Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (149)

Search Parameters:
Keywords = hubble parameter

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1033 KB  
Article
Scalar Field and Quintessence in Late-Time Cosmic Expansion
by Aroonkumar Beesham
Mathematics 2025, 13(24), 3917; https://doi.org/10.3390/math13243917 - 7 Dec 2025
Viewed by 496
Abstract
The persistent Hubble tension—marked by a notable disparity between early- and late-universe determinations of the Hubble constant H0—poses a serious challenge to the standard cosmological framework. Closely linked to this is the H0rd tension, which stems from [...] Read more.
The persistent Hubble tension—marked by a notable disparity between early- and late-universe determinations of the Hubble constant H0—poses a serious challenge to the standard cosmological framework. Closely linked to this is the H0rd tension, which stems from the fact that BAO-based estimates of H0 are intrinsically dependent on the assumed value of the sound horizon at the drag epoch, rd. In this study, we construct a scalar field dark energy model within the framework of a spatially flat Friedmann–Lemaitre–Robertson–Walker model to explore the dynamics of cosmic acceleration. To solve the field equations, we introduce a generalized extension of the standard Lambda Cold Dark Matter model that allows for deviations in the expansion history. Employing advanced Markov Chain Monte Carlo techniques, we constrain the model parameters using a comprehensive combination of observational data, including Baryon Acoustic Oscillations, Cosmic Chronometers, and Standard Candle datasets from Pantheon, Quasars, and Gamma-Ray Bursts (GRBs). Our analysis reveals a transition redshift from deceleration to acceleration at ztr=0.69 and a present-day deceleration parameter value of q0=0.64. The model supports a dynamical scalar field interpretation, with an equation of state parameter satisfying 1<ω0ϕ<0, consistent with quintessence behavior, and signaling a deviation from the Λ. While the model aligns closely with the Lambda Cold Dark Matter scenario at lower redshifts (z0.65), notable departures emerge at higher redshifts (z0.65), offering a potential window into modified early-time cosmology. Furthermore, the evolution of key cosmographic quantities such as energy density ρϕ, pressure pϕ, and the scalar field equation of state highlights the robustness of scalar field frameworks in describing dark energy phenomenology. Importantly, our results indicate a slightly higher value of the Hubble constant H0 for specific data combinations, suggesting that the model may provide a partial resolution of the current H0 tension. Full article
Show Figures

Figure 1

17 pages, 754 KB  
Article
Non-Linear f(Q,T) Gravity and the Late-Time Acceleration of the Universe
by Alnadhief H. A. Alfedeel
Universe 2025, 11(12), 382; https://doi.org/10.3390/universe11120382 - 21 Nov 2025
Viewed by 324
Abstract
This study examines cosmic acceleration in the framework of f(Q,T) gravity and compares it to the standard ΛCDM model. It considers a generalized nonlinear form of the nonmetricity, expressed as [...] Read more.
This study examines cosmic acceleration in the framework of f(Q,T) gravity and compares it to the standard ΛCDM model. It considers a generalized nonlinear form of the nonmetricity, expressed as f(Q,T)=Q+α0Q2/H02+β0T+η0, where α0,β0, and η0 are constants, and H0 is the current value of the Hubble constant. In the solution process, we did not rely on any additional conditions to solve the field equations; instead, the field equations were reduced to a time-dependent closed system of nonlinear first-order coupled differential equations for H and ρ. Subsequently, these differential equations were converted to the redshift space for numerical integration alongside the Runge–Kutta method. Furthermore, the study demonstrates that the deceleration parameter q changes sign from being positive in an early period of time at high redshift values to a negative value, passing through a transitional redshift zt[0.766,0.769,0.771] and zt[0.521,0.770,1.010], reaching their current values at q0=[0.61,0.60,0.59] and [0.455,0.595,0.694] for different values of β0 and α0, respectively. Similarly, the effective equation of state weff shifted from the matter-dominated phase weff=0 at high redshift to a quintessence-like behavior at low redshift. Moreover, a super-accelerated or phantom-like regime with q01.59 and weff,01.40 was obtained when α0=0.55 and β0=0.60 were employed. The model analysis reveals that the universe is presently experiencing an accelerating expansion phase, propelled by a quintessence-type and phantom-like dark energy component, as corroborated by the Om(z) diagnostic test. The results obtained were strongly consistent with the concordance ΛCDM model. Full article
(This article belongs to the Special Issue Astrophysics and Cosmology at High Z)
Show Figures

Figure 1

15 pages, 434 KB  
Review
Constraints on the Hubble and Matter Density Parameters with and Without Modelling the CMB Anisotropies
by Indranil Banik and Nick Samaras
Astronomy 2025, 4(4), 24; https://doi.org/10.3390/astronomy4040024 - 19 Nov 2025
Viewed by 1187
Abstract
We consider constraints on the Hubble parameter H0 and the matter density parameter ΩM from the following: (i) the age of the Universe based on old stars and stellar populations in the Galactic disc and halo; (ii) the turnover scale in [...] Read more.
We consider constraints on the Hubble parameter H0 and the matter density parameter ΩM from the following: (i) the age of the Universe based on old stars and stellar populations in the Galactic disc and halo; (ii) the turnover scale in the matter power spectrum, which tells us the cosmological horizon at the epoch of matter-radiation equality; and (iii) the shape of the expansion history from supernovae (SNe) and baryon acoustic oscillations (BAOs) with no absolute calibration of either, a technique known as uncalibrated cosmic standards (UCS). A narrow region is consistent with all three constraints just outside their 1σ uncertainties. Although this region is defined by techniques unrelated to the physics of recombination and the sound horizon then, the standard Planck fit to the CMB anisotropies falls precisely in this region. This concordance argues against early-time explanations for the anomalously high local estimate of H0 (the ‘Hubble tension’), which can only be reconciled with the age constraint at an implausibly low ΩM. We suggest instead that outflow from the local KBC supervoid inflates redshifts in the nearby universe and, thus, the apparent local H0. Given the difficulties with solutions in the early universe, we argue that the most promising alternative to a local void is a modification to the expansion history at late times, perhaps due to a changing dark energy density. Full article
(This article belongs to the Special Issue Current Trends in Cosmology)
Show Figures

Figure 1

14 pages, 412 KB  
Article
Data-Driven Reconstruction of f (R, T) Gravity Using Genetic Algorithms
by Redouane El Ouardi, Dalale Mhamdi, Amine Bouali and Taoufik Ouali
Universe 2025, 11(11), 362; https://doi.org/10.3390/universe11110362 - 31 Oct 2025
Viewed by 437
Abstract
We investigate f (R, T) gravity, where R is the Ricci scalar and T the trace of the energy–momentum tensor, focusing on the subclass defined by [...] Read more.
We investigate f (R, T) gravity, where R is the Ricci scalar and T the trace of the energy–momentum tensor, focusing on the subclass defined by f (R, T) = R + 2f (T). Instead of assuming a parametric form, we adopt a non-parametric reconstruction based on genetic algorithms (GA), a machine learning technique that does not rely on predefined models. Using Hubble parameter measurements from cosmic chronometers, baryon acoustic oscillations, and the Dark Energy Spectroscopic Instrument (DESI) data, we reconstruct H(z) in a model-independent way. This reconstruction allows us to derive both numerical and analytical forms of f (T) through the modified Friedmann equations. The analytic expression derived via GA provides an excellent fit to the numerical reconstruction. Furthermore, we compare the evolution of the Hubble parameter predicted by our model with that of the standard ΛCDM scenario (Planck), finding a good agreement for z  2. These results highlight the robustness of GA-based reconstructions and suggest that the functional form of f (R, T) obtained here may serve as a promising tool for further applications in cosmology and astrophysics. Full article
(This article belongs to the Section Cosmology)
Show Figures

Figure 1

15 pages, 1215 KB  
Communication
Agegraphic Dark Energy from Entropy of the Anti-de Sitter Black Hole
by Qihong Huang, Yang Liu and He Huang
Universe 2025, 11(10), 336; https://doi.org/10.3390/universe11100336 - 10 Oct 2025
Viewed by 599
Abstract
In this paper, we analyze the agegraphic dark energy from the entropy of the anti-de Sitter black hole using the age of the universe as the IR cutoff. We constrain its parameter with the Pantheon+ Type Ia supernova sample and observational Hubble parameter [...] Read more.
In this paper, we analyze the agegraphic dark energy from the entropy of the anti-de Sitter black hole using the age of the universe as the IR cutoff. We constrain its parameter with the Pantheon+ Type Ia supernova sample and observational Hubble parameter data, finding that the Akaike Information Criterion cannot effectively distinguish this model from the standard ΛCDM model. The present value of Hubble constant H0 and the model parameter b2 are constrained to H0=67.7±1.8 and b2=0.3030.024+0.019. This model realizes the whole evolution of the universe, including the late-time accelerated expansion. Although it asymptotically approaches the standard ΛCDM model in the future, statefinder analysis shows that late-time deviations allow the two models to be distinguished. Full article
(This article belongs to the Special Issue Modified Gravity and Dark Energy Theories)
Show Figures

Figure 1

34 pages, 4140 KB  
Review
GW170817: A Short Review of the First Multimessenger Event in Gravitational Astronomy
by Rosa Poggiani
Galaxies 2025, 13(5), 112; https://doi.org/10.3390/galaxies13050112 - 19 Sep 2025
Cited by 1 | Viewed by 6606
Abstract
The first detection of gravitational waves from the binary black merger GW150914 started the era of gravitational astronomy. The observation of the binary neutron star merger GW170817 and of its associated electromagnetic counterpart GRB 170817A started multi-messenger gravitational astronomy. This short review discusses [...] Read more.
The first detection of gravitational waves from the binary black merger GW150914 started the era of gravitational astronomy. The observation of the binary neutron star merger GW170817 and of its associated electromagnetic counterpart GRB 170817A started multi-messenger gravitational astronomy. This short review discusses the discovery of GW170817 and the follow-up of the electromagnetic counterpart, together with the broad range of results in astrophysics and fundamental physics, including the Gamma-Ray Burst field. The GW170817/GRB 170817A observation showed that binary neutron star mergers can explain at least a fraction of short Gamma-Ray Bursts. The optical and infrared evolution of the associated AT 2017gfo transient showed that binary neutron star mergers are sites of r-process nucleo-synthesis. The combination of gravitational and electromagnetic observations has been used to estimate the Hubble parameter, the speed of gravitational waves, and the equation of state of nuclear matter. The increasing sensitivity of interferometric detectors and the forthcoming operation of third generation detectors will lead to an improved statistics of binary neutron star mergers. Full article
Show Figures

Figure 1

24 pages, 1135 KB  
Article
Birth of an Isotropic and Homogeneous Universe with a Running Cosmological Constant
by A. Oliveira Castro Júnior, A. Corrêa Diniz, G. Oliveira-Neto and G. A. Monerat
Universe 2025, 11(9), 310; https://doi.org/10.3390/universe11090310 - 11 Sep 2025
Viewed by 618
Abstract
The present work discusses the birth of the Universe via quantum tunneling through a potential barrier, based on quantum cosmology, taking a running cosmological constant into account. We consider the Friedmann–Lemaître–Robertson–Walker (FLRW) metric with positively curved spatial sections (k=1) [...] Read more.
The present work discusses the birth of the Universe via quantum tunneling through a potential barrier, based on quantum cosmology, taking a running cosmological constant into account. We consider the Friedmann–Lemaître–Robertson–Walker (FLRW) metric with positively curved spatial sections (k=1) and the matter’s content is a dust perfect fluid. The model was quantized by the Dirac formalism, leading to a Wheeler–DeWitt equation. We solve that equation both numerically and using a WKB approximation. We study the behavior of tunneling probabilities TPWKB and TPint by varying the energy E of the dust perfect fluid, the phenomenological parameter ν, the present value of the Hubble function H0, and the constant energy density ρΛ0, with the last three parameters all being associated with the running cosmological constant. We observe that both tunneling probabilities, TPWKB and TPint, decrease as one increases ν. We also note that TPWKB and TPint grow as E increases, indicating that the Universe is more likely to be born with higher dust energy E values. The same is observed for the parameter ρΛ0, that is, TPWKB and TPint are larger for higher values of ρΛ0. Finally, the tunneling probabilities decrease as one increases the value of H0. Therefore, the best conditions for the Universe to be born, in the present model, would be to have the highest possible values for E and Λ and the lowest possible values for ν and H0. Full article
(This article belongs to the Section Cosmology)
Show Figures

Figure 1

19 pages, 1748 KB  
Article
On the True Significance of the Hubble Tension: A Bayesian Error Decomposition Accounting for Information Loss
by Nathalia M. N. da Rocha, Andre L. B. Ribeiro and Francisco B. S. Oliveira
Universe 2025, 11(9), 303; https://doi.org/10.3390/universe11090303 - 6 Sep 2025
Viewed by 680
Abstract
The Hubble tension, a persistent discrepancy between early and late Universe measurements of H0, poses a significant challenge to the standard cosmological model. In this work, we present a new Bayesian hierarchical framework designed to meticulously decompose this observed tension into [...] Read more.
The Hubble tension, a persistent discrepancy between early and late Universe measurements of H0, poses a significant challenge to the standard cosmological model. In this work, we present a new Bayesian hierarchical framework designed to meticulously decompose this observed tension into its constituent parts: standard measurement errors, information loss arising from parameter-space projection, and genuine physical tension. Our approach, employing Fisher matrix analysis with MCMC-estimated loss coefficients and explicitly modeling information loss via variance inflation factors (λ), is particularly important in high-precision analysis where even seemingly small information losses can impact conclusions. We find that the real tension component (Treal) has a mean value of 5.94 km/s/Mpc (95% CI: [3.32, 8.64] km/s/Mpc). Quantitatively, approximately 78% of the observed tension variance is attributed to real tension, 13% to measurement error, and 9% to information loss. Despite this, our decomposition indicates that the observed ∼6.39σ discrepancy is predominantly a real physical phenomenon, with real tension contributing ∼5.64σ. Our findings strongly suggest that the Hubble tension is robust and probably points toward new physics beyond the ΛCDM model. Full article
Show Figures

Figure 1

13 pages, 452 KB  
Article
Two Dynamical Scenarios for Binned Master Sample Interpretation
by Giovanni Montani, Elisa Fazzari, Nakia Carlevaro and Maria Giovanna Dainotti
Entropy 2025, 27(9), 895; https://doi.org/10.3390/e27090895 - 24 Aug 2025
Cited by 3 | Viewed by 943
Abstract
We analyze two different scenarios for the late universe dynamics, resulting in Hubble parameters deviating from the ΛCDM, mainly for the presence of an additional free parameter, which is the dark energy parameter. The first model consists of a pure evolutionary dark [...] Read more.
We analyze two different scenarios for the late universe dynamics, resulting in Hubble parameters deviating from the ΛCDM, mainly for the presence of an additional free parameter, which is the dark energy parameter. The first model consists of a pure evolutionary dark energy paradigm as a result of its creation by the gravitational field of the expanding universe. The second model also considers an interaction of the evolutionary dark energy with the matter component, postulated via the conservation of the sum of their ideal energy–momentum tensors. These two models are then compared via the diagnostic tool of the effective running Hubble constant, with the binned data of the so-called “Master sample” for the Type Ia Supernovae. The comparison procedures, based on a standard MCMC analysis, lead to a clear preference of data for the dark energy–matter interaction model, which is associated with a phantom matter equation of state parameter (very close to −1) when, being left free by data (it has a flat posterior), it is fixed in order to reproduce the decreasing power-law behavior of the effective running Hubble constant, already discussed in the literature. Full article
Show Figures

Figure 1

20 pages, 594 KB  
Article
Phantom Dark Energy Behavior in Weyl Type f(Q,T) Gravity Models with Observational Constraints
by Anirudh Pradhan, Mohammad Zeyauddin, Archana Dixit and Kamal Ghaderi
Universe 2025, 11(8), 279; https://doi.org/10.3390/universe11080279 - 20 Aug 2025
Viewed by 618
Abstract
This study explores the behavior of phantom dark energy within the framework of Weyl-type f(Q,T) gravity, considering a spatially flat FLRW universe under observational constraints. The field equations are analytically solved for a dust-like fluid source. To determine [...] Read more.
This study explores the behavior of phantom dark energy within the framework of Weyl-type f(Q,T) gravity, considering a spatially flat FLRW universe under observational constraints. The field equations are analytically solved for a dust-like fluid source. To determine the present values of the model parameters, we utilize observational data from the Hubble parameter measurements via cosmic chronometers (CC) and the apparent magnitude data from the Pantheon compilation of Type Ia supernovae (SNe Ia). With these obtained parameter values, we analyze the model’s physical characteristics by evaluating the effective and dark energy equation of state parameters ωeff and ωde, the deceleration parameter q(z), and energy conditions. Additionally, we conduct the Om diagnostic test for the model. We estimate the transition redshift zt0.5342, 0.6334 and the present age of the universe t0=13.46, 13.49 Gyrs with H0=67.4±3.6, 68.8±1.9 Km/s/Mpc, Ωm0=0.410.24+0.13, 0.2990.077+0.042, and ωeff=0.6447,0.696, ωde=1.0347,1.0284. We find a transit phase accelerating and physically acceptable phantom dark energy model of the universe. Full article
Show Figures

Figure 1

15 pages, 542 KB  
Article
The Effects of the Gravitational Coupling Variation on the Local H0 Estimation
by Antonio Enea Romano
Universe 2025, 11(8), 278; https://doi.org/10.3390/universe11080278 - 19 Aug 2025
Cited by 2 | Viewed by 632
Abstract
We study the effects of the time evolution of the matter-gravity coupling on the luminosity distance, showing it can provide a natural explanation to the apparent Hubble tension. The gravitational coupling evolution induces a modification of the Friedman equation with respect to the [...] Read more.
We study the effects of the time evolution of the matter-gravity coupling on the luminosity distance, showing it can provide a natural explanation to the apparent Hubble tension. The gravitational coupling evolution induces a modification of the Friedman equation with respect to the ΛCDM model, which we study in both the Einstein and Jordan frame. We consider a phenomenological parametrization of the low redshift variation of the coupling in a narrow redshift shell, showing how it can affect the distance of the anchors used to calibrate supernovae (SNe), while higher redshift background observations are not affected. This effect is purely geometrical, and it is not related to any change of the intrinsic SNe physical properties. The effects of a time varying gravity coupling only manifest on sufficiently long time scales, such as in cosmological observations at different redshifts, and if ignored lead to apparent tensions in the values of cosmological parameters estimated with observations from different epochs of the Universe history. Full article
Show Figures

Figure 1

18 pages, 1438 KB  
Article
Maximum Entropy Estimates of Hubble Constant from Planck Measurements
by David P. Knobles and Mark F. Westling
Entropy 2025, 27(7), 760; https://doi.org/10.3390/e27070760 - 16 Jul 2025
Viewed by 4678
Abstract
A maximum entropy (ME) methodology was used to infer the Hubble constant from the temperature anisotropies in cosmic microwave background (CMB) measurements, as measured by the Planck satellite. A simple cosmological model provided physical insight and afforded robust statistical sampling of a parameter [...] Read more.
A maximum entropy (ME) methodology was used to infer the Hubble constant from the temperature anisotropies in cosmic microwave background (CMB) measurements, as measured by the Planck satellite. A simple cosmological model provided physical insight and afforded robust statistical sampling of a parameter space. The parameter space included the spectral tilt and amplitude of adiabatic density fluctuations of the early universe and the present-day ratios of dark energy, matter, and baryonic matter density. A statistical temperature was estimated by applying the equipartition theorem, which uniquely specifies a posterior probability distribution. The ME analysis inferred the mean value of the Hubble constant to be about 67 km/sec/Mpc with a conservative standard deviation of approximately 4.4 km/sec/Mpc. Unlike standard Bayesian analyses that incorporate specific noise models, the ME approach treats the model error generically, thereby producing broader, but less assumption-dependent, uncertainty bounds. The inferred ME value lies within 1σ of both early-universe estimates (Planck, Dark Energy Signal Instrument (DESI)) and late-universe measurements (e.g., the Chicago Carnegie Hubble Program (CCHP)) using redshift data collected from the James Webb Space Telescope (JWST). Thus, the ME analysis does not appear to support the existence of the Hubble tension. Full article
(This article belongs to the Special Issue Insight into Entropy)
Show Figures

Figure 1

46 pages, 921 KB  
Article
Fractional Time-Delayed Differential Equations: Applications in Cosmological Studies
by Bayron Micolta-Riascos, Byron Droguett, Gisel Mattar Marriaga, Genly Leon, Andronikos Paliathanasis, Luis del Campo and Yoelsy Leyva
Fractal Fract. 2025, 9(5), 318; https://doi.org/10.3390/fractalfract9050318 - 16 May 2025
Cited by 2 | Viewed by 2000
Abstract
Fractional differential equations model processes with memory effects, providing a realistic perspective on complex systems. We examine time-delayed differential equations, discussing first-order and fractional Caputo time-delayed differential equations. We derive their characteristic equations and solve them using the Laplace transform. We derive a [...] Read more.
Fractional differential equations model processes with memory effects, providing a realistic perspective on complex systems. We examine time-delayed differential equations, discussing first-order and fractional Caputo time-delayed differential equations. We derive their characteristic equations and solve them using the Laplace transform. We derive a modified evolution equation for the Hubble parameter incorporating a viscosity term modeled as a function of the delayed Hubble parameter within Eckart’s theory. We extend this equation using the last-step method of fractional calculus, resulting in Caputo’s time-delayed fractional differential equation. This equation accounts for the finite response times of cosmic fluids, resulting in a comprehensive model of the Universe’s behavior. We then solve this equation analytically. Due to the complexity of the analytical solution, we also provide a numerical representation. Our solution reaches the de Sitter equilibrium point. Additionally, we present some generalizations. Full article
Show Figures

Figure 1

14 pages, 537 KB  
Article
Gravitational Waves as a Probe to the Early Universe
by I-Tai Ho, Wolung Lee and Chun-Hsien Wu
Universe 2025, 11(5), 145; https://doi.org/10.3390/universe11050145 - 1 May 2025
Viewed by 756
Abstract
We investigate primordial gravitational waves produced in the early universe within the Running Vacuum Model, which ensures a smooth transition from a primeval inflationary epoch to a radiation-dominant era, ultimately following the standard Hot Big Bang trajectory. In contrast to traditional methods, we [...] Read more.
We investigate primordial gravitational waves produced in the early universe within the Running Vacuum Model, which ensures a smooth transition from a primeval inflationary epoch to a radiation-dominant era, ultimately following the standard Hot Big Bang trajectory. In contrast to traditional methods, we approach the gravitational wave equation by reformulating it as an inhomogeneous equation and addressing it as a back-reaction problem. The effective potential, known as the Grishchuk potential, which drives cosmic expansion, is crucial in damping the amplitude of gravitational waves. Our findings indicate that this potential is contingent upon the maximum value of the reduced Hubble parameter, Hmax, which is sensitive to the time at which there is a transition from vacuum energy dominance to radiation dominance. By varying Hmax, we explore its influence on the scale factor and effective potential, revealing its connection to the spectrum of gravitational wave amplitudes that can be constrained by observational data. Full article
Show Figures

Figure 1

20 pages, 1318 KB  
Article
The Galactic Pizza: Flat Rotation Curves in the Context of Cosmological Time-Energy Coupling
by Artur Novais and André L. B. Ribeiro
Galaxies 2025, 13(3), 51; https://doi.org/10.3390/galaxies13030051 - 27 Apr 2025
Viewed by 6109
Abstract
The phenomenon of augmented gravity on the scale of galaxies, conventionally attributed to dark matter halos, is shown to possibly result from the incremental growth of galactic masses and radii over time. This approach elucidates the cosmological origins of the acceleration scale [...] Read more.
The phenomenon of augmented gravity on the scale of galaxies, conventionally attributed to dark matter halos, is shown to possibly result from the incremental growth of galactic masses and radii over time. This approach elucidates the cosmological origins of the acceleration scale a0cH0/2π1010 ms−2 at which galaxy rotation curves deviate from Keplerian behavior, with no need for new particles or modifications to the laws of gravity, i.e., it constitutes a new explanatory path beyond Cold Dark Matter (CDM) and Modified Newtonian Dynamics (MOND). Once one formally equates the energy density of the universe to the critical value (ρ=ρc) and the cosmic age to the reciprocal of the Hubble parameter (t=H1), independently of the epoch of observation, the result is the Zero-Energy condition for the cosmic fluid’s equation of state, with key repercussions for the study of dark energy since the observables can be explained in the absence of a cosmological constant. Furthermore, this mass-energy evolution framework is able to reconcile the success of CDM models in describing structure assembly at z6 with the unexpected discovery of massive objects at z10. Models that feature a strong coupling between cosmic time and energy are favored by this analysis. Full article
(This article belongs to the Special Issue Alternative Interpretations of Observed Galactic Behaviors)
Show Figures

Figure 1

Back to TopTop