PFAS and Phthalate/DINCH Exposure in Association with Age at Menarche in Teenagers of the HBM4EU Aligned Studies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Chemical Analysis
2.3. Outcome and Covariates
2.4. Statistical Analysis
3. Results
4. Discussion
4.1. Epidemiological Evidence for Phthalates
4.2. Epidemiological Evidence for PFAS
4.3. Experimental Evidence and Plausible Mechanisms of Action
5. Strengths and Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Patton, G.C.; Viner, R. Pubertal Transitions in Health. Lancet 2007, 369, 1130–1139. [Google Scholar] [CrossRef]
- Lee, J.E.; Jung, H.W.; Lee, Y.J.; Lee, Y.A. Early-Life Exposure to Endocrine-Disrupting Chemicals and Pubertal Development in Girls. Ann. Pediatr. Endocrinol. Metab. 2019, 24, 78–91. [Google Scholar] [CrossRef]
- Junqueira Do Lago, M.; Faerstein, E.; De Souza Lopes, C.; Werneck, G.L. Family Socio-Economic Background Modified Secular Trends in Age at Menarche: Evidence from the Pró-Saú Study (Rio de Janeiro, Brazil). Ann. Hum. Biol. 2003, 30, 347–352. [Google Scholar] [CrossRef]
- Morris, D.H.; Jones, M.E.; Schoemaker, M.J.; Ashworth, A.; Swerdlow, A.J. Secular Trends in Age at Menarche in Women in the UK Born 1908-93: Results from the Breakthrough Generations Study: Secular Trends in Age at Menarche. Paediatr. Perinat. Epidemiol. 2011, 25, 394–400. [Google Scholar] [CrossRef]
- McDowell, M.A.; Brody, D.J.; Hughes, J.P. Has Age at Menarche Changed? Results from the National Health and Nutrition Examination Survey (NHANES) 1999–2004. J. Adolesc. Health 2007, 40, 227–231. [Google Scholar] [CrossRef]
- Ong, K.K.; Ahmed, M.L.; Dunger, D.B. Lessons from Large Population Studies on Timing and Tempo of Puberty (Secular Trends and Relation to Body Size): The European Trend. Mol. Cell. Endocrinol. 2006, 254–255, 8–12. [Google Scholar] [CrossRef]
- Golub, M.S.; Collman, G.W.; Foster, P.M.D.; Kimmel, C.A.; Rajpert-De Meyts, E.; Reiter, E.O.; Sharpe, R.M.; Skakkebaek, N.E.; Toppari, J. Public Health Implications of Altered Puberty Timing. Pediatrics 2008, 121, S218–S230. [Google Scholar] [CrossRef]
- Janghorbani, M.; Mansourian, M.; Hosseini, E. Systematic Review and Meta-Analysis of Age at Menarche and Risk of Type 2 Diabetes. Acta Diabetol. 2014, 51, 519–528. [Google Scholar] [CrossRef]
- Charalampopoulos, D.; McLoughlin, A.; Elks, C.E.; Ong, K.K. Age at Menarche and Risks of All-Cause and Cardiovascular Death: A Systematic Review and Meta-Analysis. Am. J. Epidemiol. 2014, 180, 29–40. [Google Scholar] [CrossRef]
- Bernstein, L. Epidemiology of Endocrine-Related Risk Factors for Breast Cancer. J. Mammary Gland. Biol. Neoplasia. 2002, 7, 3–15. [Google Scholar] [CrossRef]
- Gong, T.-T.; Wang, Y.-L.; Ma, X.-X. Age at Menarche and Endometrial Cancer Risk: A Dose-Response Meta-Analysis of Prospective Studies. Sci. Rep. 2015, 5, 14051. [Google Scholar] [CrossRef] [PubMed]
- Parent, A.S.; Teilmann, G.; Juul, A.; Skakkebaek, N.E.; Toppari, J.; Bourguignon, J.P. The Timing of Normal Puberty and the Age Limits of Sexual Precocity: Variations around the World, Secular Trends, and Changes after Migration. Endocr. Rev. 2003, 24, 668–693. [Google Scholar] [CrossRef] [PubMed]
- Poursafa, P.; Ataei, E.; Kelishadi, R. A Systematic Review on the Effects of Environmental Exposure to Some Organohalogens and Phthalates on Early Puberty. J. Res. Med. Sci. 2015, 20, 613–618. [Google Scholar] [CrossRef] [PubMed]
- Paris, F.; Gaspari, L.; Sultan, C. Precocious Puberty and Environmental Endocrine Disruptors. In Early Puberty: Latest Findings, Diagnosis, Treatment, Long-term Outcome; Bouvattier, C., Pienkowski, C., Eds.; Springer: Paris, France, 2016; pp. 9–20. ISBN 978-2-8178-0543-6. [Google Scholar]
- Predieri, B.; Alves, C.A.D.; Iughetti, L. New Insights on the Effects of Endocrine-Disrupting Chemicals on Children. Jornal de Pediatria 2022, 98, S73–S85. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Rodriguez, D.; Franssen, D.; Heger, S.; Parent, A.-S. Endocrine-Disrupting Chemicals and Their Effects on Puberty. Best Pract. Res. Clin. Endocrinol. Metab. 2021, 35, 101579. [Google Scholar] [CrossRef]
- Hlisníková, H.; Petrovičová, I.; Kolena, B.; Šidlovská, M.; Sirotkin, A. Effects and Mechanisms of Phthalates’ Action on Reproductive Processes and Reproductive Health: A Literature Review. Int. J. Environ. Res. Public Health 2020, 17, 6811. [Google Scholar] [CrossRef]
- Keyte, I.; Patton, N.; Whiting, R.; Uhl, M.; Hauzenberger, I. Substance Report Per- and Poly-Fluoroalkyl Substances (PFAS). Available online: https://www.hbm4eu.eu/wp-content/uploads/2022/07/PFAS_Substance-report.pdf (accessed on 26 January 2023).
- Kolossa-Gehring, M.; Lange, R.; Gerofke, A. Substance Report Phthalates and Hexamoll DINCH. Available online: https://www.hbm4eu.eu/wp-content/uploads/2022/07/Phthalates_Substance-report-1.pdf (accessed on 26 January 2023).
- European Parliament. Council of the European Union Regulation (EC) No 1272/2008 of the European Parliament and of the Council of 16 December 2008 on Classification, Labelling and Packaging of Substances and Mixtures, Amending and Repealing Directives 67/548/EEC and 1999/45/EC, and Amending Regulation (EC) No 1907/2006 (Text with EEA Relevance). Available online: http://data.europa.eu/eli/reg/2008/1272/oj/eng (accessed on 15 May 2023).
- European Parliament. Council of the European Union Regulation (EC) No 1907/2006 of the European Parliament and of the Council of 18 December 2006 Concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH), Establishing a European Chemicals Agency, Amending Directive 1999/45/EC and Repealing Council Regulation (EEC) No 793/93 and Commission Regulation (EC) No 1488/94 as Well as Council Directive 76/769/EEC and Commission Directives 91/155/EEC, 93/67/EEC, 93/105/EC and 2000/21/EC (Text with EEA Relevance). Available online: http://data.europa.eu/eli/reg/2006/1907/2014-04-10/eng (accessed on 15 May 2023).
- European Parliament. Council of the European Union Directive 2005/84/EC of the European Parliament and of the Council of 14 December 2005 Amending for the 22nd Time Council Directive 76/769/EEC on the Approximation of the Laws, Regulations and Administrative Provisions of the Member States Relating to Restrictions on the Marketing and Use of Certain Dangerous Substances and Preparations (Phthalates in Toys and Childcare Articles). Available online: http://data.europa.eu/eli/dir/2005/84/oj/eng (accessed on 15 May 2023).
- European Commission Commission Regulation (EC) No 552/2009 of 22 June 2009 Amending Regulation (EC) No 1907/2006 of the European Parliament and of the Council on the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) as Regards Annex XVII (Text with EEA Relevance). Available online: http://data.europa.eu/eli/reg/2009/552/oj/eng (accessed on 15 May 2023).
- Testai, E.; Ms Scientific Committee SCENIHR; Electronic address: [email protected]; Hartemann, P.; Rastogi, S.C.; Bernauer, U.; Piersma, A.; De Jong, W.; Gulliksson, H.; Sharpe, R.; et al. The Safety of Medical Devices Containing DEHP Plasticized PVC or Other Plasticizers on Neonates and Other Groups Possibly at Risk (2015 Update). Regul. Toxicol. Pharmacol. 2016, 76, 209–210. [Google Scholar] [CrossRef]
- Directorate-General for Health and Consumers (European Commission). Now known as Opinion on the Safety of Medical Devices Containing DEHP Plasticized PVC or Other Plasticizers on Neonates and Other Groups Possibly at Risk (2015 Update); Publications Office of the European Union: Luxembourg, 2015; ISBN 978-92-79-35606-3. [Google Scholar]
- European Food Safety Authority (EFSA) Opinion of the Scientific Panel on Food Additives, Flavourings, Processing Aids and Materials in Contact with Food (AFC) Related to the 12th List of Substances for Food Contact Materials. EFSA J. 2006, 4, 395. [CrossRef]
- Mokra, K. Endocrine Disruptor Potential of Short- and Long-Chain Perfluoroalkyl Substances (PFASs)—A Synthesis of Current Knowledge with Proposal of Molecular Mechanism. Int. J. Mol. Sci. 2021, 22, 2148. [Google Scholar] [CrossRef]
- Eales, J.; Bethel, A.; Galloway, T.; Hopkinson, P.; Morrissey, K.; Short, R.E.; Garside, R. Human Health Impacts of Exposure to Phthalate Plasticizers: An Overview of Reviews. Environ. Int. 2022, 158, 106903. [Google Scholar] [CrossRef]
- Radke, E.G.; Braun, J.M.; Meeker, J.D.; Cooper, G.S. Phthalate Exposure and Male Reproductive Outcomes: A Systematic Review of the Human Epidemiological Evidence. Environ. Int. 2018, 121, 764–793. [Google Scholar] [CrossRef]
- Radke, E.G.; Galizia, A.; Thayer, K.A.; Cooper, G.S. Phthalate Exposure and Metabolic Effects: A Systematic Review of the Human Epidemiological Evidence. Environ. Int. 2019, 132, 104768. [Google Scholar] [CrossRef]
- Radke, E.G.; Glenn, B.S.; Braun, J.M.; Cooper, G.S. Phthalate Exposure and Female Reproductive and Developmental Outcomes: A Systematic Review of the Human Epidemiological Evidence. Environ. Int. 2019, 130, 104580. [Google Scholar] [CrossRef]
- Sunderland, E.M.; Hu, X.C.; Dassuncao, C.; Tokranov, A.K.; Wagner, C.C.; Allen, J.G. A Review of the Pathways of Human Exposure to Poly- and Perfluoroalkyl Substances (PFASs) and Present Understanding of Health Effects. J. Expo. Sci. Environ. Epidemiol. 2019, 29, 131–147. [Google Scholar] [CrossRef]
- Rappazzo, K.M.; Coffman, E.; Hines, E.P. Exposure to Perfluorinated Alkyl Substances and Health Outcomes in Children: A Systematic Review of the Epidemiologic Literature. Int. J. Environ. Res. Public Health 2017, 14, 691. [Google Scholar] [CrossRef]
- Engel, A.; Buhrke, T.; Kasper, S.; Behr, A.-C.; Braeuning, A.; Jessel, S.; Seidel, A.; Völkel, W.; Lampen, A. The Urinary Metabolites of DINCH® Have an Impact on the Activities of the Human Nuclear Receptors ERα, ERβ, AR, PPARα and PPARγ. Toxicol. Lett. 2018, 287, 83–91. [Google Scholar] [CrossRef]
- Campioli, E.; Duong, T.B.; Deschamps, F.; Papadopoulos, V. Cyclohexane-1,2-Dicarboxylic Acid Diisononyl Ester and Metabolite Effects on Rat Epididymal Stromal Vascular Fraction Differentiation of Adipose Tissue. Environ. Res. 2015, 140, 145–156. [Google Scholar] [CrossRef]
- Useini, A.; Engelberger, F.; Künze, G.; Sträter, N. Structural Basis of the Activation of PPARγ by the Plasticizer Metabolites MEHP and MINCH. Environ. Int. 2023, 173, 107822. [Google Scholar] [CrossRef]
- Schaffert, A.; Arnold, J.; Karkossa, I.; Blüher, M.; von Bergen, M.; Schubert, K. The Emerging Plasticizer Alternative DINCH and Its Metabolite MINCH Induce Oxidative Stress and Enhance Inflammatory Responses in Human THP-1 Macrophages. Cells 2021, 10, 2367. [Google Scholar] [CrossRef]
- Eljezi, T.; Pinta, P.; Richard, D.; Pinguet, J.; Chezal, J.-M.; Chagnon, M.-C.; Sautou, V.; Grimandi, G.; Moreau, E. In Vitro Cytotoxic Effects of DEHP-Alternative Plasticizers and Their Primary Metabolites on a L929 Cell Line. Chemosphere 2017, 173, 452–459. [Google Scholar] [CrossRef]
- Eljezi, T.; Pinta, P.; Nativel, F.; Richard, D.; Pinguet, J.; Roy, O.; Sautou, V.; Grimandi, G.; Moreau, E. In Vitro Cytotoxic Effects of Secondary Metabolites of DEHP and Its Alternative Plasticizers DINCH and DINP on a L929 cell Line. Int. J. Hyg. Environ. Health 2019, 222, 583–589. [Google Scholar] [CrossRef]
- Moche, H.; Chentouf, A.; Neves, S.; Corpart, J.-M.; Nesslany, F. Comparison of In Vitro Endocrine Activity of Phthalates and Alternative Plasticizers. J. Toxicol. 2021, 2021, 8815202. [Google Scholar] [CrossRef]
- Campioli, E.; Lau, M.; Papadopoulos, V. Effect of Subacute and Prenatal DINCH Plasticizer Exposure on Rat Dams and Male Offspring Hepatic Function: The Role of PPAR-α. Environ. Res. 2019, 179, 108773. [Google Scholar] [CrossRef]
- Lee, Y.J.; Jung, H.W.; Kim, H.Y.; Choi, Y.-J.; Lee, Y.A. Early-Life Exposure to Per- and Poly-Fluorinated Alkyl Substances and Growth, Adiposity, and Puberty in Children: A Systematic Review. Front. Endocrinol. 2021, 12, 683297. [Google Scholar] [CrossRef]
- Golestanzadeh, M.; Riahi, R.; Kelishadi, R. Association of Phthalate Exposure with Precocious and Delayed Pubertal Timing in Girls and Boys: A Systematic Review and Meta-Analysis †. Environ. Sci. Process. Impacts 2020, 22, 873–894. [Google Scholar] [CrossRef]
- Ernst, A.; Brix, N.; Lauridsen, L.L.B.; Olsen, J.; Parner, E.T.; Liew, Z.; Olsen, L.H.; Ramlau-Hansen, C.H. Exposure to Perfluoroalkyl Substances during Fetal Life and Pubertal Development in Boys and Girls from the Danish National Birth Cohort. Environ. Health Perspect. 2019, 127, 017004. [Google Scholar] [CrossRef]
- Zhang, Y.; Cao, Y.; Shi, H.; Jiang, X.; Zhao, Y.; Fang, X.; Xie, C. Could Exposure to Phthalates Speed up or Delay Pubertal Onset and Development? A 1.5-Year Follow-up of a School-Based Population. Environ. Int. 2015, 83, 41–49. [Google Scholar] [CrossRef]
- Wolff, M.S.; Teitelbaum, S.L.; Pinney, S.M.; Windham, G.; Liao, L.; Biro, F.; Kushi, L.H.; Erdmann, C.; Hiatt, R.A.; Rybak, M.E.; et al. Investigation of Relationships between Urinary Biomarkers of Phytoestrogens, Phthalates, and Phenols and Pubertal Stages in Girls. Environ. Health Perspect. 2010, 118, 1039–1046. [Google Scholar] [CrossRef]
- Kristensen, S.L.; Ramlau-Hansen, C.H.; Ernst, E.; Olsen, S.F.; Bonde, J.P.; Vested, A.; Halldorsson, T.I.; Becher, G.; Haug, L.S.; Toft, G. Long-Term Effects of Prenatal Exposure to Perfluoroalkyl Substances on Female Reproduction. Hum. Reprod. 2013, 28, 3337–3348. [Google Scholar] [CrossRef]
- Frederiksen, H.; Sørensen, K.; Mouritsen, A.; Aksglaede, L.; Hagen, C.P.; Petersen, J.H.; Skakkebaek, N.E.; Andersson, A.-M.; Juul, A. High Urinary Phthalate Concentration Associated with Delayed Pubarche in Girls. Int. J. Androl. 2012, 35, 216–226. [Google Scholar] [CrossRef]
- Wolff, M.S.; Teitelbaum, S.L.; McGovern, K.; Windham, G.C.; Pinney, S.M.; Galvez, M.; Calafat, A.M.; Kushi, L.H.; Biro, F.M. Phthalate Exposure and Pubertal Development in a Longitudinal Study of US Girls. Hum. Reprod. 2014, 29, 1558–1566. [Google Scholar] [CrossRef]
- Carwile, J.L.; Seshasayee, S.M.; Aris, I.M.; Rifas-Shiman, S.L.; Claus Henn, B.; Calafat, A.M.; Sagiv, S.K.; Oken, E.; Fleisch, A.F. Prospective Associations of Mid-Childhood Plasma per- and Polyfluoroalkyl Substances and Pubertal Timing. Environ. Int. 2021, 156, 106729. [Google Scholar] [CrossRef]
- Lopez-Espinosa, M.-J.; Fletcher, T.; Armstrong, B.; Genser, B.; Dhatariya, K.; Mondal, D.; Ducatman, A.; Leonardi, G. Association of Perfluorooctanoic Acid (PFOA) and Perfluorooctane Sulfonate (PFOS) with Age of Puberty among Children Living near a Chemical Plant. Environ. Sci. Technol. 2011, 45, 8160–8166. [Google Scholar] [CrossRef]
- Ganzleben, C.; Antignac, J.-P.; Barouki, R.; Castaño, A.; Fiddicke, U.; Klánová, J.; Lebret, E.; Olea, N.; Sarigiannis, D.; Schoeters, G.R.; et al. Human Biomonitoring as a Tool to Support Chemicals Regulation in the European Union. Int. J. Hyg. Environ. Health 2017, 220, 94–97. [Google Scholar] [CrossRef]
- Gilles, L.; Govarts, E.; Rambaud, L.; Vogel, N.; Castaño, A.; Esteban López, M.; Rodriguez Martin, L.; Koppen, G.; Remy, S.; Vrijheid, M.; et al. HBM4EU Combines and Harmonises Human Biomonitoring Data across the EU, Building on Existing Capacity—The HBM4EU Survey. Int. J. Hyg. Environ. Health 2021, 237, 113809. [Google Scholar] [CrossRef]
- Gilles, L.; Govarts, E.; Rodriguez Martin, L.; Andersson, A.-M.; Appenzeller, B.M.R.; Barbone, F.; Castaño, A.; Coertjens, D.; Den Hond, E.; Dzhedzheia, V.; et al. Harmonization of Human Biomonitoring Studies in Europe: Characteristics of the HBM4EU-Aligned Studies Participants. Int. J. Environ. Res. Public Health 2022, 19, 6787. [Google Scholar] [CrossRef]
- Govarts, E.; Gilles, L.; Rodriguez Martin, L.; Santonen, T.; Apel, P.; Alvito, P.; Anastasi, E.; Andersen, H.R.; Andersson, A.-M.; Andryskova, L.; et al. Harmonized Human Biomonitoring in European Children, Teenagers and Adults: EU-Wide Exposure Data of 11 Chemical Substance Groups from the HBM4EU Aligned Studies (2014-2021). Int. J. Hyg. Environ. Health 2023, 249, 114119. [Google Scholar] [CrossRef]
- Esteban López, M.; Göen, T.; Mol, H.; Nübler, S.; Haji-Abbas-Zarrabi, K.; Koch, H.M.; Kasper-Sonnenberg, M.; Dvorakova, D.; Hajslova, J.; Antignac, J.-P.; et al. The European Human Biomonitoring Platform - Design and Implementation of a Laboratory Quality Assurance/Quality Control (QA/QC) Programme for Selected Priority Chemicals. Int. J. Hyg. Environ. Health 2021, 234, 113740. [Google Scholar] [CrossRef] [PubMed]
- Mol, H.G.J.; Elbers, I.; Pälmke, C.; Bury, D.; Göen, T.; López, M.E.; Nübler, S.; Vaccher, V.; Antignac, J.-P.; Dvořáková, D.; et al. Proficiency and Interlaboratory Variability in the Determination of Phthalate and DINCH Biomarkers in Human Urine: Results from the HBM4EU Project. Toxics 2022, 10, 57. [Google Scholar] [CrossRef]
- Pearson, M.A.; Lu, C.; Schmotzer, B.J.; Waller, L.A.; Riederer, A.M. Evaluation of Physiological Measures for Correcting Variation in Urinary Output: Implications for Assessing Environmental Chemical Exposure in Children. J. Expo. Sci. Environ. Epidemiol. 2009, 19, 336–342. [Google Scholar] [CrossRef]
- Schulz, K.; Silva, M.R.; Klaper, R. Distribution and Effects of Branched versus Linear Isomers of PFOA, PFOS, and PFHxS: A Review of Recent Literature. Sci. Total Environ. 2020, 733, 139186. [Google Scholar] [CrossRef] [PubMed]
- Schumacher, D.; Borghi, E.; Gatica-Domínguez, G.; World Health Organization. WHO AnthroPlus Software: Computation of the WHO 2007 References for School-Age Children and Adolescents (5 to 19 Years). Available online: https://www.who.int/tools/growth-reference-data-for-5to19-years/application-tools (accessed on 15 May 2023).
- Zou, H.; Hastie, T. Regularization and Variable Selection Via the Elastic Net. J. R. Stat. Soc. Ser. B Stat. Methodol. 2005, 67, 301–320. [Google Scholar] [CrossRef]
- Clyde, M.A.; Ghosh, J.; Littman, M.L. Bayesian Adaptive Sampling for Variable Selection and Model Averaging. J. Comput. Graph. Stat. 2011, 20, 80–101. [Google Scholar] [CrossRef]
- Bobb, J.F.; Valeri, L.; Claus Henn, B.; Christiani, D.C.; Wright, R.O.; Mazumdar, M.; Godleski, J.J.; Coull, B.A. Bayesian Kernel Machine Regression for Estimating the Health Effects of Multi-Pollutant Mixtures. Biostatistics 2015, 16, 493–508. [Google Scholar] [CrossRef] [PubMed]
- Krieger, N.; Kiang, M.V.; Kosheleva, A.; Waterman, P.D.; Chen, J.T.; Beckfield, J. Age at Menarche: 50-Year Socioeconomic Trends among US-Born Black and White Women. Am. J. Public Health 2015, 105, 388–397. [Google Scholar] [CrossRef]
- Hiatt, R.A.; Stewart, S.L.; Deardorff, J.; Danial, E.; Abdiwahab, E.; Pinney, S.M.; Teitelbaum, S.L.; Windham, G.C.; Wolff, M.S.; Kushi, L.H.; et al. Childhood Socioeconomic Status and Menarche: A Prospective Study. J. Adolesc. Health 2021, 69, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Kleinbaum, D.G.; Kupper, L.L.; Nizam, A.; Rosenberg, E.S. Applied Regression Analysis and Other Multivariable Methods; Cengage Learning: Boston, MA, USA, 2013; ISBN 1-285-96375-X. [Google Scholar]
- Agier, L.; Portengen, L.; Chadeau-Hyam, M.; Basagaña, X.; Giorgis-Allemand, L.; Siroux, V.; Robinson, O.; Vlaanderen, J.; González, J.R.; Nieuwenhuijsen, M.J.; et al. A Systematic Comparison of Linear Regression–Based Statistical Methods to Assess Exposome-Health Associations. Environ. Health Perspect. 2016, 124, 1848–1856. [Google Scholar] [CrossRef]
- Friedman, J.H.; Hastie, T.; Tibshirani, R. Regularization Paths for Generalized Linear Models via Coordinate Descent. J. Stat. Softw. 2010, 33, 1–22. [Google Scholar] [CrossRef]
- Shah, R.D.; Samworth, R.J. Variable Selection with Error Control: Another Look at Stability Selection. J. R. Stat. Soc. Ser. B Stat. Methodol. 2012, 75, 55–80. [Google Scholar] [CrossRef]
- Barbieri, M.M.; Berger, J.O. Optimal Predictive Model Selection. Ann. Stat. 2004, 32, 870–897. [Google Scholar] [CrossRef]
- Liang, F.; Paulo, R.; Molina, G.; Clyde, M.A.; Berger, J.O. Mixtures of g Priors for Bayesian Variable Selection. J. Am. Stat. Assoc. 2008, 103, 410–423. [Google Scholar] [CrossRef]
- Bobb, J.F.; Claus Henn, B.; Valeri, L.; Coull, B.A. Statistical Software for Analyzing the Health Effects of Multiple Concurrent Exposures via Bayesian Kernel Machine Regression. Environ. Health 2018, 17, 67. [Google Scholar] [CrossRef] [PubMed]
- Watkins, D.J.; Téllez-Rojo, M.M.; Ferguson, K.K.; Lee, J.M.; Solano-Gonzalez, M.; Blank-Goldenberg, C.; Peterson, K.E.; Meeker, J.D. In Utero and Peripubertal Exposure to Phthalates and BPA in Relation to Female Sexual Maturation. Environ. Res. 2014, 134, 233–241. [Google Scholar] [CrossRef]
- Watkins, D.J.; Sánchez, B.N.; Téllez-Rojo, M.M.; Lee, J.M.; Mercado-García, A.; Blank-Goldenberg, C.; Peterson, K.E.; Meeker, J.D. Phthalate and Bisphenol A Exposure during in Utero Windows of Susceptibility in Relation to Reproductive Hormones and Pubertal Development in Girls. Environ. Res. 2017, 159, 143–151. [Google Scholar] [CrossRef] [PubMed]
- Park, O.; Park, J.-T.; Chi, Y.; Kwak, K. Association of Phthalates and Early Menarche in Korean Adolescent Girls from Korean National Environmental Health Survey (KoNEHS) 2015–2017. Ann. Occup. Environ. Med. 2021, 33, e4. [Google Scholar] [CrossRef]
- Berger, K.; Eskenazi, B.; Kogut, K.; Parra, K.; Lustig, R.H.; Greenspan, L.C.; Holland, N.; Calafat, A.M.; Ye, X.; Harley, K.G. Association of Prenatal Urinary Concentrations of Phthalates and Bisphenol A and Pubertal Timing in Boys and Girls. Environ. Health Perspect. 2018, 126, 097004. [Google Scholar] [CrossRef]
- Wolff, M.S.; Pajak, A.; Pinney, S.M.; Windham, G.C.; Galvez, M.; Rybak, M.; Silva, M.J.; Ye, X.; Calafat, A.M.; Kushi, L.H.; et al. Associations of Urinary Phthalate and Phenol Biomarkers with Menarche in a Multiethnic Cohort of Young Girls. Reprod. Toxicol. 2017, 67, 56–64. [Google Scholar] [CrossRef]
- Kasper-Sonnenberg, M.; Wittsiepe, J.; Wald, K.; Koch, H.M.; Wilhelm, M. Pre-Pubertal Exposure with Phthalates and Bisphenol A and Pubertal Development. PLoS ONE 2017, 12, e0187922. [Google Scholar] [CrossRef]
- Harley, K.G.; Berger, K.P.; Kogut, K.; Parra, K.; Lustig, R.H.; Greenspan, L.C.; Calafat, A.M.; Ye, X.; Eskenazi, B. Association of Phthalates, Parabens and Phenols Found in Personal Care Products with Pubertal Timing in Girls and Boys. Hum. Reprod. 2019, 34, 109–117. [Google Scholar] [CrossRef]
- Buttke, D.E.; Sircar, K.; Martin, C. Exposures to Endocrine-Disrupting Chemicals and Age of Menarche in Adolescent Girls in NHANES (2003–2008). Environ. Health Perspect. 2012, 120, 1613–1618. [Google Scholar] [CrossRef]
- Shi, H.; Cao, Y.; Shen, Q.; Zhao, Y.; Zhang, Z.; Zhang, Y. Association Between Urinary Phthalates and Pubertal Timing in Chinese Adolescents. J. Epidemiol. 2015, 25, 574–582. [Google Scholar] [CrossRef] [PubMed]
- Binder, A.M.; Corvalan, C.; Calafat, A.M.; Ye, X.; Mericq, V.; Pereira, A.; Michels, K.B. Childhood and Adolescent Phenol and Phthalate Exposure and the Age of Menarche in Latina Girls. Environ. Health 2018, 17, 32. [Google Scholar] [CrossRef] [PubMed]
- Di Nisio, A.; Rocca, M.S.; Sabovic, I.; De Rocco Ponce, M.; Corsini, C.; Guidolin, D.; Zanon, C.; Acquasaliente, L.; Carosso, A.R.; De Toni, L.; et al. Perfluorooctanoic Acid Alters Progesterone Activity in Human Endometrial Cells and Induces Reproductive Alterations in Young Women. Chemosphere 2020, 242, 125208. [Google Scholar] [CrossRef]
- Christensen, K.Y.; Maisonet, M.; Rubin, C.; Holmes, A.; Calafat, A.M.; Kato, K.; Flanders, W.D.; Heron, J.; McGeehin, M.A.; Marcus, M. Exposure to Polyfluoroalkyl Chemicals during Pregnancy Is Not Associated with Offspring Age at Menarche in a Contemporary British Cohort. Environ. Int. 2011, 37, 129–135. [Google Scholar] [CrossRef]
- Marks, K.J.; Howards, P.P.; Smarr, M.M.; Flanders, W.D.; Northstone, K.; Daniel, J.H.; Calafat, A.M.; Sjödin, A.; Marcus, M.; Hartman, T.J. Prenatal Exposure to Mixtures of Persistent Endocrine Disrupting Chemicals and Early Menarche in a Population-Based Cohort of British Girls. Environ. Pollut. 2021, 276, 116705. [Google Scholar] [CrossRef]
- Lyche, J.L.; Gutleb, A.C.; Bergman, Å.; Eriksen, G.S.; Murk, A.J.; Ropstad, E.; Saunders, M.; Skaare, J.U. Reproductive and Developmental Toxicity of Phthalates. J. Toxicol. Environ. Health. Part B Crit. Rev. 2009, 12, 225–249. [Google Scholar] [CrossRef]
- Liu, T.; Wang, Y.; Yang, M.; Shao, P.; Duan, L.; Li, M.; Zhu, M.; Yang, J.; Jiang, J. Di-(2-Ethylhexyl) Phthalate Induces Precocious Puberty in Adolescent Female Rats. Iran. J. Basic Med. Sci. 2018, 21, 848–855. [Google Scholar] [CrossRef]
- Rattan, S.; Brehm, E.; Gao, L.; Flaws, J.A. Di(2-Ethylhexyl) Phthalate Exposure During Prenatal Development Causes Adverse Transgenerational Effects on Female Fertility in Mice. Toxicol. Sci. 2018, 163, 420–429. [Google Scholar] [CrossRef]
- Tomonari, Y.; Kurata, Y.; David, R.M.; Gans, G.; Kawasuso, T.; Katoh, M. Effect of Di(2-Ethylhexyl) Phthalate (DEHP) on Genital Organs from Juvenile Common Marmosets: I. Morphological and Biochemical Investigation in 65-Week Toxicity Study. J. Toxicol. Environ. Health A 2006, 69, 1651–1672. [Google Scholar] [CrossRef]
- Ma, M.; Kondo, T.; Ban, S.; Umemura, T.; Kurahashi, N.; Takeda, M.; Kishi, R. Exposure of Prepubertal Female Rats to Inhaled Di(2-Ethylhexyl)Phthalate Affects the Onset of Puberty and Postpubertal Reproductive Functions. Toxicol. Sci. 2006, 93, 164–171. [Google Scholar] [CrossRef]
- Grande, S.W.; Andrade, A.J.M.; Talsness, C.E.; Grote, K.; Chahoud, I. A Dose-Response Study Following in Utero and Lactational Exposure to Di(2-Ethylhexyl)Phthalate: Effects on Female Rat Reproductive Development. Toxicol. Sci. 2006, 91, 247–254. [Google Scholar] [CrossRef] [PubMed]
- Venturelli, A.C.; Meyer, K.B.; Fischer, S.V.; Kita, D.H.; Philipsen, R.A.; Morais, R.N.; Martino Andrade, A.J. Effects of in Utero and Lactational Exposure to Phthalates on Reproductive Development and Glycemic Homeostasis in Rats. Toxicology 2019, 421, 30–40. [Google Scholar] [CrossRef]
- Moral, R.; Santucci-Pereira, J.; Wang, R.; Russo, I.H.; Lamartiniere, C.A.; Russo, J. In Utero Exposure to Butyl Benzyl Phthalate Induces Modifications in the Morphology and the Gene Expression Profile of the Mammary Gland: An Experimental Study in Rats. Environ. Health 2011, 10, 5. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Cao, X.; Zhao, S.; Wang, X.; Hua, X.; Chen, L.; Chen, L. Exposure of Pregnant Mice to Perfluorobutanesulfonate Causes Hypothyroxinemia and Developmental Abnormalities in Female Offspring. Toxicol. Sci. 2017, 155, 409–419. [Google Scholar] [CrossRef]
- Das, K.P.; Grey, B.E.; Rosen, M.B.; Wood, C.R.; Tatum-Gibbs, K.R.; Zehr, R.D.; Strynar, M.J.; Lindstrom, A.B.; Lau, C. Developmental Toxicity of Perfluorononanoic Acid in Mice. Reprod. Toxicol. 2015, 51, 133–144. [Google Scholar] [CrossRef]
- Yang, C.; Tan, Y.S.; Harkema, J.R.; Haslam, S.Z. Differential Effects of Peripubertal Exposure to Perfluorooctanoic Acid on Mammary Gland Development in C57Bl/6 and Balb/c Mouse Strains. Reprod. Toxicol. 2009, 27, 299–306. [Google Scholar] [CrossRef]
- Zhao, Y.; Tan, Y.S.; Strynar, M.J.; Perez, G.; Haslam, S.Z.; Yang, C. Perfluorooctanoic Acid Effects on Ovaries Mediate Its Inhibition of Peripubertal Mammary Gland Development in Balb/c and C57Bl/6 Mice. Reprod. Toxicol. 2012, 33, 563–576. [Google Scholar] [CrossRef]
- Shi, Z.; Zhang, H.; Ding, L.; Feng, Y.; Xu, M.; Dai, J. The Effect of Perfluorododecanonic Acid on Endocrine Status, Sex Hormones and Expression of Steroidogenic Genes in Pubertal Female Rats. Reprod. Toxicol. 2009, 27, 352–359. [Google Scholar] [CrossRef]
- Chang, S.; Butenhoff, J.L.; Parker, G.A.; Coder, P.S.; Zitzow, J.D.; Krisko, R.M.; Bjork, J.A.; Wallace, K.B.; Seed, J.G. Reproductive and Developmental Toxicity of Potassium Perfluorohexanesulfonate in CD-1 Mice. Reprod. Toxicol. 2018, 78, 150–168. [Google Scholar] [CrossRef]
- Tucker, D.K.; Macon, M.B.; Strynar, M.J.; Dagnino, S.; Andersen, E.; Fenton, S.E. The Mammary Gland Is a Sensitive Pubertal Target in CD-1 and C57Bl/6 Mice Following Perinatal Perfluorooctanoic Acid (PFOA) Exposure. Reprod. Toxicol. 2015, 54, 26–36. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.-L.; Popovic, S.; Arbuckle, T.E.; Fraser, W.D. Determination of Free and Total Bisphenol A in Human Milk Samples from Canadian Women Using a Sensitive and Selective GC-MS Method. Food Addit. Contam. Part A 2015, 32, 120–125. [Google Scholar] [CrossRef] [PubMed]
- Uenoyama, Y.; Inoue, N.; Nakamura, S.; Tsukamura, H. Kisspeptin Neurons and Estrogen–Estrogen Receptor α Signaling: Unraveling the Mystery of Steroid Feedback System Regulating Mammalian Reproduction. Int. J. Mol. Sci. 2021, 22, 9229. [Google Scholar] [CrossRef]
- Ding, N.; Harlow, S.D.; Randolph Jr, J.F.; Loch-Caruso, R.; Park, S.K. Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS) and Their Effects on the Ovary. Hum. Reprod. Update 2020, 26, 724–752. [Google Scholar] [CrossRef]
- Hannon, P.R.; Flaws, J.A. The Effects of Phthalates on the Ovary. Front. Endocrinol. 2015, 6, 8. [Google Scholar] [CrossRef]
- Du, G.; Hu, J.; Huang, Z.; Yu, M.; Lu, C.; Wang, X.; Wu, D. Neonatal and Juvenile Exposure to Perfluorooctanoate (PFOA) and Perfluorooctane Sulfonate (PFOS): Advance Puberty Onset and Kisspeptin System Disturbance in Female Rats. Ecotoxicol. Environ. Saf. 2019, 167, 412–421. [Google Scholar] [CrossRef]
- Feng, X.; Wang, X.; Cao, X.; Xia, Y.; Zhou, R.; Chen, L. Chronic Exposure of Female Mice to an Environmental Level of Perfluorooctane Sulfonate Suppresses Estrogen Synthesis Through Reduced Histone H3K14 Acetylation of the StAR Promoter Leading to Deficits in Follicular Development and Ovulation. Toxicol. Sci. 2015, 148, 368–379. [Google Scholar] [CrossRef] [PubMed]
- López-Doval, S.; Salgado, R.; Pereiro, N.; Moyano, R.; Lafuente, A. Perfluorooctane Sulfonate Effects on the Reproductive Axis in Adult Male Rats. Environ. Res. 2014, 134, 158–168. [Google Scholar] [CrossRef] [PubMed]
- Roepke, T.A.; Yang, J.A.; Yasrebi, A.; Mamounis, K.J.; Oruc, E.; Zama, A.M.; Uzumcu, M. Regulation of Arcuate Genes by Developmental Exposures to Endocrine-Disrupting Compounds in Female Rats. Reprod. Toxicol. 2016, 62, 18–26. [Google Scholar] [CrossRef]
- Rickard, B.P.; Rizvi, I.; Fenton, S.E. Per- and Poly-Fluoroalkyl Substances (PFAS) and Female Reproductive Outcomes: PFAS Elimination, Endocrine-Mediated Effects, and Disease. Toxicology 2022, 465, 153031. [Google Scholar] [CrossRef]
- Wu, H.; Yoon, M.; Verner, M.-A.; Xue, J.; Luo, M.; Andersen, M.E.; Longnecker, M.P.; Clewell, H.J. Can the Observed Association between Serum Perfluoroalkyl Substances and Delayed Menarche Be Explained on the Basis of Puberty-Related Changes in Physiology and Pharmacokinetics? Environ. Int. 2015, 82, 61–68. [Google Scholar] [CrossRef]
- Calafat, A.M.; Longnecker, M.P.; Koch, H.M.; Swan, S.H.; Hauser, R.; Goldman, L.R.; Lanphear, B.P.; Rudel, R.A.; Engel, S.M.; Teitelbaum, S.L.; et al. Optimal Exposure Biomarkers for Nonpersistent Chemicals in Environmental Epidemiology. Environ. Health Perspect. 2015, 123, A166–A168. [Google Scholar] [CrossRef] [PubMed]
- Biro, F.M.; Huang, B.; Crawford, P.B.; Lucky, A.W.; Striegel-Moore, R.; Barton, B.A.; Daniels, S. Pubertal Correlates in Black and White Girls. J. Pediatr. 2006, 148, 234–240. [Google Scholar] [CrossRef] [PubMed]
- Karapanou, O.; Papadimitriou, A. Determinants of Menarche. Reprod. Biol. Endocrinol. 2010, 8, 115. [Google Scholar] [CrossRef] [PubMed]
Characteristic | Riksmaten Adolescents 2016–2017 | PCB Cohort Follow-Up | GerES V-Sub | FLEHS IV | Pooled Cohorts |
---|---|---|---|---|---|
Country (Region) | Sweden (North) | Slovakia (East) | Germany (West) | Belgium (West) | NA |
Sampling years | 2016–2017 | 2019–2020 | 2015–2017 | 2017–2018 | 2015–2020 |
N included | 129 | 144 | 107 | 134 | 514 |
Age (years) | |||||
median | 14 | 16 | 15 | 14 | 15 |
P25–P75 | 14–17 | 15–16 | 14–16 | 14–15 | 14–16 |
BMI (kg/m2) | |||||
median | 21.7 | 21.1 | 21.0 | 21.4 | 21.3 |
P25–P75 | 19.7–23.9 | 18.9–24.1 | 19.3–22.7 | 19.5–23.6 | 19.4–23.8 |
Age at menarche (years) | |||||
median | 12 | 14 | 12 | 13 | 13 |
P25–P75 | 12–13 | 13–15 | 12–13 | 12–13.8 | 12–14 |
Household education (%) | |||||
low (ISCED 0–2) | 9.3 | 7.6 | 8.4 | 7.5 | 8.2 |
medium (ISCED 3–4) | 31.0 | 77.1 | 30.8 | 38.8 | 45.9 |
high (ISCED 5–8) | 59.7 | 15.3 | 60.7 | 53.7 | 45.9 |
Biomarker | Riksmaten Adolescents 2016–2017 | PCB Cohort Follow-Up | GerES V-Sub | FLEHS IV | Pooled Cohorts |
---|---|---|---|---|---|
PFAS in serum/plasma (μg/L), median (P25–P75) | |||||
PFOA | 1.14 (0.90–1.56) * | 0.66 (0.45–0.88) | 1.17 (0.70–1.75) | 1.00 (0.81–1.30) | 0.96 (0.68–1.30) |
PFOS | 2.55 (1.78–3.71) * | 1.22 (0.76–2.29) | 2.41 (1.73–3.39) | 2.10 (1.40–3.35) | 2.16 (1.30–3.05) |
PFHxS | 0.36 (0.26–0.51) * | 0.25 (0.18–0.33) | 0.35 (0.22–0.47) | 0.45 (0.32–0.61) | 0.34 (0.22–0.52) |
Phthalates in urine (μg/L), median (P25–P75) | |||||
MBzP | 8.63 (3.38–16.27) | 1.89 (1.01–4.09) | 2.40 (1.59–4.71) | 2.28 (1.23–5.56) | 2.80 (1.49–7.10) |
MEHP | 1.81 (1.33–2.96) | 5.25 (2.77–9.00) | 1.54 (0.91–2.69) | 1.39 (0.84–2.33) | 2.01 (1.17–4.17) |
5OH-MEHP | 7.47 (5.39–12.41) | 46.66 (23.73–85.97) | 8.32 (5.86–11.51) | 6.28 (3.61–9.67) | 9.75 (5.89–23.70) |
5oxo-MEHP | 5.84 (4.21–9.95) | 11.09 (5.84–15.92) | 5.87 (3.78–8.22) | 4.13 (2.40–6.39) | 6.04 (3.77–11.16) |
5cx-MEPP | 6.84 (4.62–12.02) | 12.60 (7.51–21.77) | 8.19 (5.78–13.21) | 16.15 (11.27–22.47) | 11.07 (6.78–17.85) |
MEP | 52.14 (27.88–104.18) | 89.79 (45.85–192.35) | 30.63 (15.80–122.02) | 32.13 (17.02–77.69) | 52.14 (21.62–122.36) |
OH-MiNP | 3.77 (2.38–7.32) | 25.66 (15.28–44.13) | 5.85 (4.11–9.07) | 4.03 (2.69–5.62) | 6.31 (3.43–16.66) |
cxMiNP | 6.78 (3.81–12.52) | 9.97 (6.03–18.14) | 4.80 (3.17–7.61) | 1.88 (1.27–2.75) | 5.07 (2.67–10.62) |
DINCH in urine (μg/L), median (P25–P75) | |||||
OH-MINCH | 0.85 (0.44–1.53) | 2.48 (1.18–4.03) | 1.30 (0.81–2.45) | 1.22 (0.72–2.38) | 1.32 (0.72–3.01) |
cx-MINCH | 0.89 (0.52–1.82) | 1.11 (0.60–2.11) | 0.76 (0.45–1.31) | 1.23 (0.79–1.81) | 1.01 (0.58–1.74) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cox, B.; Wauters, N.; Rodríguez-Carrillo, A.; Portengen, L.; Gerofke, A.; Kolossa-Gehring, M.; Lignell, S.; Lindroos, A.K.; Fabelova, L.; Murinova, L.P.; et al. PFAS and Phthalate/DINCH Exposure in Association with Age at Menarche in Teenagers of the HBM4EU Aligned Studies. Toxics 2023, 11, 711. https://doi.org/10.3390/toxics11080711
Cox B, Wauters N, Rodríguez-Carrillo A, Portengen L, Gerofke A, Kolossa-Gehring M, Lignell S, Lindroos AK, Fabelova L, Murinova LP, et al. PFAS and Phthalate/DINCH Exposure in Association with Age at Menarche in Teenagers of the HBM4EU Aligned Studies. Toxics. 2023; 11(8):711. https://doi.org/10.3390/toxics11080711
Chicago/Turabian StyleCox, Bianca, Natasha Wauters, Andrea Rodríguez-Carrillo, Lützen Portengen, Antje Gerofke, Marike Kolossa-Gehring, Sanna Lignell, Anna Karin Lindroos, Lucia Fabelova, Lubica Palkovicova Murinova, and et al. 2023. "PFAS and Phthalate/DINCH Exposure in Association with Age at Menarche in Teenagers of the HBM4EU Aligned Studies" Toxics 11, no. 8: 711. https://doi.org/10.3390/toxics11080711