Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (109)

Search Parameters:
Keywords = human coronavirus OC43

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3027 KB  
Article
Camphor-10-Sulfonamide Amino Acid Esters: Synthesis, Antiviral Evaluation, and Molecular Docking Insights
by Krasimira Dikova, Neli Vilhelmova-Ilieva, Emilio Mateev and Zhanina Petkova
Int. J. Mol. Sci. 2026, 27(2), 616; https://doi.org/10.3390/ijms27020616 - 7 Jan 2026
Viewed by 360
Abstract
The ongoing emergence of antiviral drug resistance underscores the critical need for new broad-spectrum antiviral agents. Sulfonamides and their derivatives have emerged as promising candidates for the development of new antiviral therapeutics. In this study, a series of camphor-10-sulfonamide derivatives was synthesized through [...] Read more.
The ongoing emergence of antiviral drug resistance underscores the critical need for new broad-spectrum antiviral agents. Sulfonamides and their derivatives have emerged as promising candidates for the development of new antiviral therapeutics. In this study, a series of camphor-10-sulfonamide derivatives was synthesized through a feasible and sustainable synthetic approach starting from naturally available precursors and evaluated for antiviral properties. Their activity was examined against three structurally distinct viruses—herpes simplex virus type 1 (HSV-1), human coronavirus (HCoV-OC43), and feline calicivirus (FCV)—representing both DNA and RNA, enveloped and non-enveloped types. The compounds were examined for their effects on viral replication, the stage of viral adsorption to the cell, and extracellular virions. The weakest cytotoxicity and the most pronounced activity of all the tested substances was demonstrated by the tryptophan derivative 7a. A time-dependent inhibition of the stage of adsorption of HCoV-OC43 (Δlg = 2.0 at 120 min) and FCV (Δlg = 1.75 at 60 min) to susceptible cells was established, as well as virucidal activity on the three types of virions tested, with the most pronounced effect at 120 min—for HSV-1 (Δlg = 2.75) and Δlg = 2.0 for HCoV-OC43 and FCV. Molecular docking studies performed using Glide (Schrödinger) provided insights into the active conformations of the most effective ligands and predicted possible interactions with relevant viral targets, supporting their potential as lead structures for further therapeutic development. Full article
Show Figures

Graphical abstract

47 pages, 3011 KB  
Review
Current Status and Challenges of Vaccine Development for Seasonal Human Coronaviruses
by Bin Zhang, Yaoming Liu, Tao Chen, Jintao Lai, Sen Liu, Xiaoqing Liu, Yiqiang Zhu, Haiyue Rao, Haojie Peng and Xiancai Ma
Vaccines 2025, 13(11), 1168; https://doi.org/10.3390/vaccines13111168 - 16 Nov 2025
Viewed by 2295
Abstract
Seasonal human coronaviruses (HCoVs), including HCoV-229E, HCoV-NL63, HCoV-OC43, and HCoV-HKU1, circulate globally in an epidemic pattern and account for a substantial proportion of common cold cases, particularly in infants, the elderly, and immunocompromised individuals. Although clinical manifestations are typically mild, these HCoVs exhibit [...] Read more.
Seasonal human coronaviruses (HCoVs), including HCoV-229E, HCoV-NL63, HCoV-OC43, and HCoV-HKU1, circulate globally in an epidemic pattern and account for a substantial proportion of common cold cases, particularly in infants, the elderly, and immunocompromised individuals. Although clinical manifestations are typically mild, these HCoVs exhibit ongoing antigenic drift and have demonstrated the potential to cause severe diseases in certain populations, underscoring the importance of developing targeted and broad-spectrum vaccines. This review systematically examines the pathogenesis, epidemiology, genomic architecture, and major antigenic determinants of seasonal HCoVs, highlighting key differences in receptor usage and the roles of structural proteins in modulating viral tropism and host immunity. We summarize recent advances across various vaccine platforms, including inactivated, DNA, mRNA, subunit, viral-vectored, and virus-like particle (VLP) approaches, in the development of seasonal HCoV vaccines. We specifically summarize preclinical and clinical findings demonstrating variable cross-reactivity between SARS-CoV-2 and seasonal HCoV vaccines. Evidence indicates that cross-reactive humoral and cellular immune responses following SARS-CoV-2 infection or vaccination predominantly target conserved epitopes of structural proteins, supporting strategies that incorporate conserved regions to achieve broad-spectrum protection. Finally, we discuss current challenges in pathogenesis research and vaccine development for seasonal HCoVs. We propose future directions for the development of innovative pan-coronavirus vaccines that integrate both humoral and cellular antigens, aiming to protect vulnerable populations and mitigate future zoonotic spillover threats. Full article
Show Figures

Figure 1

16 pages, 2955 KB  
Article
SARS-CoV-2 Infection of Lung Epithelia Leads to an Increase in the Cleavage and Translocation of RNase-III Drosha; Loss of Drosha Is Associated with a Decrease in Viral Replication
by Michael T. Winters, Emily S. Westemeier-Rice, Travis W. Rawson, Kiran J. Patel, Gabriel M. Sankey, Maya Dixon-Gross, Olivia R. McHugh, Nasrin Hashemipour, McKenna L. Carroll, Isabella R. Wilkerson and Ivan Martinez
Genes 2025, 16(10), 1239; https://doi.org/10.3390/genes16101239 - 20 Oct 2025
Viewed by 922
Abstract
Background/Objectives: Since its emergence, COVID-19—caused by the novel coronavirus SARS-CoV-2—has affected millions globally and led to over 1.2 million deaths in the United States alone. This global impact, coupled with the emergence of five new human coronaviruses over the past two decades, underscores [...] Read more.
Background/Objectives: Since its emergence, COVID-19—caused by the novel coronavirus SARS-CoV-2—has affected millions globally and led to over 1.2 million deaths in the United States alone. This global impact, coupled with the emergence of five new human coronaviruses over the past two decades, underscores the urgency of understanding its pathogenic mechanisms at the molecular level—not only for managing the current pandemic but also preparing for future outbreaks. Small non-coding RNAs (sncRNAs) critically regulate host and viral gene expression, including antiviral responses. Among the molecular regulators implicated in antiviral defense, the microRNA-processing enzyme Drosha has emerged as a particularly intriguing factor. In addition to its canonical role, Drosha also exerts a non-canonical, interferon-independent antiviral function against several RNA viruses. Methods: To investigate this, we employed q/RT-PCR, Western blot, and immunocytochemistry/immunofluorescence in an immortalized normal human lung/bronchial epithelial cell line (NuLi-1), as well as a human colorectal carcinoma Drosha CRISPR knockout cell line. Results: In this study, we observed a striking shift in Drosha isoform expression following infection with multiple SARS-CoV-2 variants. This shift was absent following treatment with the viral mimetic poly (I:C) or infection with other RNA viruses, including the non-severe coronaviruses HCoV-OC43 and HCoV-229E. We also identified a distinct alteration in Drosha’s cellular localization post SARS-CoV-2 infection. Moreover, Drosha ablation led to reduced expression of SARS-CoV-2 genomic and sub-genomic targets. Conclusions: Together, these observations not only elucidate a novel aspect of Drosha’s antiviral role but also advance our understanding of SARS-CoV-2 host–pathogen interactions, highlighting potential therapeutic avenues for future human coronavirus infections. Full article
(This article belongs to the Section RNA)
Show Figures

Figure 1

23 pages, 3188 KB  
Article
Antiviral Activity of Origanum vulgare ssp. hirtum Essential Oil-Loaded Polymeric Micelles
by Neli Vilhelmova-Ilieva, Ivan Iliev, Katya Kamenova, Georgy Grancharov, Krasimir Rusanov, Ivan Atanassov and Petar D. Petrov
Biomedicines 2025, 13(10), 2417; https://doi.org/10.3390/biomedicines13102417 - 2 Oct 2025
Cited by 1 | Viewed by 2477
Abstract
Background: Encapsulating essential oils in polymer-based nanocarriers can improve their stability, solubility, and bioavailability, while maintaining the biological activity of the oil’s active ingredients. In this contribution, we investigated the antiviral activity of Oregano Essential Oil (OEO) in its pure form and [...] Read more.
Background: Encapsulating essential oils in polymer-based nanocarriers can improve their stability, solubility, and bioavailability, while maintaining the biological activity of the oil’s active ingredients. In this contribution, we investigated the antiviral activity of Oregano Essential Oil (OEO) in its pure form and encapsulated into nanosized polymeric micelles, based on a poly(ethylene oxide)-block-poly(ε-caprolactone) diblock copolymer. Methods: The effect of encapsulation was evaluated using three structurally different viruses: herpes simplex virus type 1 (HSV-1) (DNA—enveloped virus), human coronavirus (HCoV OC-43) (RNA—enveloped virus), and feline calicivirus (FCV) (RNA—naked virus). The effect on the viral replicative cycle was determined using the cytopathic effect inhibition (CPE) test. Inhibition of the viral adsorption step, virucidal activity, and protective effect on healthy cells were assessed using the final dilution method and were determined as Δlg compared to the untreated viral control. Results: In both studied forms (pure and nanoformulated), OEO had no significant effect on viral replication. In the remaining antiviral experiments, the oil embedded into nanocarriers showed a slightly stronger effect than the pure oil. When the oil was directly applied to extracellular virions, viral titers were significantly reduced for all three viruses, with the effect being strongest for HSV-1 and FCV (Δlg = 3.5). A distinct effect was also observed on the viral adsorption stage, with the effect being most significant for HSV-1 (Δlg = 3.0). Conclusions: Pretreatment of healthy cells with the nanoformulated OEO significantly protected them from viral infection, with the greatest reduction in viral titer for HCoV OC-43. Full article
(This article belongs to the Special Issue Recent Advances in Targeted Drug Delivery Systems)
Show Figures

Figure 1

22 pages, 2109 KB  
Article
Antibody Responses to SARS-CoV-2 and Common HCoVs in Hemodialysis Patients and Transplant Recipients: Data from the Dominican Republic
by Lisette Alcantara Sanchez, Eloy Alvarez Guerra, Dongmei Li, Samantha M. King, Shannon P. Hilchey, Qian Zhou, Stephen Dewhurst, Kevin Fiscella and Martin S. Zand
Vaccines 2025, 13(9), 965; https://doi.org/10.3390/vaccines13090965 - 11 Sep 2025
Viewed by 1445
Abstract
Background: Vaccination against SARS-CoV-2 has been pivotal in controlling the COVID-19 pandemic. However, understanding vaccine-induced immunity in immunocompromised individuals remains critical, particularly how prior exposure to other coronaviruses modulates immune responses. The influence of previous infections with endemic human coronaviruses (HCoVs), such as [...] Read more.
Background: Vaccination against SARS-CoV-2 has been pivotal in controlling the COVID-19 pandemic. However, understanding vaccine-induced immunity in immunocompromised individuals remains critical, particularly how prior exposure to other coronaviruses modulates immune responses. The influence of previous infections with endemic human coronaviruses (HCoVs), such as OC43, on SARS-CoV-2 immunity is not fully understood. This study evaluates antibody responses to COVID-19 vaccination in hemodialysis patients (HD), transplant recipients (TR), and healthy controls (CO), accounting for prior SARS-CoV-2 infection and baseline human coronavirus (HCoV) reactivity. Methods: We obtained longitudinal antibody measurements from 70 subjects (CO: n = 33; HD: n = 13; TR: n = 24) and assessed antibody kinetics across multiple post-vaccination time points using multivariate linear mixed modeling (MLMM). Results: Limited but measurable cross-reactivity was observed between SARS-CoV-2 and endemic HCoVs, particularly the β-coronavirus OC43. Pre-existing immunity in healthy individuals modestly enhanced vaccine-induced anti-spike (S) IgG responses, supported by post-vaccination increases in SARS-CoV-2 IgG. Prior SARS-CoV-2 infection significantly influenced anti-S and nucleocapsid (N) IgG responses but had limited impact on endemic HCoVs responses. Vaccine type and immune status significantly affected antibody kinetics. mRNA vaccination (BNT162b2) elicited stronger and more durable SARS-CoV-2 anti-S IgG responses than the inactivated CoronaVac vaccine, especially in immunocompetent individuals. Immunocompromised groups showed delayed or attenuated responses, with modest anti-S IgG cross-reactive boosting. Elevated anti-N IgG in CoronaVac recipients raised questions about its origin—infection or vaccine effects. MLMM identified key immunological and clinical predictors of antibody responses, emphasizing the critical role of host immune history. Conclusions: These findings highlight a constrained but meaningful role for HCoV cross-reactivity in SARS-CoV-2 immunity and vaccine responsiveness, underscore the need for infection markers unaffected by vaccination, and support development of broadly protective pan-coronavirus vaccines and tailored strategies for at-risk populations. Full article
(This article belongs to the Section COVID-19 Vaccines and Vaccination)
Show Figures

Figure 1

31 pages, 2529 KB  
Article
Synthesis and Bioevaluation of Chalcones as Broad-Spectrum Antiviral Compounds Against Single-Stranded RNA Viruses
by Lorael K. M. Kirton, Nasser N. Yousef, Griffith D. Parks and Otto Phanstiel
Biomolecules 2025, 15(9), 1285; https://doi.org/10.3390/biom15091285 - 5 Sep 2025
Cited by 1 | Viewed by 1095
Abstract
Chalcones are flavonoid compounds containing an α,β-unsaturated ketone core that are often found in plants and have diverse biological activities including antiviral activity. For example, chalcone 8o was previously shown to have antiviral activity against human cytomegalovirus (HCMV) and human immunodeficiency virus (HIV); [...] Read more.
Chalcones are flavonoid compounds containing an α,β-unsaturated ketone core that are often found in plants and have diverse biological activities including antiviral activity. For example, chalcone 8o was previously shown to have antiviral activity against human cytomegalovirus (HCMV) and human immunodeficiency virus (HIV); two viruses that use a nuclear phase to complete their growth cycle. Here, we synthesized ten new derivatives of 8o and tested them for antiviral activity against four RNA viruses that replicate exclusively in the cytoplasm, including prototype members of the paramyxovirus, flavivirus, bunyavirus, and coronavirus families. For example, chalcones 8o and 8p showed potent inhibition of PIV5 replication with minimal cytotoxicity in human fibroblast cultures. Time-of-addition studies showed that these chalcones inhibit an early stage of viral replication and prevent viral spread through cell cultures. Most importantly, our top performing chalcones showed potent in vitro antiviral activity against Zika virus, La Crosse Virus, and the coronavirus OC43. These studies offer mechanistic insight into chalcone-mediated inhibition of viral replication, demonstrate the influence of functional group changes of chalcone scaffolds on their efficacy as antivirals, and support the development of chalcones as broad-spectrum antiviral compounds. Full article
(This article belongs to the Section Natural and Bio-derived Molecules)
Show Figures

Figure 1

20 pages, 2450 KB  
Article
Hypoxia Exacerbates Inflammatory Signaling in Human Coronavirus OC43-Infected Lung Epithelial Cells
by Jarod Zvartau-Hind, Hassan Sadozai, Hateem Z. Kayani, Animesh Acharjee, Rory Williams, Phillip Gould, Christopher A. Reynolds and Bernard Burke
Biomolecules 2025, 15(8), 1144; https://doi.org/10.3390/biom15081144 - 8 Aug 2025
Viewed by 1505
Abstract
Cytokine storm (CS) is associated with poor prognosis in COVID-19 patients. Hypoxic signaling has been proposed to influence proinflammatory pathways and to be involved in the development of CS. Here, for the first time, the role of hypoxia in coronavirus-mediated inflammation has been [...] Read more.
Cytokine storm (CS) is associated with poor prognosis in COVID-19 patients. Hypoxic signaling has been proposed to influence proinflammatory pathways and to be involved in the development of CS. Here, for the first time, the role of hypoxia in coronavirus-mediated inflammation has been investigated, using transcriptomic and proteomic approaches. Analysis of the transcriptome of A549 lung epithelial cells using RNA sequencing revealed 191 mRNAs which were synergistically upregulated and 43 mRNAs which were synergistically downregulated by the combination of human Betacoronavirus OC43 (HCoV-OC43) infection and hypoxia. Synergistically upregulated mRNAs were strongly associated with inflammatory pathway activation. Analysis of the expression of 105 cytokines and immune-related proteins using antibody arrays identified five proteins (IGFBP-3, VEGF, CCL20, CD30, and myeloperoxidase) which were markedly upregulated in HCoV-OC43 infection in hypoxia compared to HCoV-OC43 infection in normal oxygen conditions. Our findings show that COVID-19 patients with lung hypoxia may face increased risk of inflammatory complications. Two of the proteins we have identified as synergistically upregulated, the cytokines VEGF and CCL20, represent potential future therapeutic targets. These could be targeted directly or, based on the novel findings described here by inhibiting hypoxia signaling pathways, to reduce excessive inflammatory cytokine responses in patients with severe infections. Full article
Show Figures

Figure 1

17 pages, 4093 KB  
Article
4-Hydroxychalcone Inhibits Human Coronavirus HCoV-OC43 by Targeting EGFR/AKT/ERK1/2 Signaling Pathway
by Yuanyuan Huang, Jieyu Li, Qiting Luo, Yuexiang Dai, Xinyi Luo, Jiapeng Xu, Wei Ye, Xinrui Zhou, Jiayi Diao, Zhe Ren, Ge Liu, Zhendan He, Zhiping Wang, Yifei Wang and Qinchang Zhu
Viruses 2025, 17(8), 1028; https://doi.org/10.3390/v17081028 - 23 Jul 2025
Viewed by 1101
Abstract
Human coronaviruses are a group of viruses that continue to threaten human health. In this study, we investigated the antiviral activity of 4-hydroxychalcone (4HCH), a chalcone derivative, against human coronavirus HCoV-OC43. We found that 4HCH significantly inhibited the cytopathic effect, reduced viral protein [...] Read more.
Human coronaviruses are a group of viruses that continue to threaten human health. In this study, we investigated the antiviral activity of 4-hydroxychalcone (4HCH), a chalcone derivative, against human coronavirus HCoV-OC43. We found that 4HCH significantly inhibited the cytopathic effect, reduced viral protein and RNA levels in infected cells, and increased the survival rate of HCoV-OC43-infected suckling mice. Mechanistically, 4HCH targets the early stages of viral infection by binding to the epidermal growth factor receptor (EGFR) and inhibiting the EGFR/AKT/ERK1/2 signaling pathway, thereby suppressing viral replication. Additionally, 4HCH significantly reduced the production of pro-inflammatory cytokines and chemokines in both HCoV-OC43-infected RD cells and a suckling mouse model. Our findings demonstrate that 4HCH exhibits potent antiviral activity both in vitro and in vivo, suggesting its potential as a therapeutic agent against human coronaviruses. This study highlights EGFR as a promising host target for antiviral drug development and positions 4HCH as a candidate for further investigation in the treatment of coronavirus infections. Full article
(This article belongs to the Special Issue Coronaviruses Pathogenesis, Immunity, and Antivirals (2nd Edition))
Show Figures

Figure 1

23 pages, 8170 KB  
Article
Diammonium Glycyrrhizinate Exerts Broad-Spectrum Antiviral Activity Against Human Coronaviruses by Interrupting Spike-Mediated Cellular Entry
by Shuo Wu, Ge Yang, Kun Wang, Haiyan Yan, Huiqiang Wang, Xingqiong Li, Lijun Qiao, Mengyuan Wu, Ya Wang, Jian-Dong Jiang and Yuhuan Li
Int. J. Mol. Sci. 2025, 26(13), 6334; https://doi.org/10.3390/ijms26136334 - 30 Jun 2025
Cited by 2 | Viewed by 1969
Abstract
Glycyrrhizic acid (GA) and its derivatives have been reported to have potent pharmacological effects against viral infections, including SARS-CoV and SARS-CoV-2. However, their antiviral mechanisms against coronaviruses are not fully understood. In this study, we found that diammonium glycyrrhizinate (DG) can effectively reduce [...] Read more.
Glycyrrhizic acid (GA) and its derivatives have been reported to have potent pharmacological effects against viral infections, including SARS-CoV and SARS-CoV-2. However, their antiviral mechanisms against coronaviruses are not fully understood. In this study, we found that diammonium glycyrrhizinate (DG) can effectively reduce infections of several human coronaviruses, including HCoV-OC43, HCoV-229E, and SARS-CoV-2, as well as newly emerged variants, with EC50 values ranging from 115 to 391 μg/mL being recorded. Time-of-addition and pseudotype virus infection studies indicated that DG treatment dramatically inhibits the process of virus entry into cells. Furthermore, we demonstrated that DG broadly binds to the RBD of human coronaviruses, thereby blocking spike-mediated cellular entry, by using TR-FRET-based receptor-binding domain (RBD)-ACE2 interaction assay, capillary electrophoresis (CE), and surface plasmon resonance (SPR) assay. In support of this notion, studies of molecular docking and amino acid mutation showed that DG may directly bind to a conserved hydrophobic pocket of the RBD of coronaviruses. Importantly, intranasal administration of DG had a significant protective effect against viral infection in a HCoV-OC43 mouse model. Finally, we found that combinations of DG and other coronavirus inhibitors exhibited antiviral synergy. In summary, our studies strongly reveal that DG exerts broad-spectrum antiviral activity against human coronaviruses by interrupting spike-mediated cellular entry, demonstrating the pharmacological feasibility of using DG as a candidate for alternative treatment and prevention of coronavirus infection. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

15 pages, 4997 KB  
Communication
Broad-Spectrum Antiviral Activity of Pyridobenzothiazolone Analogues Against Respiratory Viruses
by Elisa Feyles, Tommaso Felicetti, Irene Arduino, Massimo Rittà, Andrea Civra, Luisa Muratori, Stefania Raimondo, David Lembo, Giuseppe Manfroni and Manuela Donalisio
Viruses 2025, 17(7), 890; https://doi.org/10.3390/v17070890 - 24 Jun 2025
Viewed by 828
Abstract
Cell-based phenotypic screening of a privileged in-house library composed of pyridobenzothiazolone (PBTZ) analogues was conducted against representative viruses responsible for common respiratory tract infections in humans, i.e., respiratory syncytial virus (RSV), human coronavirus type OC43 (HCoV-OC43), and influenza virus type A (IFV-A). We [...] Read more.
Cell-based phenotypic screening of a privileged in-house library composed of pyridobenzothiazolone (PBTZ) analogues was conducted against representative viruses responsible for common respiratory tract infections in humans, i.e., respiratory syncytial virus (RSV), human coronavirus type OC43 (HCoV-OC43), and influenza virus type A (IFV-A). We identified a compound with broad-spectrum inhibitory activity against multiple strains of RSV, HCoV, and IFV, with EC50 values in the low micromolar range and cell-independent activity. Its antiviral activity and cytocompatibility were confirmed in a fully differentiated 3D model of the bronchial epithelium mimicking the in vivo setting. The hit compound enters cells and localizes homogeneously in the cytosol, inhibiting replicative phases in a virus-specific manner. Overall, the selected PBTZ represents a good starting point for further preclinical development as a broad-spectrum antiviral agent that could address the continuous threat of new emerging pathogens and the rising issue of antiviral resistance. Full article
(This article belongs to the Special Issue Advances in Small-Molecule Viral Inhibitors)
Show Figures

Graphical abstract

7 pages, 861 KB  
Communication
Construction and Evaluation of a HCoV-OC43 S2 Subunit Vaccine Fused with Nasal Immuno-Inducible Sequence Against Coronavirus Infection
by Hiraku Sasaki, Hiroki Ishikawa, Ayako Shigenaga, Yoshio Suzuki and Masayuki Iyoda
Curr. Issues Mol. Biol. 2025, 47(5), 355; https://doi.org/10.3390/cimb47050355 - 13 May 2025
Cited by 1 | Viewed by 1077
Abstract
A partial sequence of an human coronavirus (HCoV)-OC43 S2 subunit that cross-reacts with the S2 subunit of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was fused with a nasal immuno-inducible sequence (NAIS), and the resulting complex was used for intranasal immunization of rabbits. [...] Read more.
A partial sequence of an human coronavirus (HCoV)-OC43 S2 subunit that cross-reacts with the S2 subunit of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was fused with a nasal immuno-inducible sequence (NAIS), and the resulting complex was used for intranasal immunization of rabbits. Crude serum from rabbits immunized with three doses showed an IgG titer > 1000 against the S2 subunits of HCoV-OC43 and SARS-CoV-2 and inhibited OC43 viral replication as a neutralizing antibody in vitro. Full article
Show Figures

Figure 1

14 pages, 2996 KB  
Article
Structures of HCoV-OC43 HR1 Domain in Complex with Cognate HR2 or Analogue EK1 Peptide
by Xiuxiu He, Huanzhen Liu, Guang Yang and Lei Yan
Viruses 2025, 17(3), 343; https://doi.org/10.3390/v17030343 - 28 Feb 2025
Viewed by 1133
Abstract
Human coronavirus OC43 (HCoV-OC43) is usually associated with common colds, but also related to severe disease in the frail. Its envelope glycoproteins spike (S) is responsible for host-cell attachment and membrane fusion. To understand the molecular basis of membrane fusion of HCoV-OC43, we [...] Read more.
Human coronavirus OC43 (HCoV-OC43) is usually associated with common colds, but also related to severe disease in the frail. Its envelope glycoproteins spike (S) is responsible for host-cell attachment and membrane fusion. To understand the molecular basis of membrane fusion of HCoV-OC43, we solved the 3.34 Å crystal structure of the post-fusion state formed by two heptad repeat domains (HR1P and HR2P) of OC43-S. This fusion core comprises a parallel trimeric coiled coil of three HR1 helices with 61 Å at length, around which three HR2 helices are entwined in an antiparallel manner, as anticipated. Moreover, a pan-CoV fusion inhibitor EK1 derived from OC43-HR2P was also crystalized with OC43-HR1P in the resolution of 2.71 Å. Parallel comparisons rationalize the design of EK1, maintaining various hydrophobic and charged or hydrophilic interactions formed in the initial fusion core to stabilize the overall conformation. Together, our results not only reveal the critical intrahelical and interhelical interactions underlying the mechanism of action of OC43-S fusion, but also help our understanding on the mechanism of HCoV-OC43 inhibition by analogue HR2 mimic peptide. Full article
(This article belongs to the Special Issue Coronaviruses Pathogenesis, Immunity, and Antivirals (2nd Edition))
Show Figures

Figure 1

33 pages, 8711 KB  
Review
A Comparison of Conserved Features in the Human Coronavirus Family Shows That Studies of Viruses Less Pathogenic than SARS-CoV-2, Such as HCoV-OC43, Are Good Model Systems for Elucidating Basic Mechanisms of Infection and Replication in Standard Laboratories
by Audrey L. Heffner and Tracey A. Rouault
Viruses 2025, 17(2), 256; https://doi.org/10.3390/v17020256 - 13 Feb 2025
Cited by 2 | Viewed by 3276
Abstract
In 2021, at the height of the COVID-19 pandemic, coronavirus research spiked, with over 83,000 original research articles related to the word “coronavirus” added to the online resource PubMed. Just 2 years later, in 2023, only 30,900 original research articles related to [...] Read more.
In 2021, at the height of the COVID-19 pandemic, coronavirus research spiked, with over 83,000 original research articles related to the word “coronavirus” added to the online resource PubMed. Just 2 years later, in 2023, only 30,900 original research articles related to the word “coronavirus” were added. While, irrefutably, the funding of coronavirus research drastically decreased, a possible explanation for the decrease in interest in coronavirus research is that projects on SARS-CoV-2, the causative agent of COVID-19, halted due to the challenge of establishing a good cellular or animal model system. Most laboratories do not have the capabilities to culture SARS-CoV-2 ‘in house’ as this requires a Biosafety Level (BSL) 3 laboratory. Until recently, BSL 2 laboratory research on endemic coronaviruses was arduous due to the low cytopathic effect in isolated cell culture infection models and the lack of means to quantify viral loads. The purpose of this review article is to compare the human coronaviruses and provide an assessment of the latest techniques that use the endemic coronaviruses—HCoV-229E, HCoV-OC43, HCoV-NL63, and HCoV-HKU1—as lower-biosafety-risk models for the more pathogenic coronaviruses—SARS-CoV-2, SARS-CoV, and MERS-CoV. Full article
Show Figures

Figure 1

14 pages, 1421 KB  
Article
Enteroviruses, Respiratory Syncytial Virus and Seasonal Coronaviruses in Influenza-like Illness Cases in Nepal
by Sanjaya K. Shrestha, Jasmin Shrestha, Binob Shrestha, Tor A. Strand, Susanne Dudman, Ashild K. Andreassen, Shree Krishna Shrestha, Anup Bastola, Prativa Pandey and Stefan Fernandez
Microbiol. Res. 2024, 15(4), 2247-2260; https://doi.org/10.3390/microbiolres15040150 - 31 Oct 2024
Cited by 1 | Viewed by 2513
Abstract
Acute respiratory infection is one of the leading causes of morbidity and mortality among children in low- and middle-income countries. Due to limited diagnostic capability, many respiratory pathogens causing influenza-like illness go undetected. This study aims to detect enterovirus, respiratory syncytial virus, seasonal [...] Read more.
Acute respiratory infection is one of the leading causes of morbidity and mortality among children in low- and middle-income countries. Due to limited diagnostic capability, many respiratory pathogens causing influenza-like illness go undetected. This study aims to detect enterovirus, respiratory syncytial virus, seasonal coronavirus and respiratory pathogens other than influenza in patients with influenza-like illness. A total of 997 (54.3%) respiratory samples (collected in the years 2016–2018) were randomly selected from 1835 influenza-negative samples. The xTAG Respiratory Viral Panel (RVP) FAST v2 panel was used to detect respiratory pathogens including enterovirus/rhinovirus (EV/RV), respiratory syncytial virus (RSV) and seasonal coronavirus (HKU1, OC43, NL63 and 229E). A total of 78.7% (785/997) were positive for respiratory viruses. Of these viruses, EV/RV was detected in 36.3% (362/997), which is the highest number, followed by RSV in 13.7% (137/997). The seasonal coronaviruses HKU1 and OC43 (1.5%, 15/997), NL63 (1.2%, 12/997) and 229E (1%, 10/997) were also detected. The EV/RV-positive samples were sequenced, of which 16.7% (5/30) were confirmed as EVs and were identified as coxsackievirus (CV) types CVB5, CVB3, CV21 and CVB2. The findings of this study highlight the importance of strengthening influenza-like illness surveillance programs in the region by including other respiratory viruses in their scope besides seasonal human influenza viruses. Full article
Show Figures

Figure 1

17 pages, 3786 KB  
Article
Dual Functionality of Papaya Leaf Extracts: Anti-Coronavirus Activity and Anti-Inflammation Mechanism
by Yujia Cao, Kah-Man Lai, Kuo-Chang Fu, Chien-Liang Kuo, Yee-Joo Tan, Liangli (Lucy) Yu and Dejian Huang
Foods 2024, 13(20), 3274; https://doi.org/10.3390/foods13203274 - 16 Oct 2024
Cited by 7 | Viewed by 6537
Abstract
Papaya leaves have been used as food and traditional herbs for the treatment of cancer, diabetes, asthma, and virus infections, but the active principle has not been understood. We hypothesized that the anti-inflammatory activity could be the predominant underlying principle. To test this, [...] Read more.
Papaya leaves have been used as food and traditional herbs for the treatment of cancer, diabetes, asthma, and virus infections, but the active principle has not been understood. We hypothesized that the anti-inflammatory activity could be the predominant underlying principle. To test this, we extracted papaya leaf juice with different organic solvents and found that the ethyl acetate (EA) fraction showed the most outstanding anti-inflammatory activity by suppressing the production of nitric oxide (NO, IC50 = 24.94 ± 2.4 μg/mL) and the expression of pro-inflammatory enzymes, such as inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX-2), and cytokines including interleukins (IL-1β and IL-6), and a tumor necrosis factor (TNF-α) in lipopolysaccharide (LPS)-induced RAW 264.7 cells. Transcriptomic analysis and Western blot results revealed its anti-inflammatory mechanisms were through the MAPK signaling pathway by inhibiting the phosphorylation of ERK1/2, JNKs, and p38 and the prevention of the cell surface expression of TLR4. Furthermore, we discovered that the EA fraction could inhibit the replication of alpha-coronavirus (HCoV-229E) and beta-coronavirus (HCoV-OC43 and SARS-CoV-2) and might be able to prevent cytokine storms caused by the coronavirus infection. From HPLC-QTOF-MS data, we found that the predominant phytochemicals that existed in the EA fraction were quercetin and kaempferol glycosides and carpaine. Counter-intuitively, further fractionation resulted in a loss of activity, suggesting that the synergistic effect of different components in the EA fraction contribute to the overall potent activity. Taken together, our results provide preliminary evidence for papaya leaf as a potential anti-inflammatory and anti-coronavirus agent, warranting further study for its use for human health promotion. Full article
Show Figures

Graphical abstract

Back to TopTop