. A systematic review of microbiome-derived biomarkers for early colorectal cancer detection. Neoplasia 2023, 36, 100868. [Google Scholar] [CrossRef]
- Hassanzad, M.; Hajian-Tilaki, K. Methods of determining optimal cut-point of diagnostic biomarkers with application of clinical data in ROC analysis: An update review. BMC Med. Res. Methodol. 2024, 24, 84. [Google Scholar] [CrossRef]
- Pickard, J.M.; Zeng, M.Y.; Caruso, R.; Núñez, G. Gut microbiota: Role in pathogen colonization, immune responses, and inflammatory disease. Immunol. Rev. 2017, 279, 70–89. [Google Scholar] [CrossRef]
- Gonzalez, C.G.; Mills, R.; Zhu, Q.; Sauceda, C.; Knight, R.; Dulai, P.; Gonzalez, D. Location-specific signatures of Crohn’s disease at a multi-omics scale. Microbiome 2022, 10, 133. [Google Scholar] [CrossRef]
- Thanush, D.; Venkatesh, M.P. Fecal microbiota transplantation: History, procedure and regulatory considerations. La Presse Médicale 2023, 52, 104204. [Google Scholar] [CrossRef]
- Yuan, S.; Wang, K.-S.; Meng, H.; Hou, X.-T.; Xue, J.-C.; Liu, B.-H.; Cheng, W.-W.; Li, J.; Zhang, H.-M.; Nan, J.-X.; et al. The gut microbes in inflammatory bowel disease: Future novel target option for pharmacotherapy. Biomed. Pharmacother. 2023, 165, 114893. [Google Scholar] [CrossRef]
- Khoruts, A.; Sadowsky, M.J. Understanding the mechanisms of faecal microbiota transplantation. Nat. Rev. Gastroenterol. Hepatol. 2016, 13, 508–516. [Google Scholar] [CrossRef]
- Zhang, X.; Ishikawa, D.; Ohkusa, T.; Fukuda, S.; Nagahara, A. Hot topics on fecal microbiota transplantation for the treatment of inflammatory bowel disease. Front. Med. 2022, 9, 1068567. [Google Scholar] [CrossRef]
- Chen, Q.; Fan, Y.; Zhang, B.; Yan, C.; Zhang, Q.; Ke, Y.; Chen, Z.; Wang, L.; Shi, H.; Hu, Y.; et al. Capsulized Fecal Microbiota Transplantation Induces Remission in Patients with Ulcerative Colitis by Gut Microbial Colonization and Metabolite Regulation. Microbiol. Spectr. 2023, 11, e04152-22. [Google Scholar] [CrossRef]
- Tikunov, A.Y.; Fedorets, V.A.; Shrainer, E.V.; Morozov, V.V.; Bystrova, V.I.; Tikunova, N.V. Intestinal Microbiome Changes and Clinical Outcomes of Patients with Ulcerative Colitis after Fecal Microbiota Transplantation. JCM 2023, 12, 7702. [Google Scholar] [CrossRef] [PubMed]
- Fang, H.; Fu, L.; Li, X.; Lu, C.; Su, Y.; Xiong, K.; Zhang, L. Long-term efficacy and safety of monotherapy with a single fresh fecal microbiota transplant for recurrent active ulcerative colitis: A prospective randomized pilot study. Microb. Cell Fact. 2021, 20, 18. [Google Scholar] [CrossRef] [PubMed]
- Levy, A.N.; Allegretti, J.R. Insights into the role of fecal microbiota transplantation for the treatment of inflammatory bowel disease. Therap. Adv. Gastroenterol. 2019, 12, 1756284819836893. [Google Scholar] [CrossRef] [PubMed]
- Paramsothy, S.; Nielsen, S.; Kamm, M.; Deshpande, N.; Faith, J.; Clemente, J.; Paramsothy, R.; Walsh, A.; van den Bogaerde, J.; Samuel, D.; et al. Specific Bacteria and Metabolites Associated with Response to Fecal Microbiota Transplantation in Patients with Ulcerative Colitis. Gastroenterology 2019, 156, 1440–1454.e2. [Google Scholar] [CrossRef]
- Haifer, C.; Paramsothy, S.; Borody, T.J.; Clancy, A.; Leong, R.W.; Kaakoush, N.O. Long-Term Bacterial and Fungal Dynamics following Oral Lyophilized Fecal Microbiota Transplantation in Clostridioides difficile Infection. mSystems 2021, 6, e00905-20. [Google Scholar] [CrossRef]
- Weingarden, A.R.; Vaughn, B.P. Intestinal microbiota, fecal microbiota transplantation, and inflammatory bowel disease. Gut Microbes 2017, 8, 238–252. [Google Scholar] [CrossRef]
- Kao, D.; Hotte, N.; Gillevet, P.; Madsen, K. Fecal Microbiota Transplantation Inducing Remission in Crohn’s Colitis and the Associated Changes in Fecal Microbial Profile. J. Clin. Gastroenterol. 2014, 48, 625–628. [Google Scholar] [CrossRef]
- Gordon, H.; Harbord, M. A patient with severe Crohn’s colitis responds to Faecal Microbiota Transplantation. J. Crohn’s Colitis 2014, 8, 256–257. [Google Scholar] [CrossRef]
- Vermeire, S.; Joossens, M.; Verbeke, K.; Hildebrand, F.; Machiels, K.; Van den Broeck, K.; Van Assche, G.; Rutgeerts, J.; Raes, J. Sa1922 Pilot Study on the Safety and Efficacy of Faecal Microbiota Transplantation in Refractory Crohn’s Disease. Gastroenterology 2012, 142, S360. [Google Scholar] [CrossRef]
- Cui, B.; Feng, Q.; Wang, H.; Wang, M.; Peng, Z.; Li, P.; Huang, G.; Liu, Z.; Wu, P.; Fan, Z.; et al. Fecal microbiota transplantation through mid-gut for refractory C rohn’s disease: Safety, feasibility, and efficacy trial results. J. Gastro. Hepatol. 2015, 30, 51–58. [Google Scholar] [CrossRef]
- Zhang, F.-M. Fecal microbiota transplantation for severe enterocolonic fistulizing Crohn’s disease. WJG 2013, 19, 7213. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Bu, C.; Yuan, W.; Shen, Z.; Quan, Y.; Wu, S.; Zhu, C.; Wang, X. Fecal Microbiota Transplant via Endoscopic Delivering Through Small Intestine and Colon: No Difference for Crohn’s Disease. Dig. Dis. Sci. 2020, 65, 150–157. [Google Scholar] [CrossRef]
- Sokol, H.; Landman, C.; Seksik, P.; Berard, L.; Montil, M.; Nion-Larmurier, I.; Bourrier, A.; Le Gall, G.; Lalande, V.; De Rougemont, A.; et al. Fecal microbiota transplantation to maintain remission in Crohn’s disease: A pilot randomized controlled study. Microbiome 2020, 8, 12. [Google Scholar] [CrossRef]
- De Leon, L.M.; Watson, J.B.; Kelly, C.R. Transient Flare of Ulcerative Colitis After Fecal Microbiota Transplantation for Recurrent Clostridium difficile Infection. Clin. Gastroenterol. Hepatol. 2013, 11, 1036–1038. [Google Scholar] [CrossRef]
- Yin, S.; Liao, Y.; Ma, Y.; Han, X.; Yang, Z.; Fang, J.; Alahmadi, R.M.; Hatamleh, A.A.; Duraipandiyan, V.; Gurusunathan, V.; et al. Lactiplantibacillus plantarum and faecal microbiota transplantation can improve colitis in mice by affecting gut microbiota and metabolomics. Benef. Microbes 2023, 14, 609–622. [Google Scholar] [CrossRef]
- Zhang, L.; Geng, Z.; Hao, B.; Geng, Q. Tislelizumab: A Modified Anti-tumor Programmed Death Receptor 1 Antibody. Cancer Control. 2022, 29, 10732748221111296. [Google Scholar] [CrossRef]
- Zhang, Y.; Zou, J.-Y.; Wang, Z.; Wang, Y. Fruquintinib: A novel antivascular endothelial growth factor receptor tyrosine kinase inhibitor for the treatment of metastatic colorectal cancer. CMAR 2019, 11, 7787–7803. [Google Scholar] [CrossRef]
- Zhao, W.; Lei, J.; Ke, S.; Chen, Y.; Xiao, J.; Tang, Z.; Wang, L.; Ren, Y.; Alnaggar, M.; Qiu, H.; et al. Fecal microbiota transplantation plus tislelizumab and fruquintinib in refractory microsatellite stable metastatic colorectal cancer: An open-label, single-arm, phase II trial (RENMIN-215). eClinicalMedicine 2023, 66, 102315. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, D.; Wu, X.; Zhang, F.; Cui, B.; Huang, Y.; Zhang, Z.; Wang, R.; Bai, F. Washed microbiota transplantation for Crohn’s disease: A metagenomic, metatranscriptomic, and metabolomic-based study. World J. Gastroenterol. 2024, 30, 1572–1587. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Q.; Zhang, L.; Zou, J.; He, R.; Zhou, Y.; Qian, C.; Zhu, Y.; Qian, C.; Zhu, Y.; et al. Washed microbiota transplantation reduces glycemic variability in unstable diabetes. J. Diabetes 2024, 16, e13485. [Google Scholar] [CrossRef]
- Zhang, S.; Huang, Y.; Lu, G.; Zhang, Z.; Wang, Y.; Liu, Y.; Wang, W.; Li, Q.; Li, P.; Wen, Q.; et al. Comparison between washed microbiota transplantation and infliximab: Medical cost during long-term management in patients with inflammatory bowel disease. J. Chin. Med. Assoc. 2024, 87, 109–118. [Google Scholar] [CrossRef]
- Draper, L.; Ryan, F.; Dalmasso, M.; Casey, P.; McCann, A.; Velayudhan, V.; Ross, P.; Hill, C. Autochthonous fecal viral transfer (FVT) impacts the murine microbiome after antibiotic perturbation. BMC Biol. 2020, 18, 173. [Google Scholar] [CrossRef]
- Ott, S.; Waetzig, G.; Rehman, A.; Moltzau-Anderson, J.; Bharti, R.; Grasis, J.; Cassidy, L.; Tholey, A.; Fickenscher, H.; Seegert, D. Efficacy of Sterile Fecal Filtrate Transfer for Treating Patients with Clostridium difficile Infection. Gastroenterology 2017, 152, 799–811.e7. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, T.; Junker Mentzel, C.; Kot, W.; Castro-Mejía, J.; Zuffa, S.; Swann, J.; Hansen, L.; Vogensen, F.; Hansen, A.; Nielsen, D. Fecal virome transplantation decreases symptoms of type 2 diabetes and obesity in a murine model. Gut 2020, 69, 2122–2130. [Google Scholar] [CrossRef] [PubMed]
- Sinha, A.; Li, Y.; Mirzaei, M.; Shamash, M.; Samadfam, R.; King, I.L.; Maurice, C.F. Transplantation of bacteriophages from ulcerative colitis patients shifts the gut bacteriome and exacerbates the severity of DSS colitis. Microbiome 2022, 10, 105. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Midha, V.; Chauhan, N.S.; Sood, A. Current perspectives on fecal microbiota transplantation in inflammatory bowel disease. Indian J. Gastroenterol. 2024, 43, 129–144. [Google Scholar] [CrossRef]
- Marsool, M.D.M.; Vora, N.; Marsool, A.D.M.; Pati, S.; Narreddy, M.; Patel, P.; Gadam, S.; Prajjwal, P. Ulcerative colitis: Addressing the manifestations, the role of fecal microbiota transplantation as a novel treatment option and other therapeutic updates. Dis. A Mon. 2023, 69, 101606. [Google Scholar] [CrossRef]
- Nanki, K.; Mizuno, S.; Matsuoka, K.; Ono, K.; Sugimoto, S.; Kiyohara, H.; Arai, M.; Nakashima, M.; Takeshita, K.; Saigusa, K.; et al. Fecal microbiota transplantation for recurrent Clostridium difficile infection in a patient with ulcerative colitis. Intest. Res. 2018, 16, 142–146. [Google Scholar] [CrossRef]
- Eiseman, B.; Silen, W.; Bascom, G.S.; Kauvar, A.J. Fecal enema as an adjunct in the treatment of pseudomembranous enterocolitis. Surgery 1958, 44, 854–859. [Google Scholar]
- Hamilton, M.J.; Weingarden, A.R.; Unno, T.; Khoruts, A.; Sadowsky, M.J. High-throughput DNA sequence analysis reveals stable engraftment of gut microbiota following transplantation of previously frozen fecal bacteria. Gut Microbes 2013, 4, 125–135. [Google Scholar] [CrossRef]
- Weingarden, A.R.; Vaughn, B.P. Dynamic changes in short- and long-term bacterial composition following fecal microbiota transplantation for recurrent Clostridium difficile infection. Microbiome 2015, 3, 10. [Google Scholar] [CrossRef]
- Bennet, J.; Brinkman, M. Treatment of Ulcerative Colitis by Implantation of Normal Colonic Flora. Lancet 1989, 333, 164. [Google Scholar] [CrossRef] [PubMed]
- Sood, A.; Singh, A.; Midha, V.; Mahajan, R.; Kao, D.; Rubin, D.T.; Bernstein, C.N. Fecal Microbiota Transplantation for Ulcerative Colitis: An Evolving Therapy. Crohns Colitis 360 2020, 2, otaa067. [Google Scholar] [CrossRef] [PubMed]
- Porcari, S.; Severino, A.; Rondinella, D.; Bibbò, S.; Quaranta, G.; Masucci, L.; Maida, M.; Scaldaferri, F.; Sanguinetti, M.; Gasbarrini, A.; et al. Fecal microbiota transplantation for recurrent Clostridioides difficile infection in patients with concurrent ulcerative colitis. J. Autoimmun. 2023, 141, 103033. [Google Scholar] [CrossRef] [PubMed]
- Mintz, M.; Khair, S.; Grewal, S.; LaComb, J.F.; Park, J.; Channer, B.; Rajapakse, R.; Bucobo, J.C.; Buscaglia, J.M.; Monzur, F.; et al. Longitudinal microbiome analysis of single donor fecal microbiota transplantation in patients with recurrent Clostridium difficile infection and/or ulcerative colitis. PLoS ONE 2018, 13, e0190997. [Google Scholar] [CrossRef]
- Allegretti, J.R.; Kelly, C.R.; Grinspan, A.; Mullish, B.H.; Hurtado, J.; Carrellas, M.; Marcus, J.; Marchesi, J.R.; McDonald, J.A.K.; Gerardin, Y.; et al. Inflammatory Bowel Disease Outcomes Following Fecal Microbiota Transplantation for Recurrent C. difficile Infection. Inflamm. Bowel Dis. 2021, 27, 1371–1378. [Google Scholar] [CrossRef]
- Meighani, A.; Hart, B.R.; Bourgi, K.; Miller, N.; John, A.; Ramesh, M. Outcomes of Fecal Microbiota Transplantation for Clostridium difficile Infection in Patients with Inflammatory Bowel Disease. Dig. Dis. Sci. 2017, 62, 2870–2875. [Google Scholar] [CrossRef]
- Tariq, R.; Disbrow, M.B.; Dibaise, J.K.; Orenstein, R.; Saha, S.; Solanky, D.; Loftus, E.V.; Pardi, D.S.; Khanna, S. Efficacy of Fecal Microbiota Transplantation for Recurrent C. difficile Infection in Inflammatory Bowel Disease. Inflamm. Bowel Dis. 2020, 26, 1415–1420. [Google Scholar] [CrossRef]
- Azimirad, M.; Yadegar, A.; Gholami, F.; Shahrokh, S.; Asadzadeh Aghdaei, H.; Ianiro, G.; Suzuki, H.; Cammarota, G.; Zali, M.R. Treatment of Recurrent Clostridioides difficile Infection Using Fecal Microbiota Transplantation in Iranian Patients with Underlying Inflammatory Bowel Disease. J. Inflamm. Res. 2020, 13, 563–570. [Google Scholar] [CrossRef] [PubMed]
- Ianiro, G.; Bibbò, S.; Porcari, S.; Settanni, C.R.; Giambò, F.; Curta, A.R.; Quaranta, G.; Scaldaferri, F.; Masucci, L.; Sanguinetti, M. Fecal microbiota transplantation for recurrent C. difficile infection in patients with inflammatory bowel disease: Experience of a large-volume European FMT center. Gut Microbes 2021, 13, 1994834. [Google Scholar] [CrossRef] [PubMed]
- Khoruts, A.; Rank, K.M.; Newman, K.M.; Viskocil, K.; Vaughn, B.P.; Hamilton, M.J.; Sadowsky, M.J. Inflammatory Bowel Disease Affects the Outcome of Fecal Microbiota Transplantation for Recurrent Clostridium difficile Infection. Clin. Gastroenterol. Hepatol. 2016, 14, 1433–1438. [Google Scholar] [CrossRef] [PubMed]
- Aratari, A.; Cammarota, G.; Papi, C. Fecal Microbiota Transplantation for Recurrent C. difficile Infection in a Patient with Chronic Refractory Ulcerative Colitis. J. Crohn’s Colitis 2015, 9, 367. [Google Scholar] [CrossRef]
- Cho, S.; Spencer, E.; Hirten, R.; Grinspan, A.; Dubinsky, M.C. Fecal Microbiota Transplant for Recurrent Clostridium difficile Infection in Pediatric Inflammatory Bowel Disease. J. Pediatr. Gastroenterol. Nutr. 2019, 68, 343–347. [Google Scholar] [CrossRef]
- Qazi, T.; Amaratunga, T.; Barnes, E.L.; Fischer, M.; Kassam, Z.; Allegretti, J.R. The risk of inflammatory bowel disease flares after fecal microbiota transplantation: Systematic review and meta-analysis. Gut Microbes 2017, 8, 574–588. [Google Scholar] [CrossRef]
- Haifer, C.; Kelly, C.R.; Paramsothy, S.; Andresen, D.; Papanicolas, L.E.; McKew, G.L.; Borody, T.J.; Kamm, M.; Costello, S.P.; Andrews, J.M.; et al. Australian consensus statements for the regulation, production and use of faecal microbiota transplantation in clinical practice. Gut 2020, 69, 801–810. [Google Scholar] [CrossRef]
- Kellermayer, R. Fecal microbiota transplantation: Great potential with many challenges. Transl. Gastroenterol. Hepatol. 2019, 4, 40. [Google Scholar] [CrossRef]
- Poutahidis, T.; Erdman, S.E. Commensal bacteria modulate the tumor microenvironment. Cancer Lett. 2016, 380, 356–358. [Google Scholar] [CrossRef]
- FDA Approves First Orally Administered Fecal Microbiota Product for the Prevention of Recurrence of Clostridioides difficile Infection. 26 April 2023. Available online: https://www.fda.gov/news-events/press-announcements/fda-approves-first-orally-administered-fecal-microbiota-product-prevention-recurrence-clostridioides (accessed on 1 May 2025).
- Berry, P.; Khanna, S. Fecal microbiota spores, live-brpk (VOWSTTM/VOS) for prevention of recurrent Clostridioides difficile infection. Future Microbiol. 2024, 19, 1519–1528. [Google Scholar] [CrossRef]
- Berenson, C.S.; Lashner, B.; Korman, L.Y.; Hohmann, E.; Deshpande, A.; Louie, T.J.; Sims, M.; Pardi, D.; Kraft, C.S.; Wang, E.E.L.; et al. Prevalence of Comorbid Factors in Patients With Recurrent Clostridioides difficile Infection in ECOSPOR III, a Randomized Trial of an Oral Microbiota–Based Therapeutic. Clin. Infect. Dis. 2023, 77, 1504–1510. [Google Scholar] [CrossRef]
- Cohen, S.H.; Louie, T.J.; Sims, M.; Wang, E.E.L.; Memisoglu, A.; McGovern, B.H.; von Moltke, L. Extended Follow-up of Microbiome Therapeutic SER-109 Through 24 Weeks for Recurrent Clostridioides difficile Infection in a Randomized Clinical Trial. JAMA 2022, 328, 2062. [Google Scholar] [CrossRef]
- Fischer, M.; Kao, D.; Kelly, C.; Kuchipudi, A.; Jafri, S.M.; Blumenkehl, M.; Rex, D.; Mellow, M.; Kaur, N.; Sokol, H.; et al. Fecal Microbiota Transplantation is Safe and Efficacious for Recurrent or Refractory Clostridium difficile Infection in Patients with Inflammatory Bowel Disease. Inflamm. Bowel Dis. 2016, 22, 2402–2409. [Google Scholar] [CrossRef]
Sample Type | Microbial Changes in Patients with IBD | Microbial Changes in Patients with CD | References |
---|---|---|---|
Fecal samples | Decreased Bacteroides and Firmicutes; increased Actinobacteria and Proteus | N/A | [36] |
Mucosal tissue and stool samples | N/A | Increased Pasteurella, Veronococcus, Neisseria, Clostridium species, Escherichia coli; decreased Pseudomonas, Clostridia, Enterococcus faecalis, Rhodococcus, Brault’s species, Ruminococcus, Trichophyton species | [37] |
Specific bacteria | N/A | Reduced Faecalibacterium prausnitzii and Rothbyrrhizobium, potentially increasing pro-inflammatory cytokines and intestinal inflammation | [38] |
Postoperative recurrence of ileal CD | N/A | Increased Proteobacteria, Lachnospiraceae, Ruminococcus, Fusobacteria, adherent-invasive Escherichia coli (AIEC); decreased Faecalibacterium | [39,40,41] |
Diagnostic Biomarker | Relevance in IBD | References |
---|---|---|
Akkermansia muciniphila | Biomarker in pediatric CD | [54] |
Escherichia coli and F. prausnitzii | IBD phenotypic categorization | [55] |
Bacteroides species (SNVs) | Diagnostic markers | [56] |
Firmicutes (Clostridiales) | Reduced levels correlated with IBD severity | [57] |
Enterococcus | Increased in UC | [58] |
Lactobacillus | Increased in UC | [58] |
Clostridium cluster XVIII, Thomasclavelia ramosum, T. spiroforme, and T. saccharogumia | Aid in early IBD diagnosis and monitoring | [59] |
Study | Study Design | Patient Population | FMT Administration | Reported Outcomes | References |
---|---|---|---|---|---|
Allegretti et al. (2020) | Open-label prospective multicenter cohort | 50 patients with IBD (15 CD, 35 UC) with ≥2 CDI episodes in 12 months | Single FMT by colonoscopy from a healthy universal donor | 73% patients with CD and 62% patients with UC had IBD improvement at 6 months | [110] |
Meighani et al. (2012–2014) | Retrospective study | 201 patients with recurrent CDI (20 of them had concurrent IBD) | Not specified | 75% response rate at the 12-week follow-up | [111] |
Tariq et al. (2023) | Systematic review and meta-analysis | 457 adult IBD patients with CDI | Single and multiple FMTs | 78% CDI resolution after first FMT; 88% overall cure rate with single and multiple FMTs | [112] |
Azimirad et al. (2020) | Prospective study | 7 patients with UC and 1 patient with CD | At least one FMT for treatment of recurrent CDI | 75% cure rate | [113] |
Ianiro et al. (2021) | Single-center prospective cohort study | 18 patients with IBD, recurrent CDI | At least two fecal infusions | 94% of the patients had negative C. difficile toxin and clinical improvement at 8 weeks | [114] |
Khoruts et al. (2016) | Retrospective chart review | 272 patients who had recurrent CDI | Single FMT | 74.4% of those with IBD cleared CDI after FMT, compared to 91.1% of those without IBD | [115] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lahoud, C.; Habib, T.; Kalta, D.; Dimachkie, R.; El Sayegh, S.; Deeb, L. Intestinal Microbiota and Fecal Transplantation in Patients with Inflammatory Bowel Disease and Clostridioides difficile: An Updated Literature Review. J. Clin. Med. 2025, 14, 5260. https://doi.org/10.3390/jcm14155260
Lahoud C, Habib T, Kalta D, Dimachkie R, El Sayegh S, Deeb L. Intestinal Microbiota and Fecal Transplantation in Patients with Inflammatory Bowel Disease and Clostridioides difficile: An Updated Literature Review. Journal of Clinical Medicine. 2025; 14(15):5260. https://doi.org/10.3390/jcm14155260
Chicago/Turabian StyleLahoud, Chloe, Toni Habib, Daniel Kalta, Reem Dimachkie, Suzanne El Sayegh, and Liliane Deeb. 2025. "Intestinal Microbiota and Fecal Transplantation in Patients with Inflammatory Bowel Disease and Clostridioides difficile: An Updated Literature Review" Journal of Clinical Medicine 14, no. 15: 5260. https://doi.org/10.3390/jcm14155260
APA StyleLahoud, C., Habib, T., Kalta, D., Dimachkie, R., El Sayegh, S., & Deeb, L. (2025). Intestinal Microbiota and Fecal Transplantation in Patients with Inflammatory Bowel Disease and Clostridioides difficile: An Updated Literature Review. Journal of Clinical Medicine, 14(15), 5260. https://doi.org/10.3390/jcm14155260