Data-Driven Reconstruction of f (R, T) Gravity Using Genetic Algorithms
Abstract
1. Introduction
2. Gravity
3. Analysis and Results
3.1. Genetic Algorithms
3.2. Reconstruction of Hubble Data
3.3. Numerical and Analytical Reconstruction of Gravity
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Riess, A.G. et al. [Supernova Search Team Collaboration]. Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 1998, 116, 1009. [Google Scholar] [CrossRef]
- Perlmutter, S. et al. [Supernova Cosmology Project Collaboration]. Measurements of Ω and Λ from 42 High Redshift Supernovae. Astrophys. J. 1999, 517, 565. [Google Scholar] [CrossRef]
- Riess, A.G. et al. [Supernova Search Team collaboration]. Type Ia supernova discoveries at z > 1 from the Hubble Space Telescope: Evidence for past deceleration and constraints on dark energy evolution. Astrophys. J. 2004, 607, 665. [Google Scholar] [CrossRef]
- Bennett, C.L. et al. [WMAP Collaboration]. First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Preliminary maps and basic results. Astrophys. J. Suppl. 2003, 148, 1. [Google Scholar] [CrossRef]
- Spergel, D.N. et al. [WMAP Collaboration]. First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Determination of cosmological parameters. Astrophys. J. Suppl. 2003, 148, 175. [Google Scholar] [CrossRef]
- Spergel, D.N. et al. [WMAP Collaboration]. Wilkinson Microwave Anisotropy Probe (WMAP) three year results: Implications for cosmology. Astrophys. J. Suppl. 2007, 170, 377. [Google Scholar] [CrossRef]
- Hawkins, E.; Maddox, S.; Cole, S.; Madgwick, D.; Norberg, P.; Peacock, J.; Baldry, I.; Baugh, C.; Bland-Hawthorn, J.; Bridges, T.; et al. The 2dF Galaxy Redshift Survey: Correlation functions, peculiar velocities and the matter density of the universe. Mon. Not. R. Astron. Soc. 2003, 346, 78. [Google Scholar] [CrossRef]
- Tegmark, M. et al. [SDSS Collaboration]. Cosmological parameters from SDSS and WMAP. Phys. Rev. D 2004, 69, 103501. [Google Scholar] [CrossRef]
- Cole, S. et al. [2dFGRS Collaboration]. The 2dF Galaxy Redshift Survey: Power-spectrum analysis of the final dataset and cosmological implications. Mon. Not. R. Astron. Soc. 2005, 362, 505. [Google Scholar] [CrossRef]
- Eisenstein, D.J. et al. [SDSS Collaboration]. Detection of the Baryon Acoustic Peak in the Large-Scale Correlation Function of SDSS Luminous Red Galaxies. Astrophys. J. 2005, 633, 560. [Google Scholar] [CrossRef]
- Karim, M.A. et al. [DESI Collaboration]. DESI DR2 results. II. Measurements of baryon acoustic oscillations and cosmological constraints. Phys. Rev. D 2025, 112, 083515. [Google Scholar] [CrossRef]
- Jimenez, R.; Thejll, P.; Jørgensen, U.G.; MacDonald, J.; Pagel, B. Ages of globular clusters: A new approach. Mon. Not. R. Astron. Soc. 1996, 282, 926. [Google Scholar] [CrossRef]
- Bolte, M.; Hogan, C.J. Conflict over the age of the Universe. Nature 1995, 376, 399. [Google Scholar] [CrossRef]
- Copeland, E.J.; Sami, M.; Tsujikawa, S. Dynamics of dark energy. Int. J. Mod. Phys. D 2006, 15, 1753. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D. Introduction to modified gravity and gravitational alternative for dark energy. Int. J. Geom. Meth. Mod. Phys. 2007, 4, 115. [Google Scholar] [CrossRef]
- Tsujikawa, S. Modified gravity models of dark energy. Lect. Notes Phys. 2010, 800, 99. [Google Scholar]
- Aghanim, N. et al. [Planck Collaboration]. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 2020, 641, A6. [Google Scholar] [CrossRef]
- Valentino, E.D., et al. [CosmoVerse Network]. The CosmoVerse White Paper: Addressing observational tensions in cosmology with systematics and fundamental physics. Phys. Dark Univ. 2025, 49, 101965. [Google Scholar] [CrossRef]
- Capozziello, S.; Lambiase, G. Higher-order corrections to the effective gravitational action from Noether symmetry approach. Gen. Relat. Grav. 2000, 32, 295. [Google Scholar] [CrossRef]
- Capozziello, S.; Nesseris, S.; Perivolaropoulos, L. Reconstruction of the Scalar-Tensor Lagrangian from a LCDM Background and Noether Symmetry. J. Cosmol. Astropart. Phys. 2007, 2007, 009. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D. Modified gravity and its reconstruction from the universe expansion history. J. Phys. Conf. Ser. 2007, 66, 012005. [Google Scholar] [CrossRef]
- Cognola, G.; Elizalde, E.; Nojiri, S.; Odintsov, S.D.; Sebastiani, L.; Zerbini, S. A Class of viable modified f(R) gravities describing inflation and the onset of accelerated expansion. Phys. Rev. D 2008, 77, 046009. [Google Scholar] [CrossRef]
- Capozziello, S.; Piedipalumbo, E.; Rubano, E.; Scudellaro, P. Noether symmetry approach in phantom quintessence cosmology. Phys. Rev. D 2009, 80, 104030. [Google Scholar] [CrossRef]
- Capozziello, S.; Martin-Moruno, P.; Rubano, C. Exact f (R)-cosmological model coming from the request of the existence of a Noether symmetry. AIP Conf. Proc. 2009, 1122, 213. [Google Scholar]
- De Felice, A.; Tsujikawa, S. f (R) theories. Living Rev. Relativ. 2010, 13, 3. [Google Scholar] [CrossRef]
- Elizalde, E.; Nojiri, S.; Odintsov, S.D.; Sebastiani, L.; Zerbini, S. Non-singular exponential gravity: A simple theory for early- and late-time accelerated expansion. Phys. Rev. D 2011, 83, 086006. [Google Scholar] [CrossRef]
- Jamil, M.; Mahomed, F.M.; Momeni, D. Noether symmetry approach in f (R)–tachyon model. Phys. Lett. B 2011, 702, 315. [Google Scholar] [CrossRef]
- Starobinsky, A.A. Disappearing cosmological constant in f (R) gravity. J. Exp. Theor. Phys. Lett. 2007, 86, 157. [Google Scholar] [CrossRef]
- Bamba, K.; Nojiri, S.; Odintsov, S.D. The Universe future in modified gravity theories: Approaching the finite-time future singularity. J. Cosmol. Astropart. Phys. 2008, 2008, 045. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D. Unified cosmic history in modified gravity: From F(R) theory to Lorentz non-invariant models. Phys. Rep. 2011, 505, 59. [Google Scholar] [CrossRef]
- Bamba, K.; Capozziello, S.; Nojiri, S.; Odintsov, S.D. Dark energy cosmology: The equivalent description via different theoretical models and cosmography tests. Astrophys. Space Sci. 2012, 342, 155. [Google Scholar] [CrossRef]
- Ladghami, Y.; Asfour, B.; Bouali, A.; Errahmani, A.; Ouali, T. 4D-EGB black holes in RPS thermodynamics. Phys. Dark Univ. 2023, 41, 101261. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D.; Sami, M. Dark energy cosmology from higher-order, string-inspired gravity and its reconstruction. Phys. Rev. D 2006, 74, 046004. [Google Scholar] [CrossRef]
- Ouardi, R.E.; Bouali, A.; Bojaddaini, I.E.; Errahmani, A.; Ouali, T. Model-Independent Reconstruction of f (T) Gravity Using Genetic Algorithms. Chin. Phys. C 2025, 49, 115106. [Google Scholar] [CrossRef]
- Ferraro, R.; Fiorini, F. Modified teleparallel gravity: Inflation without an inflaton. Phys. Rev. D 2007, 75, 084031. [Google Scholar] [CrossRef]
- Koussour, M.; Dahmani, S.; Bennai, M.; Ouali, T. Cosmic jerk parameter in symmetric teleparallel cosmology. Eur. Phys. J. Plus 2023, 138, 179. [Google Scholar] [CrossRef]
- Mhamdi, D.; Bouali, A.; Dahmani, S.; Errahmani, A.; Ouali, T. Cosmological constraints on f (Q) gravity with redshift space distortion data. Eur. Phys. J. C 2024, 84, 310. [Google Scholar] [CrossRef]
- Enkhili, O.; Dahmani, S.; Mhamdi, D.; Ouali, T.; Errahmani, A. Cosmological constraints on a dynamical dark energy model in F(Q) gravity. Eur. Phys. J. C 2024, 84, 806. [Google Scholar] [CrossRef]
- Mhamdi, D.; Bargach, F.; Dahmani, S.; Bouali, A.; Ouali, T. Constraints on power law and exponential models in f (Q) gravity. Phys. Lett. B 2024, 859, 139113. [Google Scholar] [CrossRef]
- Heisenberg, L. Review on f (Q) gravity. Phys. Rept. 2024, 1066, 1–78. [Google Scholar] [CrossRef]
- Ouardi, R.E.; Bouali, A.; Dahmani, S.; Errahmani, A.; Ouali, T. Exploring f (Q) gravity through model-independent reconstruction with genetic algorithms. Phys. Lett. B 2025, 863, 139374. [Google Scholar] [CrossRef]
- Bertolami, O.; Boehmer, C.G.; Harko, T.; Lobo, F.S.N. Extra force in f (R) modified theories of gravity. Phys. Rev. D 2007, 75, 104016. [Google Scholar] [CrossRef]
- Harko, T. Modified gravity with arbitrary coupling between matter and geometry. Phys. Lett. B 2008, 669, 376. [Google Scholar] [CrossRef]
- Harko, T.; Lobo, F.S.N. f (R,Lm) gravity. Eur. Phys. J. C 2010, 70, 373. [Google Scholar] [CrossRef]
- Harko, T.; Lobo, F.S.N.; Nojiri, S.; Odintsov, S.D. f (R, T) gravity. Phys. Rev. D 2011, 84, 024020. [Google Scholar] [CrossRef]
- Harko, T. Thermodynamic interpretation of the generalized gravity models with geometry-matter coupling. Phys. Rev. D 2014, 90, 044067. [Google Scholar] [CrossRef]
- Baffou, E.H.; Houndjo, M.J.S.; Rodrigues, M.E.; Kpadonou, A.V.; Tossa, J. Cosmological evolution in f (R, T) theory with collisional matter. Phys. Rev. D 2015, 92, 084043. [Google Scholar] [CrossRef]
- Moraes, P.H.R.S.; Arbanil, J.D.V.; Malheiro, M. Stellar equilibrium configurations of compact stars in f (R, T) theory of gravity. J. Cosmol. Astropart. Phys. 2016, 2016, 005. [Google Scholar] [CrossRef]
- Yousaf, Z.; Bamba, K.; Zaeem-ul-Haq Bhatti, M. Causes of irregular energy density in f (R, T) gravity. Phys. Rev. D 2016, 93, 124048. [Google Scholar] [CrossRef]
- Alves, M.E.S.; Moraes, P.H.R.S.; de Araujo, J.C.N.; Malheiro, M. Gravitational waves in f (R, T) and f (R, Tϕ) theories of gravity. Phys. Rev. D 2016, 94, 024032. [Google Scholar] [CrossRef]
- Zubair, M.; Azmat, H.; Noureen, I. Dynamical analysis of cylindrically symmetric anisotropic sources in f (R, T) gravity. Eur. Phys. J. C 2017, 77, 169. [Google Scholar] [CrossRef]
- Sharif, M.; Nawazish, I. Cosmological analysis of scalar field models in f (R, T) gravity. Eur. Phys. J. C 2017, 77, 198. [Google Scholar] [CrossRef]
- Moraes, P.H.R.S.; Sahoo, P.K. Modeling wormholes in f (R, T) gravity. Phys. Rev. D 2017, 96, 044038. [Google Scholar] [CrossRef]
- Bouali, A.; Chaudhary, H.; Harko, T.; Lobo, F.S.N.; Ouali, T.; Pinto, M.A.S. Observational constraints and cosmological implications of scalar–tensor f (R, T) gravity. Mon. Not. R. Astron. Soc. 2023, 526, 4192–4208. [Google Scholar] [CrossRef]
- Errahmani, A.; Bouali, A.; Dahmani, S.; Bojaddaini, I.E.; Ouali, T. Constraining dark energy equations of state in F(R, T) gravity. Phys. Dark Univ. 2024, 45, 101512. [Google Scholar] [CrossRef]
- Shabani, H.; Farhoudi, M. Cosmological and solar system consequences of f (R, T) gravity models. Phys. Rev. D 2014, 90, 044031. [Google Scholar] [CrossRef]
- Zaregonbadi, R.; Farhoudi, M.; Riazi, N. Dark matter from f (R, T) gravity. Phys. Rev. D 2016, 94, 084052. [Google Scholar] [CrossRef]
- Baffou, E.H.; Houndjo, M.J.S.; Rodrigues, M.E.; Kpadonou, A.V.; Tossa, J. Geodesic deviation equation in f (R, T) gravity. Chin. J. Phys. 2017, 55, 467–477. [Google Scholar] [CrossRef]
- Alhamzawi, A.; Alhamzawi, R. Gravitational lensing by f (R, T) gravity. Int. J. Mod. Phys. D 2016, 25, 1650020. [Google Scholar] [CrossRef]
- Rudra, P.; Giri, K. Observational constraint in f (R, T) gravity from the cosmic chronometers and some standard distance measurement parameters. Nucl. Phys. B 2021, 967, 115428. [Google Scholar] [CrossRef]
- Seikel, M.; Clarkson, C.; Smith, M. Reconstruction of dark energy and expansion dynamics using Gaussian processes. J. Cosmol. Astropart. Phys. 2012, 2012, 036. [Google Scholar] [CrossRef]
- Fortunato, J.A.S.; Moraes, P.H.R.S.; de Júnior, J.G.; Brito, E. Search for the f (R, T) gravity functional form via gaussian processes. Eur. Phys. J. C 2024, 84, 198. [Google Scholar] [CrossRef]
- de Dios Rojas Olvera, J.; Gómez-Vargas, I.; Vázquez, J.A. Observational cosmology with artificial neural networks. Universe 2022, 8, 120. [Google Scholar] [CrossRef]
- Chantada, A.T.; Landau, S.J.; Protopapas, P.; Scóccola, C.G.; Garraffo, C. Cosmology-informed neural networks to solve the background dynamics of the Universe. Phys. Rev. D 2023, 107, 063523. [Google Scholar] [CrossRef]
- Houndjo, M.J.S. Reconstruction of f (R, T) gravity describing matter dominated and accelerated phases. Int. J. Mod. Phys. D 2012, 21, 1250003. [Google Scholar] [CrossRef]
- Houndjo, M.J.S.; Piattella, O.F. Reconstructing f (R, T) gravity from holographic dark energy. Int. J. Mod. Phys. D 2012, 21, 1250024. [Google Scholar] [CrossRef]
- Houndjo, M.J.S.; Batista, C.E.M.; Campos, J.P.; Piattella, O.F. Finite-time singularities in f (R, T) gravity and the effect of conformal anomaly. Can. J. Phys. 2013, 91, 548. [Google Scholar] [CrossRef]
- Alvarenga, F.G.; Houndjo, M.J.S.; Monwanou, A.V.; Orou, J.B.C. Testing some f (R, T) gravity models from energy conditions. J. Mod. Phys. 2013, 4, 130–139. [Google Scholar] [CrossRef]
- Pasqua, A.; Chattopadhyay, S.; Khomenko, I. A reconstruction of modified holographic Ricci dark energy in f (R, T) gravity. Can. J. Phys. 2013, 91, 632. [Google Scholar] [CrossRef]
- Chakraborty, S. An alternative f (R, T) gravity theory and the dark energy problem. Gen. Relativ. Gravit. 2013, 45, 2039. [Google Scholar] [CrossRef]
- Moraes, P.H.R.S.; Correa, R.A.C.; Lobato, R.V. Analytical general solutions for static wormholes in f (R, T) gravity. J. Cosmol. Astropart. Phys. 2017, 2017, 029. [Google Scholar] [CrossRef]
- Velten, H.; Caramês, T.R.P. Cosmological inviability of f (R, T) gravity. Phys. Rev. D 2017, 95, 123536. [Google Scholar] [CrossRef]
- Moraes, P.H.R.S.; Sahoo, P.K. Wormholes in exponential f (R, T) gravity. Eur. Phys. J. C 2019, 79, 677. [Google Scholar] [CrossRef]
- Bogdanos, C.; Nesseris, S. Genetic Algorithms and Supernovae Type Ia Analysis. J. Cosmol. Astropart. Phys. 2009, 2009, 006. [Google Scholar] [CrossRef]
- Kamerkar, A.; Nesseris, S.; Pinol, L. Machine learning cosmic inflation. Phys. Rev. D 2023, 108, 43509. [Google Scholar] [CrossRef]
- Nesseris, S.; García-Bellido, J. A new perspective on Dark Energy modeling via Genetic Algorithms. J. Cosmol. Astropart. Phys. 2012, 2012, 033. [Google Scholar] [CrossRef]
- Arjona, R.; Nesseris, S. Hints of dark energy anisotropic stress using machine learning. J. Cosmol. Astropart. Phys. 2020, 2020, 042. [Google Scholar] [CrossRef]
- Gaztanaga, E.; Cabre, A.; Hui, L. Clustering of luminous red galaxies—IV. Baryon acoustic peak in the line-of-sight direction and a direct measurement of H(z). Mon. Not. R. Astron. Soc. 2009, 399, 1663–1680. [Google Scholar] [CrossRef]
- Jimenez, R.; Loeb, A. Constraining cosmological parameters based on relative galaxy ages. Astrophys. J. 2002, 573, 37. [Google Scholar] [CrossRef]
- Adame, A.G. et al. [DESI Collaboration]. DESI 2024 VI: Cosmological constraints from the measurements of baryon acoustic oscillations. J. Cosmol. Astropart. Phys. 2025, 2025, 021. [Google Scholar] [CrossRef]
- Moresco, M.; Jimenez, R.; Verde, L.; Cimatti, A.; Pozzetti, L. Setting the stage for cosmic chronometers. II. Impact of stellar population synthesis models systematics and full covariance matrix. Astrophys. J. 2020, 898, 82. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, H.; Yuan, S.; Liu, S.; Zhang, T.-J.; Sun, Y.-C. Four new observational H(z) data from luminous red galaxies in the Sloan Digital Sky Survey data release seven. Res. Astron. Astrophys. 2014, 14, 1221. [Google Scholar] [CrossRef]
- Moresco, M.; Pozzetti, L.; Cimatti, A.; Jimenez, R.; Maraston, C.; Verde, L.; Thomas, D.; Citro, A.; Tojeiro, R.; Wilkinson, D. A 6% Measurement of the Hubble Parameter at z ∼ 0.45: Direct Evidence of the Epoch of Cosmic Re-acceleration. J. Cosmol. Astropart. Phys. 2016, 2016, 014. [Google Scholar] [CrossRef]
- Jimenez, R.; Verde, L.; Treu, T.; Stern, D. Constraints on the equation of state of dark energy and the Hubble constant from stellar ages and the cosmic microwave background. Astrophys. J. 2003, 593, 622. [Google Scholar] [CrossRef]
- Stern, D.; Jimenez, R.; Verde, L.; Kamionkowski, M.; Stanford, S.A. Cosmic chronometers: Constraining the equation of state of dark energy. I: H(z) measurements. J. Cosmol. Astropart. Phys. 2010, 2010, 008. [Google Scholar] [CrossRef]
- Moresco, M.; Cimatti, A.; Jimenez, R.; Pozzetti, L.; Zamorani, G.; Bolzonella, M.; Dunlop, J.; Lamareille, F.; Mignoli, M.; Pearce, H.; et al. Improved Constraints on the Expansion Rate of the Universe up to z ∼ 1.1 from the Spectroscopic Evolution of Cosmic Chronometers. J. Cosmol. Astropart. Phys. 2012, 2012, 006. [Google Scholar] [CrossRef]
- Simon, J.; Verde, L.; Jimenez, R. Constraints on the redshift dependence of the dark energy potential. Phys. Rev. D 2005, 71, 123001. [Google Scholar] [CrossRef]
- Borghi, N.; Moresco, M.; Cimatti, A. Toward a Better Understanding of Cosmic Chronometers: A New Measurement of H(z) at z ∼ 0.7. Astrophys. J. Lett. 2022, 928, L4. [Google Scholar] [CrossRef]
- Moresco, M. Raising the Bar: New Constraints on the Hubble Parameter with Cosmic Chronometers at z ∼ 2. Mon. Not. R. Astron. Soc. 2015, 450, L16. [Google Scholar] [CrossRef]
- Ratsimbazafy, A.L.; Loubser, S.I.; Crawford, S.M.; Cress, C.M.; Bassett, B.A.; Nichol, R.C.; Väisänen, P. Age-dating luminous red galaxies observed with the Southern African Large Telescope. Mon. Not. R. Astron. Soc. 2017, 467, 3239–3254. [Google Scholar] [CrossRef]
- Anderson, L. et al. [BOSS Collaboration]. The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: Baryon acoustic oscillations in the Data Releases 10 and 11 Galaxy samples. Mon. Not. R. Astron. Soc. 2014, 441, 24–62. [Google Scholar] [CrossRef]
- Oka, A.; Saito, S.; Nishimichi, T.; Taruya, A.; Yamamoto, K. Simultaneous constraints on the growth of structure and cosmic expansion from the multipole power spectra of the SDSS DR7 LRG sample. Mon. Not. R. Astron. Soc. 2014, 439, 2515–2530. [Google Scholar] [CrossRef]
- Wang, Y. et al. [BOSS Collaboration]. The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: Tomographic BAO analysis of DR12 combined sample in configuration space. Mon. Not. R. Astron. Soc. 2017, 469, 3762–3774. [Google Scholar] [CrossRef]
- Blake, C. et al. [WiggleZ Collaboration]. The WiggleZ Dark Energy Survey: Joint measurements of the expansion and growth history at z < 1. Mon. Not. R. Astron. Soc. 2012, 425, 405–414. [Google Scholar] [CrossRef]
- Alam, S. et al. [BOSS Collaboration]. The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: Cosmological analysis of the DR12 galaxy sample. Mon. Not. R. Astron. Soc. 2017, 470, 2617–2652. [Google Scholar] [CrossRef]
- Chuang, C.H.; Wang, Y. Modelling the Anisotropic Two-Point Galaxy Correlation Function on Small Scales and Single-Probe Measurements of H(z), DA(z), and f (z)σ8(z) from the Sloan Digital Sky Survey DR7 Luminous Red Galaxies. Mon. Not. R. Astron. Soc. 2013, 435, 255–262. [Google Scholar] [CrossRef]
- Zhao, G.B. et al. [eBOSS Collaboration]. The clustering of the SDSS-IV extended Baryon Oscillation Spectroscopic Survey DR14 quasar sample: A tomographic measurement of cosmic structure growth and expansion rate based on optimal redshift weights. Mon. Not. R. Astron. Soc. 2019, 482, 3497–3513. [Google Scholar] [CrossRef]
- Busca, N.G. et al. [BOSS Collaboration]. Baryon acoustic oscillations in the Lyα forest of BOSS quasars. Astron. Astrophys. 2013, 552, A96. [Google Scholar] [CrossRef]
- Delubac, T. et al. [BOSS Collaboration]. Baryon acoustic oscillations in the Lyα forest of BOSS DR11 quasars. Astron. Astrophys. 2015, 574, A59. [Google Scholar] [CrossRef]
- Font-Ribera, A. et al. [BOSS Collaboration]. Quasar-Lyman α Forest Cross-Correlation from BOSS DR11: Baryon Acoustic Oscillations. J. Cosmol. Astropart. Phys. 2014, 2014, 027. [Google Scholar] [CrossRef]
- Guo, W.; Wang, Q.; Cao, S.; Biesiada, M.; Liu, T.; Lian, Y.; Jiang, X.; Mu, C.; Cheng, D. Newest measurements of Hubble constant from DESI 2024 baryon acoustic oscillation observations. Astrophys. J. Lett. 2025, 978, L33. [Google Scholar] [CrossRef]
- Jia, X.D.; Hu, J.P.; Gao, D.H.; Yi, S.X.; Wang, F.Y. The Hubble Tension resolved by the DESI Baryon Acoustic Oscillations Measurements. arXiv 2025, arXiv:2509.17454. [Google Scholar] [CrossRef]
- Alvarenga, F.G.; de la Cruz-Dombriz, A.; MHoundjo, J.S.; Rodrigues, M.E.; Saez-Gomez, D. Dynamics of scalar perturbations in f (R, T) gravity. Phys. Rev. D 2013, 87, 103526. [Google Scholar] [CrossRef]
- Banik, I.; Kalaitzidis, V. Testing the local void hypothesis using baryon acoustic oscillation measurements over the last 20 yr. Mon. Not. R. Astron. Soc. 2025, 540, 545–561. [Google Scholar] [CrossRef]


| CC data | |||||||
| z | Ref. | z | Ref. | ||||
| 0.07 | 69.0 | 19.6 | [82] | 0.4783 | 83.8 | 10.2 | [83] |
| 0.09 | 69.0 | 12.0 | [84] | 0.48 | 97.0 | 62.0 | [85] |
| 0.12 | 68.6 | 26.2 | [82] | 0.5929 | 107.0 | 15.5 | [86] |
| 0.17 | 83.0 | 8.0 | [87] | 0.6797 | 95.0 | 10.5 | [86] |
| 0.1791 | 78.0 | 6.2 | [86] | 0.75 | 98.8 | 33.6 | [88] |
| 0.1993 | 78.0 | 6.9 | [86] | 0.7812 | 96.5 | 12.5 | [86] |
| 0.2 | 72.9 | 29.6 | [82] | 0.8754 | 124.5 | 17.4 | [86] |
| 0.27 | 77.0 | 14.0 | [87] | 0.88 | 90.0 | 40.0 | [85] |
| 0.28 | 88.8 | 36.6 | [82] | 0.90 | 117.0 | 23.0 | [87] |
| 0.3519 | 85.5 | 15.7 | [86] | 1.037 | 133.5 | 17.6 | [86] |
| 0.3802 | 86.2 | 14.6 | [83] | 1.30 | 168.0 | 17.0 | [87] |
| 0.4 | 95.0 | 17.0 | [87] | 1.363 | 160.0 | 33.8 | [89] |
| 0.4004 | 79.9 | 11.4 | [83] | 1.43 | 177.0 | 18.0 | [87] |
| 0.4247 | 90.4 | 12.8 | [83] | 1.53 | 140.0 | 14.0 | [87] |
| 0.4497 | 96.3 | 14.4 | [83] | 1.75 | 202.0 | 40.0 | [87] |
| 0.47 | 89.0 | 49.6 | [90] | 1.965 | 186.5 | 50.6 | [89] |
| BAO data | |||||||
| z | Ref. | z | Ref. | ||||
| 0.24 | 79.69 | 2.99 | [78] | 0.57 | 96.80 | 3.40 | [91] |
| 0.30 | 81.70 | 6.22 | [92] | 0.59 | 98.48 | 3.19 | [93] |
| 0.31 | 78.17 | 4.74 | [93] | 0.60 | 87.90 | 6.10 | [94] |
| 0.34 | 83.80 | 3.66 | [78] | 0.61 | 97.30 | 2.10 | [95] |
| 0.35 | 82.70 | 8.40 | [96] | 0.64 | 98.82 | 2.99 | [93] |
| 0.36 | 79.93 | 3.39 | [93] | 0.73 | 97.30 | 7.00 | [94] |
| 0.38 | 81.50 | 1.90 | [95] | 0.978 | 113.72 | 14.63 | [97] |
| 0.40 | 82.04 | 2.03 | [93] | 1.23 | 131.44 | 12.42 | [97] |
| 0.43 | 86.45 | 3.68 | [78] | 1.526 | 148.11 | 12.71 | [97] |
| 0.44 | 84.81 | 1.83 | [93] | 1.944 | 172.63 | 14.79 | [97] |
| 0.48 | 87.79 | 2.03 | [93] | 2.30 | 224.00 | 8.00 | [98] |
| 0.52 | 94.35 | 2.65 | [93] | 2.34 | 222.00 | 7.00 | [99] |
| 0.56 | 93.33 | 2.32 | [93] | 2.36 | 226.00 | 8.00 | [100] |
| DESI data | |||||||
| z | Ref. | z | Ref. | ||||
| 0.51 | 97.21 | 2.83 | [80] | 1.32 | 147.58 | 4.49 | [80] |
| 0.71 | 101.57 | 3.04 | [80] | 2.33 | 239.38 | 4.80 | [80] |
| 0.93 | 114.07 | 2.24 | [80] | ||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El Ouardi, R.; Mhamdi, D.; Bouali, A.; Ouali, T. Data-Driven Reconstruction of f (R, T) Gravity Using Genetic Algorithms. Universe 2025, 11, 362. https://doi.org/10.3390/universe11110362
El Ouardi R, Mhamdi D, Bouali A, Ouali T. Data-Driven Reconstruction of f (R, T) Gravity Using Genetic Algorithms. Universe. 2025; 11(11):362. https://doi.org/10.3390/universe11110362
Chicago/Turabian StyleEl Ouardi, Redouane, Dalale Mhamdi, Amine Bouali, and Taoufik Ouali. 2025. "Data-Driven Reconstruction of f (R, T) Gravity Using Genetic Algorithms" Universe 11, no. 11: 362. https://doi.org/10.3390/universe11110362
APA StyleEl Ouardi, R., Mhamdi, D., Bouali, A., & Ouali, T. (2025). Data-Driven Reconstruction of f (R, T) Gravity Using Genetic Algorithms. Universe, 11(11), 362. https://doi.org/10.3390/universe11110362

