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Abstract: To develop the risk prediction technology for mixture toxicity, a reliable and extensive
dataset of experimental results is required. However, most published literature only provides data
on combinations containing two or three substances, resulting in a limited dataset for predicting the
toxicity of complex mixtures. Complex mixtures may have different mode of actions (MoAs) due to
their varied composition, posing difficulty in the prediction using conventional toxicity prediction
models, such as the concentration addition (CA) and independent action (IA) models. The aim
of this study was to generate an experimental dataset comprising complex mixtures. To identify
the target complex mixtures, we referred to the findings of the HBM4EU project. We identified
three groups of seven to ten components that were commonly detected together in human bodies,
namely environmental phenols, perfluorinated compounds, and heavy metal compounds, assuming
these chemicals to have different MoAs. In addition, a separate mixture was added consisting of
seven organophosphate flame retardants (OPFRs), which may have similar chemical structures. All
target substances were tested for cytotoxicity using HepG2 cell lines, and subsequently 50 different
complex mixtures were randomly generated with equitoxic mixtures of EC10 levels. To determine
the interaction effect, we calculated the model deviation ratio (MDR) by comparing the observed
EC10 with the predicted EC10 from the CA model, then categorized three types of interactions:
antagonism, additivity, and synergism. Dose–response curves and EC values were calculated for all
complex mixtures. Out of 50 mixtures, none demonstrated synergism, while six mixtures exhibited an
antagonistic effect. The remaining mixtures exhibited additivity with MDRs ranging from 0.50 to 1.34.
Our experimental data have been formatted to and constructed for the database. They will be utilized
for further research aimed at developing the combined CA/IA approaches to support mixture
risk assessment.

Keywords: complex mixture; cytotoxicity; mixture toxicity prediction; HepG2; biomonitoring

1. Introduction

People are exposed to numerous chemical mixtures from consumer products, food,
and the environment. These mixtures may have an impact on health. Therefore, to assess
the mixture risk, we need to estimate the toxicity quantitatively. The European Union
(EU) Biocidal Product Regulation (BPR) and the Korean Chemical Product Safety Act
take into account the combined toxicity that can be caused by mixture components in
consumer chemical products and biocidal products [1,2]. This is due to the fact that
individual chemicals, even below their no-observed-effect levels, may provoke toxicity
through toxicological interactions (e.g., additivity or synergism) among them in the living
organisms [3,4]. The concept of additive toxicity has conventionally been applied without
considering the possibility of synergistic interaction [5]. General models used to predict
quantitative mixture toxicity values, such as EC10 or EC50, include the concentration
addition (CA) and the independent action (IA) models [6,7]. The CA model, also called
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the dose addition model (DA), is suitable for mixtures consisting of substances with the
same mode of action (MoA), and this is the general default assumption in most mixture
risk assessment concepts.

The default use of the CA model is necessary and practical for regulatory applications
because the biological MoAs are not known for all components, and synergistic interaction
cases are rare [8]. However, in order to achieve a more comprehensive prediction of
mixture risk, it is essential to develop quantitative models for predicting mixture toxicity.
This is because conducting conventional toxicity tests is not feasible due to the extremely
large number of possible mixture combinations, including different chemical types and
concentrations. The in-depth mechanism of mixture toxicity is always complex, making
it difficult to clearly understand the interaction effect of chemical mixtures on target
species and assay conditions [9]. In response to this research need, several mixture toxicity
prediction models have been developed, including the generalized concentration addition
(GCA) model [10], the stepwise modelling combined CA and IA models [11,12], and the
full logistic model (FLM) [13]. To support the mixture toxicity prediction, our research
team has developed a web-based platform that conveniently estimates the mixture toxicity
values based on various prediction models [14]. However, the computational prediction
models still require improvement. To enhance their predictive power, a larger dataset of
observed toxicity values of complex mixtures is necessary; however, such information on
the toxicity of complex mixtures is still very limited.

A complex mixture is a combination of multiple components with different MoAs,
often containing around 10 chemicals [11,15–17]. In 2004, a peer review workshop of the
US EPA recognized the need to develop novel approaches for assessing the risk of complex
mixtures and producing toxicity test results that take into account real-world exposure
conditions rather than conventional simple mixtures [17]. In reality, we are exposed to
the complex mixtures with various toxicity mechanisms. Large-scale human biomonitor-
ing (HBM) projects, such as the US National Health and Nutrition Examination Survey
(NHANES) and human biomonitoring for Europe (HBM4EU), have demonstrated signifi-
cantly that exogenous chemicals and their metabolites are detected in blood, urine, and
other human specimens [18,19]. However, a recent review of mixture toxicity data found
that less than 20% of cases have tested a mixture including more than three components [3].
It is worth noting that the US EPA Peer Review Workshop report was published over
15 years ago.

The aim of our study is to provide a toxicity experimental dataset of complex mixtures
under the same assay conditions. For this study, we selected major exogenous chemicals
based on human biomonitoring data and randomly organized them into mixtures of
seven to ten components. In complex mixtures, we ensured that there was a group with
similar structures and functions and another group with various characteristics of toxicity,
regarding the application of both the CA and IA models. To account for complex cases,
we combined the chemicals randomly, and generated fifty different mixtures. Our study
results can be used to develop and optimize the quantitative prediction models for mixture
toxicity in future work.

2. Materials and Methods
2.1. Target Components and Mixtures

In order to generate the target complex mixtures, eighteen environmental chemicals
were selected from the HBM4EU project data sample, along with seven additional OPFRs
that might have similar structures and functions. For environmental chemicals, we referred
to examples of common chemicals found in the HBM4EU project data sample. The Deliver-
able Report 15.3 of this project provided a data re-analysis approach and case study using
simulated data of real-life exposure profiles in human biomonitoring [20]. Although this is
based on the simulated data, we utilized it to generate the toxicity data without attributing
any biological significance. In the report, 10 mixtures are presented which account for
65.8% of the variance of the original HBM dataset. We have selected the top 4 mixtures,
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which cover a total of 49% of the variance. Detailed chemical lists are available in the report,
including brominated flame retardants, heavy metals, environmental phenols, phthalates,
per- and polyfluoroalkyl substances (PFAS), and polychlorinated biphenyls (PCBs). In
the list, we excluded low-toxic chemicals, such as phthalates from our pre-test. We also
excluded persistent organic pollutants (POPs) due to regulations restricting their purchase
above a certain concentration and quantity. From this process, we selected eighteen chemi-
cals from the HBM4EU example dataset. For the next step, we selected the most frequently
detected organophosphate flame retardants (OPFRs) from previous studies to consider the
chemical group with similar structures and functions [21,22]. In our previous study, we
identified seven OPFRs that showed significant cytotoxicity in HepG2 toxicity assay. Most
of the combinations had no interaction effects in the mixture toxicity test [21].

We first selected ‘Mixture 2, 3, and 4’ of the HBM4EU report as the representative
target mixtures, and then included all seven OPFRs for the next mixture. Subsequently,
we randomly generated 46 mixtures to include 7 to 10 components, and they were made
into EC10-level equitoxic mixtures. Table 1 shows the final target single components and
representative four mixtures, while other mixtures are summarized in Table S1.

Table 1. Target chemicals information and four representative mixtures.

No. Group Chemical Name Abbr. CAS No. MW

1 Phenols 2,4-dichlorophenol 2,4-DCP 120-83-2 163.0
2 Phenols 2,5-dichlorophenol 2,5-DCP 583-78-8 163.0
3 Phenols Propyl paraben pPB 94-13-3 180.2
4 Phenols Butyl paraben bPB 94-26-8 194.2
5 Phenols Benzophenone-3 BP-3 131-57-7 228.1
6 Phenols Triclosan TCS 3380-34-5 289.5
7 Heavy metal Lead chloride Pb 7758-95-4 278.1
8 Heavy metal Cupric sulfate Cu 7758-98-7 249.7
9 Heavy metal Sodium selenite Se 10102-18-8 172.9
10 Heavy metal Cadmium chloride hydrate Cd 654054-66-7 183.3
11 Heavy metal Antimony(III) chloride Sb 10025-91-9 228.1
12 Heavy metal Cobalt chloride Co 7646-79-9 129.8
13 Heavy metal Nickel dichloride Ni 7718-54-9 129.6
14 Heavy metal Zinc sulfate heptahydrate Zn 7446-20-0 287.6
15 Heavy metal Methylmercury chloride Hg 115-09-3 251.1
16 PFASs Perfluorooctanoic acid PFOA 335-67-1 414.1
17 PFASs Perfluorononanoic acid PFNA 375-95-1 464.1
18 PFASs Perfluorohexanesulfonic acid PFHxS 355-46-4 438.2
19 OPFRs Tri-n-butyl phosphate TnBP 126-73-8 326.3
20 OPFRs Triphenyl phosphate TPhP 115-86-6 362.4
21 OPFRs Tris(1-chloro-2-propyl)phosphate TCPP 13674-84-5 398.5
22 OPFRs 2-Ethylhexyl diphenyl phosphate EHDPHP 1241-94-7 362.4
23 OPFRs Tris(2-butoxyethyl) phosphate TBOEP 78-51-3 398.5
24 OPFRs Tris (1,3-dichloropropyl) phosphate TDCIPP 13674-87-8 430.9
25 OPFRs Tri (2-ethylhexyl)phosphate TEHP 78-42-2 434.6

Representative Mixtures *

1 2,4-DCP, 2,5-DCP, pPB, bPB, Hg, Cu, Se, Pb, PFHxS
2 pPB, BP-3, TCS, Hg, Cd, Sb, PFNA, PFOA
3 bBP, BP-3, Co, Cu, Pb, Cd, Se, Zn, Ni
4 TnBP, TPhP, TCPP, EHDPHP, TBOEP, TDCIPP, TEHP

* Mixtures 1–3 refer to the ‘Mixture 2–4’ in the HBM4EU report.

2.2. HepG2 Cell Line Culture and Cytotoxicity Assay

The majority of components in the complex mixtures are heavy metals and semi-volatile
organic chemicals (SVOCs), which can be orally exposed to general population [23–25]. As an
experimental setting, we selected the hepatocyte cell line HepG2, considering their circulation
and general toxicity. The HepG2 cell line has been used extensively in toxicity studies,
providing sufficient information on biological mechanisms and allowing for easy comparison
with previous studies.

The HepG2 cell lines were obtained from CLS (Cell Lines Service, Eppelheim, Ger-
many), and the cells were cultured in Dulbecco’s Modified Eagle’s Medium (DMEM,
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WelGENE Inc., Gyeongsan, Korea, LM001-05) supplemented with 10% fetal bovine serum
(FBS, Atlas, Atlanta, GA, USA, FP-0500-A) and 1% penicillin-streptomycin (PE-ST, Gibco,
Grand Island, NY, USA, 15070063) in 100 × 25 mm round culture dishes (Corning, Corning,
NY, USA) at 37 ◦C and 5% CO2. For the cytotoxicity assay, the cells were dispensed at
a concentration of 1.5 × 105/mL in 96-well plates. After incubating for 24 h, the culture
medium was replaced with solutions containing the target substances and then exposed
for 48 h. All target chemicals were dispersed or diluted to a concentration of 1 mM in a
dimethyl sulfoxide (DMSO, Hybri-Max™, ≥99.7%, Sigma-Aldrich, St. Louis, MO, USA,
D2650). Sodium selenite, antimony (III) chloride, cobalt chloride, and nickel dichloride
were dispersed with ultrasonication for 30 to 60 min using an ultrasonic probe and homog-
enizer. Then chemicals were treated in eight treatment groups with dilution factor 2, and
the highest concentrations ranged from 0.23 to 2000 µM, depending on their solubility in
DMSO. Stock solutions of mixtures were prepared using 1–3% of DMSO in DMEM, and a
3% solvent control confirmed no cytotoxicity for 72 h in each assay. All experiments were
performed in triplicate using difference cell passages, limited to passages 2 to 7. During the
experiments, doxorubicin (CAS No. 23214-92-8) was used as a reference chemical, and its
EC50 range was consistently estimated to be between 0.2 and 0.8 µM. Cell viability was
determined by dispensing 10 µL of Cell Counting Kit-8 (CCK-8 (tetrazolium salt), Dojindo,
Tokyo, Japan) and incubating it for 2 h. Absorbance was then measured at a wavelength of
450 nm with a microplate reader (Infinite®, Tecan Co., Männedorf, Switzerland).

2.3. Mixtures Experimental Design

The equitoxic mixture design was used for a complex mixture toxicity test [26,27]. Once
the EC10 value was derived as below 1000 µM for the single substance test, a combination
of 7–10 substances was made to achieve the final EC10 level of each substance. This ensures
that the cells can be exposed to EC70–EC100. For example, in the case of complex mixtures
with 8 components, the highest concentration of the treatment groups was determined
by calculating the sum of EC10 of A, EC10 of B, and up to EC10 of H. Subsequently,
eight concentration groups were prepared with a dilution factor of 2. The conditions of the
mixture toxicity assays were the same as those of the toxicity assays of single substances.

2.4. Data Analysis

The cell viability and cytotoxicity were calculated by Equations (1) and (2).

Cell viability (%) =
Abs(treatment)− Abs(blank)
Abs(Control)− Abs(blank)

× 100 (%) (1)

Cytotoxicity (%) = 100 − Cell viability (%) (2)

Cell viability data were calculated by comparing with 1–3% solvent control assays.
Cell viability data were analyzed by non-linear regression analysis using the SigmaPlot®

programme (14.5, Systat Software Inc., Palo Alto, CA, USA) to derive dose–response curves
(DRCs). A sigmoid function of three parameters was fitted to all assay datasets, including
three replicates of each substance. The model with the least sum of squares of residuals
was selected among the sigmoid, logistic, Gompertz, Weibull, Hill, and Chapman models.
The dose–response curve was then fitted to the selected model, and the EC10 value was
estimated by back-calculating the equations using the ‘Solve’ option in SigmaPlot (V14.5).

The EC10 value obtained from the complex mixture test was compared with the
predicted EC10 value by the CA Model, using STAGE 01 of the OpenMRA platform
(https://www.openmra.org, accessed on 1 February 2024). After predicting the EC10 of
the mixtures, we calculated the model deviation ratio (MDR) using Equation (3).

MDR =
Predicted ECX of mixture
Observed ECX of mixture

(3)

https://www.openmra.org
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If the predicted ECx is lower than the observed ECx, MDR is derived as greater than 1.
This indicates that the observed toxicity is stronger than the additive assumption and can be
categorized as showing a synergistic effect. Similar to this way, we used MDR to determine
whether the mixture toxicity has a synergistic, additive, or antagonistic effect (MDR ≤ 0.5:
Antagonism, 0.5 < MDR < 2: Additivity, MDR ≥ 2: Synergism) [26].

The data analysis for cell viability and DRC fitting was applied equally to both the
single and mixture toxicity tests. Additionally, the DRC model information for all mixtures
are provided in the Supplementary Materials (Table S2).

3. Results and Discussions

To investigate the combined toxicity of different substances with varying MoAs, cyto-
toxicity assays were performed on fifty complex mixtures. The 25 selected chemicals were
initially tested individually, followed by randomized organization of seven–ten combinations
to determine any interaction effects.

3.1. Cytotoxicity of Single Substances

The observed EC50 and EC10 values for the individual substances are in Table 2, and
the DRCs are provided in Figure S1. When comparing the EC10 values (µM), the substance
with the lowest toxicity was lead chloride (EC10: 380.0 µM; EC50: 917.1 µM), followed by
2,4-DCP (EC10: 328.6 µM; EC50: 682.2 µM). On the other hand, the most toxic substance was
cadmium chloride (EC10: 0.841 µM; EC50: 5.560 µM), followed by sodium selenite (EC10:
4.213 µM; EC50: 84.59 µM). Based on the single substances cytotoxicity results, we partially
excluded the two most toxic substances from the further generation of complex mixture
combinations because they had too limited proportions, which can lead to errors in complex
mixture solution manufacturing. Se, Sb, Co, and Ni were additionally excluded from the
mixture combinations due to the requirement for over 30 min of ultrasonic dispersion and
poor dispersion of the mixed solution, which also can lead to experimental errors.

It is difficult to relate our observations directly to human health effects because our
experimental results are calculated by measuring cell viability based on mitochondrial
activity; however, the in vitro exposure concentrations of chemicals can be compared
with the serum concentrations in human biomonitoring to assess their potential health
effects [28,29]. In the Korean National Environmental Health Survey (KoNEHS) Cycle 3,
lead and mercury were measured in whole blood of adolescents and adults. Blood lead
levels were 0.802 and 1.6 µg/dL for adolescents and adults, respectively. Blood mercury
levels were 1.37 and 2.75 µg/L for adolescents and adults, respectively [30]. On the other
hand, the EC10 of lead (II) chloride was 105.7 mg/L, i.e., 7875 µg/dL as lead, and the EC10
of methylmercury (II) chloride was 2.9 mg/L, i.e., 2316 µg/L as mercury, which were much
higher than the biomonitoring levels. The OPFRs could be compared with data from other
literature, and our EC10 values of OPFRs are much higher levels, i.e., the lowest EC10 of
53.3 µM for TPhP, than the estimated plasma concentrations of OPFRs, i.e., all below 1 µM,
in adult populations worldwide [31].

Although data on mixture toxicity are scarce, HepG2 cytotoxicity assay results have
been reported for many single substances. For bPB, the 24 h IC50 was 643.7 µM [32],
which is comparable to the EC50 of 346.2 µM, considering that we performed the chemical
exposure for 48 h. For cadmium and lead, 24 h IC50s were reported as 159 and 217 µM,
respectively [33], and our observations at 48 h were 5.56 and 917.1 µM. Another publication
reported that 24 h EC50 for cadmium and mercury were 0.43 and 26.23 mg/L, respec-
tively [34], and those at 48 h were 1.02 and 6.95 mg/L in our experiments. In the case of
PFASs, the 24 h IC50s of PFOA, PFNA, and PFHxS were 102.0, 85.4, and 183.2 µM [35],
which were consistent with the trends in relative toxicity in our study. Similarly, the 24 h
TC50s were 374.7, 113.2, and 577.1 µM for PFOA, PFNA, and PFHxS, respectively [36].
There was a slight variation compared to our observation, but this may be due to differ-
ent exposure periods and measurement methods; hence, the other studies used various
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methods, such as MTT, MTS, WST-1, or sulforhodamine B staining methods, to measure
the cell viability.

To date, toxicity data for prediction model development or validation of mixture
toxicity predictive models have been mainly limited to cytotoxicity test results [35–38]. This
could be due to our limited knowledge in predicting toxicity, especially for chronic health
effects and complex biological activity. However, we could generally find that most of
our target substances exhibited disruption of energy metabolism, oxidative stress [33,39],
mitochondrial membrane depolarization, necrosis, or apoptosis [32,34] in HepG2 cell lines.
This indicates that the cytotoxicity of our target compounds and their mixtures may be
related to further biological responses.

Table 2. Observed ECx values of selected 25 single substances and dose–response curve model
information in HepG2 cytotoxicity assays.

No. Abbr. CAS No.
EC50 EC10 Dose–Response Curve Model 1

(µM) (mg/L) (µM) (mg/L) Model α β γ

1 2,4-DCP 120-83-2 682.2 111.2 328.6 53.57 Chapman 100.0 0.003 4.83
2 2,5-DCP 583-78-8 867.8 141.5 305.3 49.77 Chapman 114.7 0.001 2.26
3 pPB 94-13-3 742.4 133.8 269.8 48.62 Logistic 114.4 −2.067 839.1
4 bPB 94-26-8 346.2 67.23 191.7 37.24 Sigmoid 99.22 70.05 345.0
5 BP-3 131-57-7 1166 266.2 227.1 51.84 Logistic 76.13 −1.551 767.9
6 TCS 3380-34-5 19.29 5.590 5.041 1.460 Logistic 102.0 −1.624 19.77
7 Pb 7758-95-4 917.1 255.1 380.0 105.7 Chapman 83.33 0.002 3.901
8 Cu 7758-98-7 60.45 15.09 5.349 1.336 Logistic 107.4 −0.882 70.68
9 Se 10102-18-8 84.59 14.63 4.213 0.729 Gompertz 102.2 68.15 61.69
10 Cd 654054-66-7 5.560 1.020 0.841 0.154 Logistic 99.76 −1.165 5.537
11 Sb 10025-91-9 225.7 51.49 69.33 15.82 Chapman 104.9 0.005 1.932
12 Co 7646-79-9 612.0 79.46 272.7 35.41 Chapman 91.63 0.003 4.234
13 Ni 7718-54-9 372.4 48.27 213.6 27.68 Chapman 85.17 0.008 11.59
14 Zn 7446-20-0 336.9 96.88 243.0 69.88 Chapman 98.29 0.013 50.16
15 Hg 115-09-3 27.68 6.950 11.55 2.900 Logistic 27675 −1.843 851.1
16 PFOA 335-67-1 290.4 120.2 150.4 62.29 Sigmoid 98.52 63.31 288.5
17 PFNA 375-95-1 176.8 82.04 122.6 56.88 Chapman 98.92 0.022 32.37
18 PFHxS 355-46-4 223.4 97.87 117.6 51.54 Chapman 99.10 0.010 6.501
19 TnBP 2 126-73-8 270.5 72.05 167.4 44.58 Sigmoid 98.90 46.72 269.5
20 TPhP 115-86-6 288.0 93.98 53.32 17.40 Logistic 0.961 87.47 −1.385
21 TCPP 13674-84-5 306.6 100.4 175.8 57.59 Chapman 0.937 100.9 0.001
22 EHDPHP 1241-94-7 327.0 118.5 86.71 31.42 Gompertz 0.965 96.56 194.2
23 TBOEP 78-51-3 308.6 123.0 119.9 47.76 Sigmoid 0.995 99.19 85.59
24 TDCIPP 13674-87-8 617.8 266.2 142.2 61.28 Logistic 0.940 971.3 −1.125
25 TEHP 78-42-2 878.4 381.8 265.8 115.5 Gompertz 0.858 493.5 1150

1 All the dataset was applied nonlinear regression method with 3-parameter sigmoidal models (sigmoid, logistic,
Chapman, Weibull, Hill and Gompertz). The final model equations in Table 2 are below: sigmoid: f = a/(1 +
exp(−(x − x0)/b)); logistic: f = if(x <= 0, if(b < 0, 0, a), if(b > 0, a/(1 + abs(x/x0)ˆb), a × abs((x/x0))ˆ(abs(b))/(1
+ (abs(x/x0))ˆ(abs(b))))); Chapman: f = a × (1 − exp(−b × x))ˆc; Gompertz: f = a × exp(−exp(−(x − x0)/b)).
2 Toxicity data for OPFRs are cited from Kim et al. [21].

3.2. Mixture Toxicity and Their Interaction

Information on mixture composition (%) is the most important part for the devel-
opment of a mixture toxicity prediction model, so we presented the randomly selected
mixtures listed in Table 3. The results of mixture toxicity tests are highly dependent on
the chemicals and the composition of each component. In particular, complex mixtures
consist of many different chemicals, which increases the number of combinations that
follow the CA model. Even if a synergistic substance is present, it is difficult to observe
a synergistic effect if the synergist is present at very low levels in the mixture. For this
reason, it has been suggested in the previous literature that it is appropriate to assume
a CA for multicomponent mixtures [26]. All mixtures cover PFAS, heavy metals, and
environmental phenols evenly. Out of fifty mixtures, five mixtures have seven components,
thirty-five mixtures have eight components, nine mixtures have nine components and one
mixture has ten components. Detailed mixture components and their compositions (%) are
presented in Table S1.
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Table 3. The observed EC10 and model deviation ratio (MDR) of complex mixtures consisting of
selected chemicals from the biomonitoring data analysis report in HepG2 cytotoxicity assays.

Mixtures EC10 (µM) MDR Interaction Mixtures EC10 (µM) MDR Interaction

1 208.0 0.86 Additivity 26 348.0 0.53 Additivity
2 175.8 0.61 Additivity 27 296.0 0.96 Additivity
3 194.6 0.83 Additivity 28 338.7 0.54 Additivity
4 175.3 0.82 Additivity 29 267.8 0.58 Additivity
5 175.3 1.09 Additivity 30 160.9 0.50 Additivity
6 112.5 0.94 Additivity 31 164.6 0.61 Additivity
7 161.3 0.83 Additivity 32 216.6 0.58 Additivity
8 244.5 0.56 Additivity 33 272.1 0.52 Additivity
9 331.8 0.56 Additivity 34 157.6 0.53 Additivity
10 223.6 0.53 Additivity 35 430.2 0.45 Antagonism
11 263.4 0.67 Additivity 36 504.7 0.31 Antagonism
12 126.0 0.95 Additivity 37 114.2 1.14 Additivity
13 154.0 0.73 Additivity 38 171.6 0.60 Additivity
14 241.5 0.51 Additivity 39 160.9 0.85 Additivity
15 264.2 0.44 Antagonism 40 209.6 0.55 Additivity
16 205.5 1.18 Additivity 41 232.2 0.66 Additivity
17 240.4 0.79 Additivity 42 215.9 0.48 Antagonism
18 185.4 1.03 Additivity 43 220.1 0.59 Additivity
19 189.6 0.77 Additivity 44 241.0 0.50 Additivity
20 504.5 0.37 Antagonism 45 255.1 0.51 Additivity
21 120.4 1.34 Additivity 46 252.0 0.54 Additivity
22 223.5 0.80 Additivity 47 510.0 0.33 Antagonism
23 190.3 0.99 Additivity 48 181.2 0.63 Additivity
24 292.6 0.58 Additivity 49 264.0 0.53 Additivity
25 222.7 0.71 Additivity 50 345.8 0.57 Additivity

The DRCs were derived and fitted in all target complex mixtures (Table S2). Represen-
tatively, single and complex mixture DRCs were presented for four mixtures referring to the
HBM4EU report (Figure 1). These four mixtures followed additivity and showed 0.86, 0.61,
0.83, and 0.82 of MDRs for Mixture 1, 2, 3, and 4, respectively (Table 3). The lowest EC10
was observed in Mixture 6, consisting of three PFASs and five OPFRs (EC10: 112.47 µM).
The less toxic mixture was Mixture 47, consisting of PFHxS, 2,5-DCP, three OPFRs, and
three heavy metals (EC 10: 509.95 µM).

According to the criteria for interaction effect, i.e., synergism, additivity, and antago-
nism, 88% of the complex mixtures showed no interaction effect. The range of MDRs was
0.31 to 1.34 (Table 3). A recent study has reported that various combinations of PFASs cause
synergism in cytotoxicity assays, but only four or fewer combinations have been tested [35].
Considering this, in the case of the complex mixtures, the individual substances are essentially
present at very low levels, so their toxic effects are bound to be lower. In a study validating the
CA and IA models using in vitro toxicity data, it was reported that there was no interaction
when the mixtures contained components with toxic effects lower than 30% [37]. In our study,
the complex mixtures were designed with only 10% toxicity of each component; therefore, the
additive effect following the CA model is a reasonable result.

Our experimental data showed that the CA model is more appropriate to predict the
mixture toxicity values than the IA model. In a recent study, Escher et al. [37] reported that
the predictions of the full IA model were indistinguishable for predicting the cytotoxicity of
200 mixtures. Overall, evidence in the literature supports the application of concentration
addition as a first, protective approach. It is, therefore, also the default approach to start
from in several international recommendations and frameworks [40]. The previous studies
have consistently demonstrated that the CA model can be considered the dominant model
for toxicity prediction of most of chemicals and their mixtures. Even if there are some
substances that exhibit IA-appropriate behavior or synergistic effects, they are likely to
be diluted and ultimately follow CA, especially in complex mixtures [37]. The previous
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literature also reported some dilemmatic situations, i.e., the observed mixture responses
can be interpreted as antagonism in relation to CA and as synergisms in relation to IA,
simultaneously. If the combined approach of CA and IA models should be used to cover
this limitation, the stepwise modelling approach is still in a developing stage [38]. Our
study aims to provide the mixture toxicity data for developing a CA/IA joint model, which
will be used for the prediction of mixtures having no interaction; therefore, MDRs in our
study were presented based on the CA-predicted values to maintain consistency and our
study aim.
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Only six mixtures have antagonistic effects in Mixtures 15, 20, 35, 36, 42, and 47. These
mixtures have no significant pattern of composition or chemical differences. Considering
that the average MDR of fifty mixtures was 0.68, complex mixtures tend to have an antag-
onistic effect due to their complex composition. In our study, only the simple biological
endpoint of cell viability is measured, so it would be reasonable that the overall ability to
generate cell cytotoxicity could be partially reduced by the simultaneous presence of many
substances in the same mixture solution. Similarly, Caesar and Cech [41] reported that
the mechanism of the antagonistic effect is unknown, but it was assumed that the target
components with minor structural differences compete for the same target, leading to a
reduction in overall efficacy.

Combination effects, including synergy and antagonism, may occur over a wide
range of concentrations. Therefore, it is necessary to test different and various ratios of
the samples [41]. In order to address this, we used an equitoxic mixture design. The
equitoxic mixture design has the advantage of allowing a wide range of compositions
to be tested with less effort compared to the equimolar mixture design [27]. However,
experimental datasets for complex mixtures are still limited, so further validation studies
and experimental datasets to compare observed and predicted toxicity values are needed.
Our study has provided an experimental dataset targeting environmental phenols, heavy
metal compounds, PFAS, and OPFRs. These have been chosen as representative biomon-
itoring examples in the HBM4EU project; however, there are still more chemicals that
are exposed in the environment and consumer products [42–44]. Continuous efforts are
required to generate and update reliable experimental data to account for exposure to
unintentional mixtures.

Reliable and large mixture toxicity assay results are particularly useful in developing
computational prediction models for environment or consumer products management from
unintentional mixtures. Computational approaches are proven alternatives for assessing
the mixtures’ toxicity due to their efficiency and convenience. The quantitative structure–
activity relationship (QSAR) is the most prominent computational approach, and filling
data gaps is an important part of the application of this approach [45]. In line with this
research trend, our research team plans to improve and advance the conventional CA
model and CA/IA joint model development in future studies. The detailed assay results,
composition of mixtures, and DRC information for all single substances are provided to
ensure reliable mixture prediction. For instance, we can find the MixTox package in R
programme (v.1.3.2) case offers a general framework for curve fitting, mixture experimental
design, and mixture toxicity prediction [46]. In the algorithm of the MixTox package, it
is essential to include the exact parameters from the non-linear regression model fitting,
as well as the mole fraction of each component. Providing such refined and curated data
will further facilitate and support the development of computational mixture toxicity
prediction models.

4. Conclusions

In this study, we randomly organized fifty different complex mixtures of major ex-
ogenous chemicals based on human biomonitoring data. The mixtures consisted of six
environmental phenols, nine heavy metal compounds, three PFASs, and seven OPFRs.
The objective was to provide a reliable and large toxicity experimental dataset of complex
mixtures using HepG2 cytotoxicity assays under the same experimental conditions. Most
of the mixtures exhibited additivity, consistent with previous findings on the mixture
toxicity of complex mixtures with low-toxic substances. Although antagonistic effects
were observed in some mixtures, we could not identify significant contributors in our
experiments. Our final experimental data were formatted and added to the database
(https://safety.chemdx.org/mra_db, accessed on 1 February 2024). The database is pub-
licly available worldwide and is, therefore, expected to be used for the development of a
mixture prediction model. For future work, not only the development of a mixture toxic-

https://safety.chemdx.org/mra_db
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ity prediction model but also the low-level chronic effects of mixtures reflecting real-life
exposures can be suggested.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/toxics12020126/s1, Table S1: Fifty kinds of mixture combinations
in this study, Table S2: Dose–response curve model information of target complex mixtures in HepG2
cytotoxicity assays, Figure S1: Dose–response curves of target single substances.
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