Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = human body model (HBM)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2087 KiB  
Article
A 28-nm CMOS Low-Power/Low-Voltage 60-GHz LNA for High-Speed Communication
by Minoo Eghtesadi, Andrea Ballo, Gianluca Giustolisi, Salvatore Pennisi and Egidio Ragonese
Electronics 2025, 14(14), 2819; https://doi.org/10.3390/electronics14142819 - 13 Jul 2025
Viewed by 494
Abstract
This paper presents a wideband low-power/low-voltage 60-GHz low-noise amplifier (LNA) in a 28-nm bulk CMOS technology. The LNA has been designed for high-speed millimeter-wave (mm-wave) communications. It consists of two pseudo-differential amplifying stages and a buffer stage included for 50-Ohm on-wafer measurements. Two [...] Read more.
This paper presents a wideband low-power/low-voltage 60-GHz low-noise amplifier (LNA) in a 28-nm bulk CMOS technology. The LNA has been designed for high-speed millimeter-wave (mm-wave) communications. It consists of two pseudo-differential amplifying stages and a buffer stage included for 50-Ohm on-wafer measurements. Two integrated input/output baluns guarantee both simultaneous 50-ohm input–noise/output matching at input/output radio frequency (RF) pads. A power-efficient design strategy is adopted to make the LNA suitable for low-power applications, while minimizing the noise figure (NF). Thanks to the adopted design strategy, the post-layout simulation results show an excellent trade-off between power gain and 3-dB bandwidth (BW3dB) with 13.5 dB and 7 GHz centered at 60 GHz, respectively. The proposed LNA consumes only 11.6 mA from a 0.9-V supply voltage with an NF of 8.4 dB at 60 GHz, including the input transformer loss. The input 1 dB compression point (IP1dB) of −15 dBm at 60 GHz confirms the first-rate linearity of the proposed amplifier. Human body model (HBM) electrostatic discharge (ESD) protection is guaranteed up to 2 kV at the RF input/output pads thanks to the input/output integrated transformers. Full article
(This article belongs to the Special Issue 5G Mobile Telecommunication Systems and Recent Advances, 2nd Edition)
Show Figures

Figure 1

14 pages, 2899 KiB  
Article
A 5 mW 28 nm CMOS Low-Noise Amplifier with Transformer-Based Electrostatic Discharge Protection for 60 GHz Applications
by Minoo Eghtesadi, Gianluca Giustolisi, Andrea Ballo, Salvatore Pennisi and Egidio Ragonese
Electronics 2024, 13(21), 4285; https://doi.org/10.3390/electronics13214285 - 31 Oct 2024
Cited by 1 | Viewed by 1942
Abstract
This paper presents a low-power 60 GHz low-noise amplifier (LNA) designed for Gbit/s applications using 28 nm CMOS technology. The LNA exploits a single-stage pseudo-differential architecture with integrated input transformer for both electrostatic discharge (ESD) protection and simultaneous noise/impedance matching. An effective power-constrained [...] Read more.
This paper presents a low-power 60 GHz low-noise amplifier (LNA) designed for Gbit/s applications using 28 nm CMOS technology. The LNA exploits a single-stage pseudo-differential architecture with integrated input transformer for both electrostatic discharge (ESD) protection and simultaneous noise/impedance matching. An effective power-constrained design strategy is adopted to pursue the lowest current consumption at the minimum noise figure (NF), with the best tradeoff between gain and frequency bandwidth. The LNA, which has been designed to drive an on–off keying (OOK) demodulator, is operated at a supply voltage as low as 0.9 V and achieves a voltage gain of about 21 dB with a 3 dB bandwidth of 2 GHz around 60 GHz. Thanks to the proper impedance transformation at the 60 GHz input, the amplifier exhibits an NF of 6.3 dB, also including the input transformer loss with a very low power consumption of about 5 mW. The adoption of a single-stage topology also allows an excellent input 1 dB compression point (IP1dB) of −4.7 dBm. The input transformer guarantees up to 2 kV human body model (HBM) ESD protection. Full article
(This article belongs to the Section Circuit and Signal Processing)
Show Figures

Figure 1

12 pages, 884 KiB  
Article
In Vitro Toxicity Screening of Fifty Complex Mixtures in HepG2 Cells
by Sunmi Kim, Kyounghee Kang, Haena Kim and Myungwon Seo
Toxics 2024, 12(2), 126; https://doi.org/10.3390/toxics12020126 - 2 Feb 2024
Cited by 8 | Viewed by 2659
Abstract
To develop the risk prediction technology for mixture toxicity, a reliable and extensive dataset of experimental results is required. However, most published literature only provides data on combinations containing two or three substances, resulting in a limited dataset for predicting the toxicity of [...] Read more.
To develop the risk prediction technology for mixture toxicity, a reliable and extensive dataset of experimental results is required. However, most published literature only provides data on combinations containing two or three substances, resulting in a limited dataset for predicting the toxicity of complex mixtures. Complex mixtures may have different mode of actions (MoAs) due to their varied composition, posing difficulty in the prediction using conventional toxicity prediction models, such as the concentration addition (CA) and independent action (IA) models. The aim of this study was to generate an experimental dataset comprising complex mixtures. To identify the target complex mixtures, we referred to the findings of the HBM4EU project. We identified three groups of seven to ten components that were commonly detected together in human bodies, namely environmental phenols, perfluorinated compounds, and heavy metal compounds, assuming these chemicals to have different MoAs. In addition, a separate mixture was added consisting of seven organophosphate flame retardants (OPFRs), which may have similar chemical structures. All target substances were tested for cytotoxicity using HepG2 cell lines, and subsequently 50 different complex mixtures were randomly generated with equitoxic mixtures of EC10 levels. To determine the interaction effect, we calculated the model deviation ratio (MDR) by comparing the observed EC10 with the predicted EC10 from the CA model, then categorized three types of interactions: antagonism, additivity, and synergism. Dose–response curves and EC values were calculated for all complex mixtures. Out of 50 mixtures, none demonstrated synergism, while six mixtures exhibited an antagonistic effect. The remaining mixtures exhibited additivity with MDRs ranging from 0.50 to 1.34. Our experimental data have been formatted to and constructed for the database. They will be utilized for further research aimed at developing the combined CA/IA approaches to support mixture risk assessment. Full article
(This article belongs to the Special Issue Toxic Mixtures Evaluation and Management)
Show Figures

Figure 1

15 pages, 2663 KiB  
Article
Efficient 2D Neck Model for Simulation of the Whiplash Injury Mechanism
by Diamantino Henriques, Ana P. Martins and Marta S. Carvalho
Bioengineering 2024, 11(2), 129; https://doi.org/10.3390/bioengineering11020129 - 29 Jan 2024
Cited by 3 | Viewed by 1944
Abstract
Whiplash injuries, mainly located in the neck, are one of the most common injuries resulting from road collisions. These injuries can be particularly challenging to detect, compromising the ability to monitor patients adequately. This work presents the development and validation of a computationally [...] Read more.
Whiplash injuries, mainly located in the neck, are one of the most common injuries resulting from road collisions. These injuries can be particularly challenging to detect, compromising the ability to monitor patients adequately. This work presents the development and validation of a computationally efficient model, called Efficient Neck Model—2D (ENM-2D), capable of simulating the whiplash injury mechanism. ENM-2D is a planar multibody model consisting of several bodies that model the head and neck with the same mass and inertia properties of a male occupant model in the 50th percentile. The damping and non-linear spring parameters of the kinematic joints were identified through a multiobjective optimization process, solved sequentially. The TNO-Human Body Model (TNO-HBM), a validated occupant model for rear impact, was simulated, and its responses were used as a reference for validation purposes. The root mean square (RMS) of the deviations of angular positions of the bodies were used as objective functions, starting from the bottom vertebra to the top, and ending in the head. The sequence was repeated until it converged, ending the optimization process. The identified ENM-2D model could simulate the whiplash injury mechanism kinematics and accurately determine the injury criteria associated with head and neck injuries. It had a relative deviation of 8.3% for the head injury criteria and was 12.5 times faster than the reference model. Full article
Show Figures

Graphical abstract

19 pages, 5716 KiB  
Article
Reconstruction of a Car–Running Pedestrian Accident Based on a Humanoid Robot Method
by Qian Wang, Bo Wei, Zheng Wei, Shang Gao, Xianlong Jin and Peizhong Yang
Sensors 2023, 23(18), 7882; https://doi.org/10.3390/s23187882 - 14 Sep 2023
Cited by 1 | Viewed by 2190
Abstract
Due to the characteristics of multibody (MB) and finite element (FE) digital human body models (HBMs), the reconstruction of running pedestrians (RPs) remains a major challenge in traffic accidents (TAs) and new innovative methods are needed. This study presents a novel approach for [...] Read more.
Due to the characteristics of multibody (MB) and finite element (FE) digital human body models (HBMs), the reconstruction of running pedestrians (RPs) remains a major challenge in traffic accidents (TAs) and new innovative methods are needed. This study presents a novel approach for reconstructing moving pedestrian TAs based on a humanoid robot method to improve the accuracy of analyzing dynamic vehicle–pedestrian collision accidents. Firstly, we applied the theory of humanoid robots to the corresponding joints and centroids of the TNO HBM and implemented the pedestrian running process. Secondly, we used rigid–flexible coupling HBMs to build pedestrians, which can not only simulate running but also analyze human injuries. Then, we validated the feasibility of the RP reconstruction method by comparing the simulated dynamics with the pedestrian in the accident. Next, we extracted the velocity and posture of the pedestrian at the moment of collision and further validated the modeling method through a comparison of human injuries and forensic autopsy results. Finally, by comparing two other cases, we can conclude that there are relative errors in both the pedestrian injury results and the rest position. This comparative analysis is helpful for understanding the differences in injury characteristics between the running pedestrian and the other two cases in TAs. Full article
(This article belongs to the Section Sensors and Robotics)
Show Figures

Figure 1

17 pages, 523 KiB  
Article
PFAS and Phthalate/DINCH Exposure in Association with Age at Menarche in Teenagers of the HBM4EU Aligned Studies
by Bianca Cox, Natasha Wauters, Andrea Rodríguez-Carrillo, Lützen Portengen, Antje Gerofke, Marike Kolossa-Gehring, Sanna Lignell, Anna Karin Lindroos, Lucia Fabelova, Lubica Palkovicova Murinova, Anteneh Desalegn, Nina Iszatt, Tessa Schillemans, Agneta Åkesson, Ann Colles, Elly Den Hond, Gudrun Koppen, Nicolas Van Larebeke, Greet Schoeters, Eva Govarts and Sylvie Remyadd Show full author list remove Hide full author list
Toxics 2023, 11(8), 711; https://doi.org/10.3390/toxics11080711 - 18 Aug 2023
Cited by 4 | Viewed by 3730
Abstract
Early puberty has been found to be associated with adverse health outcomes such as metabolic and cardiovascular diseases and hormone-dependent cancers. The decrease in age at menarche observed during the past decades has been linked to an increased exposure to endocrine-disrupting compounds (EDCs). [...] Read more.
Early puberty has been found to be associated with adverse health outcomes such as metabolic and cardiovascular diseases and hormone-dependent cancers. The decrease in age at menarche observed during the past decades has been linked to an increased exposure to endocrine-disrupting compounds (EDCs). Evidence for the association between PFAS and phthalate exposure and menarche onset, however, is inconsistent. We studied the association between PFAS and phthalate/DINCH exposure and age at menarche using data of 514 teenagers (12 to 18 years) from four aligned studies of the Human Biomonitoring for Europe initiative (HBM4EU): Riksmaten Adolescents 2016–2017 (Sweden), PCB cohort (follow-up; Slovakia), GerES V-sub (Germany), and FLEHS IV (Belgium). PFAS concentrations were measured in blood, and phthalate/DINCH concentrations in urine. We assessed the role of each individual pollutant within the context of the others, by using different multi-pollutant approaches, adjusting for age, age- and sex-standardized body mass index z-score and household educational level. Exposure to di(2-ethylhexyl) phthalate (DEHP), especially mono(2-ethyl-5-hydroxyhexyl) phthalate (5OH-MEHP), was associated with an earlier age at menarche, with estimates per interquartile fold change in 5OH-MEHP ranging from −0.34 to −0.12 years in the different models. Findings from this study indicated associations between age at menarche and some specific EDCs at concentrations detected in the general European population, but due to the study design (menarche onset preceded the chemical measurements), caution is needed in the interpretation of causality. Full article
(This article belongs to the Section Reproductive and Developmental Toxicity)
Show Figures

Figure 1

11 pages, 7042 KiB  
Article
A False Trigger-Strengthened and Area-Saving Power-Rail Clamp Circuit with High ESD Performance
by Boyang Ma, Shupeng Chen, Shulong Wang, Lingli Qian, Zeen Han, Wei Huang, Xiaojun Fu and Hongxia Liu
Micromachines 2023, 14(6), 1172; https://doi.org/10.3390/mi14061172 - 31 May 2023
Cited by 1 | Viewed by 1925
Abstract
A power clamp circuit, which has good immunity to false trigger under fast power-on conditions with a 20 ns rising edge, is proposed in this paper. The proposed circuit has a separate detection component and an on-time control component which enable it to [...] Read more.
A power clamp circuit, which has good immunity to false trigger under fast power-on conditions with a 20 ns rising edge, is proposed in this paper. The proposed circuit has a separate detection component and an on-time control component which enable it to distinguish between electrostatic discharge (ESD) events and fast power-on events. As opposed to other on-time control techniques, instead of large resistors or capacitors, which can cause a large occupation of the layout area, we use a capacitive voltage-biased p-channel MOSFET in the on-time control part of the proposed circuit. The capacitive voltage-biased p-channel MOSFET is in the saturation region after the ESD event is detected, which can serve as a large equivalent resistance (~106 Ω) in the structure. The proposed power clamp circuit offers several advantages compared to the traditional circuit, such as having at least 70% area savings in the trigger circuit area (30% area savings in the whole circuit area), supporting a power supply ramp time as fast as 20 ns, dissipating the ESD energy more cleanly with little residual charge, and recovering faster from false triggers. The rail clamp circuit also offers robust performance in an industry-standard PVT (process, voltage, and temperature) space and has been verified by the simulation results. Showing good performance of human body model (HBM) endurance and high immunity to false trigger, the proposed power clamp circuit has great potential for application in ESD protection. Full article
Show Figures

Figure 1

16 pages, 306 KiB  
Article
Injury Criteria for Vehicle Safety Assessment: A Review with a Focus Using Human Body Models
by Filippo Germanetti, Dario Fiumarella, Giovanni Belingardi and Alessandro Scattina
Vehicles 2022, 4(4), 1080-1095; https://doi.org/10.3390/vehicles4040057 - 7 Oct 2022
Cited by 13 | Viewed by 4341
Abstract
This paper aims at providing an overview of the most used injury criteria (IC) and injury metrics for the study of the passive safety of vehicles. In particular, the work is focused on the injury criteria that can be adopted when finite element [...] Read more.
This paper aims at providing an overview of the most used injury criteria (IC) and injury metrics for the study of the passive safety of vehicles. In particular, the work is focused on the injury criteria that can be adopted when finite element simulations and Human Body Models (HBMs) are used. The HBMs will result in a fundamental instrument for studying the occupant’s safety in Autonomous Vehicles (AVs) since they allow the analysis of a larger variety of configurations compared to the limitations related to the traditional experimental dummies. In this work, the most relevant IC are reported and classified based on the body segments. In particular, the head, the torso, the spine, the internal organs, and the lower limbs are here considered. The applicability of the injury metrics to the analyses carried out with the HBMs is also discussed. The paper offers a global overview of the injury assessment useful to choose the injury criteria for the study of vehicle passive safety. To this aim, tables of the presented criteria are also reported to provide the available metrics for the considered body damage. Full article
(This article belongs to the Special Issue Feature Papers in Vehicles)
14 pages, 50829 KiB  
Article
Analysis of HBM Failure in 3D NAND Flash Memory
by Biruo Song, Zhiguo Li, Xin Wang, Xiang Fu, Fei Liu, Lei Jin and Zongliang Huo
Electronics 2022, 11(6), 944; https://doi.org/10.3390/electronics11060944 - 18 Mar 2022
Cited by 1 | Viewed by 4683
Abstract
Electrostatic discharge (ESD) events are the main factors impacting the reliability of NAND Flash memory. The behavior of human body model (HBM) failure and the corresponding physical mechanism of 3D NAND Flash memory are investigated in this paper. A catastrophic burn-out failure during [...] Read more.
Electrostatic discharge (ESD) events are the main factors impacting the reliability of NAND Flash memory. The behavior of human body model (HBM) failure and the corresponding physical mechanism of 3D NAND Flash memory are investigated in this paper. A catastrophic burn-out failure during HBM zapping is first presented. Analysis shows that NMOS fingers’ local heating induced by inhomogeneous substrate resistance Rsub and local heating induced by the drain contact and 3D stacked IC (SIC) structure lead to the failure. Therefore, a new approach is proposed to reduce local heat generation. Finally, by increasing N+ length (NPL) and introducing a novel contact strip, the silicon result shows enhanced ESD robustness. Full article
(This article belongs to the Section Microelectronics)
Show Figures

Figure 1

14 pages, 4881 KiB  
Article
Robust ESD-Reliability Design of 300-V Power N-Channel LDMOSs with the Elliptical Cylinder Super-Junctions in the Drain Side
by Shen-Li Chen, Pei-Lin Wu and Yu-Jen Chen
Electronics 2020, 9(5), 730; https://doi.org/10.3390/electronics9050730 - 29 Apr 2020
Cited by 3 | Viewed by 4846
Abstract
The weak ESD-immunity problem has been deeply persecuted in ultra high-voltage (UHV) metal-oxide-semiconductor field-effect transistors (MOSFETs) and urgently needs to be solved. In this paper, a UHV 300 V circular n-channel (n) lateral diffused MOSFET (nLDMOS) is taken as the benchmarked reference device [...] Read more.
The weak ESD-immunity problem has been deeply persecuted in ultra high-voltage (UHV) metal-oxide-semiconductor field-effect transistors (MOSFETs) and urgently needs to be solved. In this paper, a UHV 300 V circular n-channel (n) lateral diffused MOSFET (nLDMOS) is taken as the benchmarked reference device for the electrostatic discharge (ESD) capability improvement. However, a super-junction (SJ) structure in the drain region will cause extra depletion zones in the long drain region and reduce the peak value of the channel electric field. Therefore, it may directly increase the resistance of the device to ESD. Then, in this reformation project for UHV nLDMOSs to ESD, two strengthening methods were used. Firstly, the SJ area ratio changed by the symmetric eight-zone elliptical-cylinder length (X) variance (i.e., X = 5, 10, 15 and 20 μm) is added into the drift region of drain side to explore the influence on ESD reliability. From the experimental results, it could be found that the breakdown voltages (VBK) were changed slightly after adding this SJ structure. The VBK values are filled between 391 and 393.5 V. Initially, the original reference sample is 393 V; the VBK changing does not exceed 0.51%, which means that these components can be regarded as little changing in the conduction characteristic after adding these SJ structures under the normal operating conditions. In addition, in the ESD transient high-voltage bombardment situation, the human-body model (HBM) capability of the original reference device is 2500 V. Additionally, as SJs with the length X high-voltage P-type well (HVPW) are inserted into the drain-side drift region, the HBM robustness of these UHV nLDMOSs increases with the length X of the HVPW. When the length X (HVPW) is 20 μm, the HBM value can be upgraded to a maximum value of 5500 V, the ESD capability is increased by 120%. A linear relationship between the HBM immunity level and area ratio of SJs in the drains side in this work can be extracted. The second part revealed that, in the symmetric four-zone elliptical cylinder SJ modulation, the HBM robustness is generally promoted with the increase of HVPW SJ numbers (the highest HBM value (4500 V) of the M5 device improved by 80% as compared with the reference device under test (DUT)). Therefore, from this work, we can conclude that the addition of symmetric elliptical-cylinder SJ structures into the drain-side drift region of a UHV nLDMOS is a good strategy for improving the ESD immunity. Full article
(This article belongs to the Special Issue Industrial Applications of Power Electronics)
Show Figures

Figure 1

19 pages, 6418 KiB  
Article
Design of a Low-Power, Small-Area AEC-Q100-Compliant SENT Transmitter in Signal Conditioning IC for Automotive Pressure and Temperature Complex Sensors in 180 Nm CMOS Technology
by Imran Ali, Behnam Samadpoor Rikhan, Dong-Gyu Kim, Dong-Soo Lee, Muhammad Riaz Ur Rehman, Hamed Abbasizadeh, Muhammad Asif, Minjae Lee, Keum Cheol Hwang, Youngoo Yang and Kang-Yoon Lee
Sensors 2018, 18(5), 1555; https://doi.org/10.3390/s18051555 - 14 May 2018
Cited by 10 | Viewed by 6783
Abstract
In this paper, a low-power and small-area Single Edge Nibble Transmission (SENT) transmitter design is proposed for automotive pressure and temperature complex sensor applications. To reduce the cost and size of the hardware, the pressure and temperature information is processed with a single [...] Read more.
In this paper, a low-power and small-area Single Edge Nibble Transmission (SENT) transmitter design is proposed for automotive pressure and temperature complex sensor applications. To reduce the cost and size of the hardware, the pressure and temperature information is processed with a single integrated circuit (IC) and transmitted at the same time to the electronic control unit (ECU) through SENT. Due to its digital nature, it is immune to noise, has reduced sensitivity to electromagnetic interference (EMI), and generates low EMI. It requires only one PAD for its connectivity with ECU, and thus reduces the pin requirements, simplifies the connectivity, and minimizes the printed circuit board (PCB) complexity. The design is fully synthesizable, and independent of technology. The finite state machine-based approach is employed for area efficient implementation, and to translate the proposed architecture into hardware. The IC is fabricated in 1P6M 180 nm CMOS process with an area of (116 μm × 116 μm) and 4.314 K gates. The current consumption is 50 μA from a 1.8 V supply with a total 90 μW power. For compliance with AEC-Q100 for automotive reliability, a reverse and over voltage protection circuit is also implemented with human body model (HBM) electro-static discharge (ESD) of +6 kV, reverse voltage of −16 V to 0 V, over voltage of 8.2 V to 16 V, and fabricated area of 330 μm × 680 μm. The extensive testing, measurement, and simulation results prove that the design is fully compliant with SAE J2716 standard. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

Back to TopTop