Camphor-10-Sulfonamide Amino Acid Esters: Synthesis, Antiviral Evaluation, and Molecular Docking Insights
Abstract
1. Introduction
2. Results and Discussion
2.1. Synthesis
2.2. Determination of Cytotoxicity
2.3. Antiviral Activity
2.3.1. Effect on the Viral Replication Cycle
2.3.2. Inhibition of the Stage of Viral Adsorption to Susceptible Cells
2.3.3. Effect on Extracellular Virions
2.4. Molecular Docking Studies
2.4.1. Docking in HSV-1 gC from the Viral Envelope (PDB: 9Q9L)
2.4.2. Docking in HCoV-OC43 Spike Protein Structure (PDB: 9BLK)
2.4.3. Docking in FCV Capsid Protein P Domain (PDB: 6GSH)
3. Materials and Methods
3.1. General Information
3.2. General Procedure and Characterization Data for Camphor-10-Sulfonamides (5a,b–7a,b)
3.3. Host Cell Lines
3.4. Viruses
3.5. Reference Compound
3.6. Cytotoxicity Assay
3.7. Determination of Infectious Viral Titers
3.8. Antiviral Activity Assay
3.9. Effect on Viral Adsorption
3.10. Virucidal Assay
3.11. Datasets Preparations
3.12. Protein Preparation
3.13. Docking Simulations
3.14. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lozano, R.; Naghavi, M.; Foreman, K.; Lim, S.; Shibuya, K.; Aboyans, V.; Abraham, J.; Adair, T.; Aggarwal, R.; Ahn, S.Y.; et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012, 380, 2095–2128. [Google Scholar] [CrossRef]
- De Clercq, E. Milestones in the discovery of antiviral agents: Nucleosides and nucleotides. Acta Pharm. Sin. B 2012, 2, 535–548. [Google Scholar] [CrossRef]
- Sodano, F.; Gazzano, E.; Fruttero, R.; Lazzarato, L. NO in Viral Infections: Role and Development of Antiviral Therapies. Molecules 2022, 27, 2337. [Google Scholar] [CrossRef]
- García-Serradilla, M.; Risco, C.; Pacheco, B. Drug repurposing for new, efficient, broad spectrum antivirals. Virus Res. 2019, 264, 22–31. [Google Scholar] [CrossRef]
- Capasso, C.; Supuran, C.T. An overview of the alpha-, beta-and gamma-carbonic anhydrases from Bacteria: Can bacterial carbonic anhydrases shed new light on evolution of bacteria? J. Enzym. Inhib. Med. Chem. 2015, 30, 325–332. [Google Scholar] [CrossRef] [PubMed]
- Supuran, C.T. Carbonic Anhydrase Inhibition and the Management of Hypoxic Tumors. Metabolites 2017, 7, 48. [Google Scholar] [CrossRef]
- Masaret, G.S. Synthesis, Docking and Antihypertensive Activity of Pyridone Derivatives. ChemistrySelect 2020, 5, 13995–14003. [Google Scholar] [CrossRef]
- Abd El-Karim, S.S.; Anwar, M.M.; Syam, Y.M.; Nael, M.A.; Ali, H.F.; Motaleb, M.A. Rational design and synthesis of new tetralin-sulfonamide derivatives as potent anti-diabetics and DPP-4 inhibitors: 2D & 3D QSAR, in vivo radiolabeling and bio distribution studies. Bioorg. Chem. 2018, 81, 481–493. [Google Scholar] [PubMed]
- Ferraroni, M.; Angeli, A.; Pinteala, M.; Supuran, C.T. Sulfonamide diuretic azosemide as an efficient carbonic anhydrase inhibitor. J. Mol. Struct. 2022, 1268, 133672. [Google Scholar] [CrossRef]
- Van Berkel, M.A.; Elefritz, J.L. Evaluating off-label uses of acetazolamide. Am. J. Health-Sys. Pharm. 2018, 75, 524–531. [Google Scholar] [CrossRef]
- Košak, U.; Brus, B.; Knez, D.; Žakelj, S.; Trontelj, J.; Pišlar, A.; Šink, R.; Jukič, M.; Živin, M.; Podkowa, A.; et al. The Magic of Crystal Structure-Based Inhibitor Optimization: Development of a Butyrylcholinesterase Inhibitor with Picomolar Affinity and in Vivo Activity. J. Med. Chem. 2018, 61, 119–139. [Google Scholar] [CrossRef]
- Shetnev, A.; Shlenev, R.; Efimova, J.; Ivanovskii, S.; Tarasov, A.; Petzer, A.; Petzer, J.P. 1,3,4-Oxadiazol-2-ylbenzenesulfonamides as privileged structures for the inhibition of monoamine oxidase B. Bioorg. Med. Chem. Lett. 2019, 29, 126677. [Google Scholar] [CrossRef]
- Abdel-Aziz, A.A.; Angeli, M.A.; El-Azab, A.S.; Hammouda, M.E.A.; El-Sherbeny, M.A.; Supuran, C.T. Synthesis and antiinflammatory activity of sulfonamides and carboxylates incorporating trimellitimides: Dual cyclooxygenase/carbonic anhydrase inhibitory actions. Bioorg. Chem. 2019, 84, 260–268. [Google Scholar] [CrossRef] [PubMed]
- Wan, Y.; Fang, G.; Chen, H.; Deng, X.; Tang, Z. Sulfonamide derivatives as potential anti-cancer agents and their SARs elucidation. Eur. J. Med. Chem. 2021, 226, 113837. [Google Scholar] [CrossRef]
- Dolensky, J.; Hinteregger, C.; Leitner, A.; Seebacher, W.; Saf, R.; Belaj, F.; Mäser, P.; Kaiser, M.; Weis, R. Antiprotozoal Activity of Azabicyclo-Nonanes Linked to Tetrazole or Sulfonamide Cores. Molecules 2022, 27, 6217. [Google Scholar] [CrossRef]
- Khan, F.; Mushtaq, S.; Naz, S.; Farooq, U.; Zaidi, A.; Bukhari, S.; Rauf, A.; Mubarak, M. Sulfonamides as potential bioactive scaffolds. Curr. Org. Chem. 2018, 22, 818–830. [Google Scholar] [CrossRef]
- Delijewski, M.; Haneczok, J. AI drug discovery screening for COVID-19 reveals zafirlukast as a repurposing candidate. Med. Drug Discov. 2021, 9, 100077. [Google Scholar] [CrossRef] [PubMed]
- Jiang, D.; Chen, J.; Zan, N.; Li, C.; Hu, D.; Song, B. Discovery of Novel Chromone Derivatives Containing a Sulfonamide Moiety as Anti-ToCV Agents through the Tomato Chlorosis Virus Coat Protein-Oriented Screening Method. J. Agric. Food Chem. 2021, 69, 12126–12134. [Google Scholar] [CrossRef]
- White, K.; Esparza, M.; Liang, J.; Bhat, P.; Naidoo, J.; McGovern, B.L.; Williams, M.A.P.; Alabi, B.R.; Shay, J.; Niederstrasser, H.; et al. Aryl Sulfonamide Inhibits Entry and Replication of Diverse Influenza Viruses via the Hemagglutinin Protein. J. Med. Chem. 2021, 64, 10951–10966. [Google Scholar] [CrossRef]
- Selvakumar, B.; Gujjar, N.; Subbiah, M.; Elango, K.P. Synthesis and antiviral study of 4-(7,7-dimethyl-4-(piperazin-1-yl)-5,6,7,8tetrahydroquinazolin-2-yl) morpholine derivatives. Med. Chem. Res. 2018, 27, 512–519. [Google Scholar] [CrossRef]
- Kornii, Y.; Shablykin, O.; Shablykina, O.; Brovarets, V. New 4-iminohydantoin sulfamide derivatives with antiviral and anticancer activity. Ukr. Bioorg. Acta. 2021, 16, 10–17. [Google Scholar] [CrossRef]
- Shin, Y.S.; Lee, J.Y.; Noh, S.; Kwak, Y.; Jeon, S.; Kwon, S.; Jin, Y.-h.; Jang, M.S.; Kim, S.; Song, J.H.; et al. Discovery of cyclic sulfonamide derivatives as potent inhibitors of SARS-CoV-2. Bioorg. Med. Chem. Lett. 2021, 31, 127667. [Google Scholar] [CrossRef]
- Bendi, A.; Sangeeta, S.; Naina, A. Study on Camphor Derivatives and Its Applications: A Review. Curr. Org. Chem. 2021, 25, 1404–1428. [Google Scholar] [CrossRef]
- Sokolova, A.S.; Baranova, D.V.; Yarovaya, O.I.; Baev, D.S.; Polezhaeva, O.A.; Zybkina, A.V.; Shcherbakov, D.N.; Tolstikova, T.G.; Salakhutdinov, N.F. Synthesis of (1S)-(+)-camphor-10-sulfonic acid derivatives and investigations in vitro and in silico of their antiviral activity as the inhibitors of fi lovirus infections. Russ. Chem. Bull. 2019, 68, 1041–1046. [Google Scholar] [CrossRef]
- Kurul, F.; Doruk, B.; Topkaya, S.N. Principles of green chemistry: Building a sustainable future. Discov. Chem. 2025, 2, 68. [Google Scholar] [CrossRef]
- Eid, N.; Karamé, I.; Andrioletti, B. Straightforward and sustainable synthesis of sulfonamides in water under mild conditions. Eur. J. Org. Chem. 2018, 36, 5016–5022. [Google Scholar] [CrossRef]
- Qadir, M.A.; Ahmed, M.; Iqbal, M. Synthesis, characterization, and antibacterial activities of novel sulfonamides derived through condensation of amino group containing drugs, amino acids, and their analogs. BioMed Res. Int. 2015, 2015, 938486. [Google Scholar] [CrossRef]
- Xu, J. Synthesis of Sulfonopeptides. J. Pept. Sci. 2021, 27, e3331. [Google Scholar] [CrossRef]
- Lakrout, S.; K’tir, H.; Amira, A.; Berredjem, M.; Aouf, N.-E. A simple and eco-sustainable method for the sulfonylation of amines under microwave-assisted solvent-free conditions. RSC Adv. 2014, 4, 16027–16032. [Google Scholar] [CrossRef]
- Liu, W.; Chen, J.; Su, W. Recent advances in the synthesis of sulfonamide intermediates. Pharm. Front. 2024, 6, e355–e381. [Google Scholar] [CrossRef]
- Breitmaier, E. Terpenes: Flavors, Fragrances, Pharmaca, Pheromones; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2006. [Google Scholar]
- Shokova, E.A.; Kim, J.K.; Kovalev, V.V. Camphor and its derivatives. Unusual transformations and biological activity. Russ. J. Org. Chem. 2016, 52, 459–488. [Google Scholar] [CrossRef]
- Vollmer, B.; Ebel, H.; Rees, R.; Nentwig, J.; Mulvaney, T.; Schünemann, J.; Krull, J.; Topf, M.; Görlich, D.; Grünewald, K. A nanobody specific to prefusion glycoprotein B neutralizes HSV-1 and HSV-2. Nature 2025, 646, 433–441. [Google Scholar] [CrossRef]
- Wang, C.; Hesketh, E.L.; Shamorkina, T.M.; Li, W.; Franken, P.J.; Drabek, D.; van Haperen, R.; Townend, S.; van Kuppeveld, F.J.M.; Grosveld, F.; et al. Antigenic structure of the human coronavirus OC43 spike reveals exposed and occluded neutralizing epitopes. Nat. Commun. 2022, 13, 2921. [Google Scholar] [CrossRef]
- Conley, M.J.; McElwee, M.; Azmi, L.; Gabrielsen, M.; Byron, O.; Goodfellow, I.G.; Bhella, D. Calicivirus VP2 forms a portal-like assembly following receptor engagement. Nature 2019, 565, 377–381. [Google Scholar] [CrossRef]
- Petkova, Z.; Vilhelmova-Ilieva, N.; Dikova, K. Antiviral Evaluation of Camphor-Based Sulfonamides against Structurally Diverse Viruses. Acta Microbiol. Bulg. 2025, 41, 347–356. [Google Scholar] [CrossRef]
- Reed, L.J.; Muench, H. A simple method of estimating fifty percent endpoints. Am. J. Hyg. 1938, 27, 493–497. [Google Scholar]
- Borenfreund, E.; Puerner, J.A. Toxicity determination in vitro by morphological alterations and neutral red absorption. Toxicol. Lett. 1985, 24, 119–124. [Google Scholar] [CrossRef]
- Cytopathic Effect Inhibition Assay. Creative Diagnostics. 2025. Available online: https://antiviral.creative-diagnostics.com/cc50-ic50-assay.html (accessed on 1 January 2025).
- Sewall, L.M.; de Paiva Froes Rocha, R.; Gibson, G.; Louie, M.; Xie, Z.; Bangaru, S.; Tran, A.S.; Ozorowski, G.; Mohanty, S.; Beutler, N.; et al. Microfluidics combined with electron microscopy for rapid and high-throughput mapping of antibody-viral glycoprotein complexes. Nat. Biomed. Eng. 2025, 9, 1938–1951. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Yao, K.; Repasky, M.P.; Leswing, K.; Abel, R.; Shoichet, B.K.; Jerome, S.V. Efficient exploration of chemical space with docking and deep learning. J. Chem. Theory Comput. 2021, 17, 7106–7119. [Google Scholar] [CrossRef]










| Sample | Cytotoxicity (µg/mL) ± SD 1 | |||||
|---|---|---|---|---|---|---|
| MDBK | VeroE6 | CRFK | ||||
| CC50 | MTC | CC50 | MTC | CC50 | MTC | |
| 5a | 1178.7 ± 8.3 *** | 200 | 726.5 ± 8.2 *** | 200 | 1085.2 ± 10.3 | 200 |
| 5b | 1015.4 ± 9.8 *** | 200 | 681.8 ± 8.6 *** | 200 | 997.7 ± 9.4 | 200 |
| 6a | 1526.5 ± 11.2 *** | 200 | 1026.0 ± 10.6 *** | 200 | 1346.7 ± 12.3 | 200 |
| 6b | 1523.2 ± 9.8 *** | 200 | 890.4 ± 8.2 *** | 200 | 1338 ± 10.7 | 200 |
| 7a | 1900.8 ± 12.7 *** | 200 | 1293.4 ± 11.7 *** | 200 | 1815.7 ± 12.3 | 200 |
| 7b | 1422.8 ± 11.8 *** | 200 | 753.6 ± 8.4 *** | 200 | 1345.2 ± 9.8 | 200 |
| Acyclovir | 291.0 ± 9.4 | nd 2 | nd | nd | nd | nd |
| Remdesivir | nd | nd | 250.0 ± 4.3 | nd | nd | nd |
| Viral Strain | Time | Δlg ± SD 1 | |||||
|---|---|---|---|---|---|---|---|
| 5a | 5b | 6a | 6b | 7a | 7b | ||
| HSV-1 | 15 min | 0.5 | 1.0 | 0.5 ± 0.1 | 0.5 ± 0.2 | 1.0 ± 0.1 | 0.5 ± 0.1 |
| 30 min | 0.5 | 1.0 | 0.5 ± 0.1 | 0.5 ± 0.1 | 1.0 ± 0.2 | 0.5 ± 0.1 | |
| 45 min | 0.5 | 1.25 | 0.5 ± 0.2 | 0.5 ± 0.1 | 1.0 ± 0.1 | 0.5 ± 0.1 | |
| 60 min | 0.5 | 1.25 | 0.5 ± 0.1 | 0.5 ± 0.1 | 1.0 ± 0.2 | 0.5 ± 0.2 | |
| HCoV-OC43 | 15 min | 1.0 | 1.0 | 0.5 ± 0.1 | 0.5 ± 0.1 | 1.0 ± 0.1 | 1.0 ± 0.1 |
| 30 min | 1.0 | 1.0 | 0.5 ± 0.1 | 0.5 ± 0.1 | 1.5 ± 0.1 | 1.5 ± 0.1 | |
| 60 min | 1.0 | 1.25 | 0.5 ± 0.1 | 0.7 ± 0.1 | 1.75 ± 0.1 | 1.75 ± 0.1 | |
| 90 min | 1.0 | 1.25 | 0.75 ± 0.1 | 0.75 ± 0.1 | 2.0 ± 0.2 | 2.0 ± 0.1 | |
| 120 min | 1.0 | 1.25 | 0.75 ± 0.1 | 0.75 ± 0.1 | 2.0 ± 0.1 | 2.5 ± 0.1 | |
| FCV | 15 min | 1.25 | 1.5 | 0 | 0 | 1.0 ± 0.1 | 1.0 ± 0.1 |
| 30 min | 1.25 | 1.5 | 1.0 ± 0.1 | 1.0 ± 0.1 | 1.5 ± 0.1 | 1.0 ± 0.1 | |
| 45 min | 1.25 | 1.5 | 1.5 ± 0.1 | 1.5 ± 0.1 | 1.75 ± 0.1 | 1.0 ± 0.1 | |
| 60 min | 1.25 | 1.5 | 2.0 ± 0.1 | 1.75 ± 0.1 | 1.75 ± 0.1 | 1.0 ± 0.1 | |
| Viral Strain | Time | Δlg ± SD 1 | ||||||
|---|---|---|---|---|---|---|---|---|
| 5a | 5b | 6a | 6b | 7a | 7b | 70% Ethanol | ||
| HSV-1 | 15 min | 0.75 | 1.0 | 2.75 ± 0.1 *** | 2.0 ± 0.2 *** | 2.75 ± 0.1 *** | 2.75 ± 0.1 *** | 5.0 ± 0.1 |
| 30 min | 0.75 | 1.0 | 2.75 ± 0.1 *** | 2.5 ± 0.1 *** | 2.75 ± 0.2 *** | 2.75 ± 0.2 *** | 5.0 ± 0.1 | |
| 60 min | 1.0 | 1.0 | 3.0 ± 0.2 *** | 3.0 ± 0.2 *** | 2.75 ± 0.2 *** | 3.0 ± 0.1 *** | 5.0 ± 0.2 | |
| 90 min | 1.0 | 1.0 | 3.0 ± 0.2 *** | 3.0 ± 0.1 *** | 2.75 ± 0.2 *** | 3.0 ± 0.2 *** | 5.0 ± 0.2 | |
| 120 min | 1.0 | 1.0 | 3.0 ± 0.3 *** | 3.0 ± 0.2 *** | 2.75 ± 0.2 *** | 3.0 ± 0.2 *** | 5.0 ± 0.1 | |
| HCoV-OC43 | 15 min | 0.5 | 1.0 | 0.5 ± 0.1 *** | 0.5 ± 0.1 *** | 1.0 ± 0.1 *** | 1.0 ± 0.1 *** | 5.0 ± 0.1 |
| 30 min | 1.0 | 1.0 | 0.5 ± 0.1 *** | 0.5 ± 0.1 *** | 1.5 ± 0.1 *** | 1.5 ± 0.1 *** | 5.0 ± 0.1 | |
| 60 min | 1.0 | 1.0 | 0.5 ± 0.1 *** | 0.7 ± 0.1 *** | 1.75 ± 0.1 *** | 1.75 ± 0.1 *** | 5.0 ± 0.1 | |
| 90 min | 1.25 | 1.0 | 0.75 ± 0.1 *** | 0.75 ± 0.1 *** | 2.0 ± 0.1 *** | 2.0 ± 0.1 *** | 5.0 ± 0.1 | |
| 120 min | 1.25 | 1.0 | 0.75 ± 0.1 *** | 0.75 ± 0.1 *** | 2.0 ± 0.1 *** | 2.5 ± 0.1 *** | 5.0 ± 0.1 | |
| FCV | 15 min | 1.25 | 1.5 | 0 | 0 | 1.0 ± 0.1 *** | 1.0 ± 0.1 *** | 5.0 ± 0.1 |
| 30 min | 1.25 | 1.5 | 1.0 ± 0.1 *** | 1.0 ± 0.1 *** | 1.5 ± 0.1 *** | 1.0 ± 0.1 *** | 5.0 ± 0.1 | |
| 60 min | 1.25 | 1.5 | 1.5 ± 0.1 *** | 1.5 ± 0.1 *** | 1.75 ± 0.1 *** | 1.0 ± 0.1 *** | 5.0 ± 0.1 | |
| 90 min | 1.5 | 1.5 | 2.0 ± 0.1 *** | 1.75 ± 0.1 *** | 1.75 ± 0.1 *** | 1.0 ± 0.1 *** | 5.0 ± 0.1 | |
| 120 min | 1.5 | 1.5 | 2.25 ± 0.1 *** | 1.75± 0.1 *** | 2.0 ± 0.1 *** | 1.0 ± 0.1 *** | 5.0 ± 0.1 | |
| Cmpd. 1 | HCoV-OC43 Spike Protein (PDB: 9BLK) kcal/mol | Key Amino Acids Involved in Stabilization | FCV Capsid Protein P Domain (PDB: 6GSH) kcal/mol | Key Amino Acids Involved in Stabilization | HSV-1 (PDB: 9Q9L) kcal/mol | Key Amino Acids Involved in Stabilization |
|---|---|---|---|---|---|---|
| 6a | nd 2 | nd | −3.08 | Lys441 (pi-cation (3.23 Å)); Asp456 (H-bond (1.68 Å)) | −3.22 | Glu614 (H-bond (2.06 Å)) |
| 6b | nd | nd | −4.27 | Asn440 (H-bond (2.15 Å)); Lys441 (H-bond (2.74 Å)); Ile446 (H-bond (1.86 Å)); Ala449 (H-bond (2.71 Å)); Gly454 (H-bond (2.06 Å)) | −2.59 | Asp251 (H-bond (2.23 Å)); Glu614 (H-bond (2.07 Å)) |
| 7a | −3.08 | Asp24 (H-bond (2.64 Å)), Glu186 (H-bond (2.04 Å)) | −3.36 | Asp445 (H-bond (1.59 Å)); Ala449 (H-bond (2.28 Å)). | −3.75 | Lys 253 (Pi-cation (4.84 Å)); Glu682 (H-bond (2.05 Å)); Tyr689 (H-bond (1.86 Å)); |
| 7b | −2.58 | Asp24 (H-bond (1.77 Å), H-bond (1.71 Å)); Lys185 (p-cation (3.63 Å)) | nd | nd | −2.55 | Pro236 (H-bond (2.18 Å)); Glu614 (2.27 Å)) |
| Compound | HCoV-OC43 Spike Protein (PDB: 9BLK) kcal/mol | FCV Capsid Protein P Domain (PDB: 6GSH) kcal/mol | HSV-1 (PDB: 9Q9L) kcal/mol | |||
|---|---|---|---|---|---|---|
| IFD | MM/GBSA | IFD | MM/GBSA | IFD | MM/GBSA | |
| 7a | −4.14 | −38.68 | −3.41 | −35.50 | −4.47 | −41.49 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Dikova, K.; Vilhelmova-Ilieva, N.; Mateev, E.; Petkova, Z. Camphor-10-Sulfonamide Amino Acid Esters: Synthesis, Antiviral Evaluation, and Molecular Docking Insights. Int. J. Mol. Sci. 2026, 27, 616. https://doi.org/10.3390/ijms27020616
Dikova K, Vilhelmova-Ilieva N, Mateev E, Petkova Z. Camphor-10-Sulfonamide Amino Acid Esters: Synthesis, Antiviral Evaluation, and Molecular Docking Insights. International Journal of Molecular Sciences. 2026; 27(2):616. https://doi.org/10.3390/ijms27020616
Chicago/Turabian StyleDikova, Krasimira, Neli Vilhelmova-Ilieva, Emilio Mateev, and Zhanina Petkova. 2026. "Camphor-10-Sulfonamide Amino Acid Esters: Synthesis, Antiviral Evaluation, and Molecular Docking Insights" International Journal of Molecular Sciences 27, no. 2: 616. https://doi.org/10.3390/ijms27020616
APA StyleDikova, K., Vilhelmova-Ilieva, N., Mateev, E., & Petkova, Z. (2026). Camphor-10-Sulfonamide Amino Acid Esters: Synthesis, Antiviral Evaluation, and Molecular Docking Insights. International Journal of Molecular Sciences, 27(2), 616. https://doi.org/10.3390/ijms27020616

