Agegraphic Dark Energy from Entropy of the Anti-de Sitter Black Hole
Abstract
1. Introduction
2. Model
3. Observational Constraints
4. Evolution of Universe
5. Hubble Diagram
6. Dynamical Analysis
7. Statefinder Analysis
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Perlmutter, S.; Aldering, G.; Goldhaber, G.; Knop, R.; Nugent, P.; Castro, P.; Deustua, S.; Fabbro, S.; Goobar, A.; Groom, D.; et al. Measurements of Ω and Λ from 42 High-Redshift Supernovae. Astrophys. J. 1999, 517, 565. [Google Scholar] [CrossRef]
- Riess, A.; Filippenko, A.; Challis, P.; Clocchiattia, A.; Diercks, A.; Garnavich, P.; Gilliland, R.; Hogan, C.; Jha, S.; Kirshner, R.; et al. Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant. Astron. J. 1998, 116, 1009–1038. [Google Scholar] [CrossRef]
- Spergel, D.; Verde, L.; Peiris, H.; Komatsu, E.; Nolta, M.; Bennett, C.; Halpern, M.; Hinshaw, G.; Jarosik, N.; Kogut, A.; et al. First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of Cosmological Parameters. Astrophys. J. Suppl. 2003, 148, 175–194. [Google Scholar] [CrossRef]
- Spergel, D.; Bean, R.; Dore, O.; Nolta, M.; Bennett, C.; Dunkley, J.; Hinshaw, G.; Jarosik, N.; Komatsu, E.; Page, L.; et al. Wilkinson Microwave Anisotropy Probe (WMAP) Three Year Results: Implications for Cosmology. Astrophys. J. Suppl. 2007, 170, 377. [Google Scholar] [CrossRef]
- Tegmark, M.; Strauss, M.; Blanton, M.; Abazajian, K.; Dodelson, S.; Sandvik, H.; Wang, X.; Weinberg, D.; Zehavi, I.; Bahcall, N.; et al. Cosmological parameters from SDSS and WMAP. Phys. Rev. D 2004, 69, 103501. [Google Scholar] [CrossRef]
- Eisenstein, D.; Zehavi, I.; Hogg, D.; Scoccimarro, R.; Blanton, M.; Nichol, R.; Scranton, R.; Seo, H.; Tegmark, M.; Zheng, Z.; et al. Detection of the baryon acoustic peak in the large-scale correlation function of SDSS luminous red galaxies. Astron. J. 2005, 633, 560–574. [Google Scholar] [CrossRef]
- Planck Collaboration; Aghanim, N.; Akrami, Y.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.; Barreiro, R.; Bartolo, N.; et al. Planck 2018 results VI. Cosmological parameters. A&A 2020, 641, A6. [Google Scholar]
- Weinberg, S. The cosmological constant problem. Rev. Mod. Phys. 1989, 61, 1. [Google Scholar] [CrossRef]
- Steinhardt, P.; Wang, L.; Zlatev, I. Cosmological tracking solutions. Phys. Rev. D 1999, 59, 123504. [Google Scholar] [CrossRef]
- Wetterich, C. Cosmology and the fate of dilatation symmetry. Nucl. Phys. B 1988, 302, 668–696. [Google Scholar] [CrossRef]
- Ratra, B.; Peebles, P. Cosmological consequences of a rolling homogeneous scalar field. Phys. Rev. D 1988, 37, 3406–3427. [Google Scholar] [CrossRef] [PubMed]
- Caldwell, R.; Dave, R.; Steinhardt, P. Cosmological Imprint of an Energy Component with General Equation of State. Phys. Rev. Lett. 1998, 80, 1582–1585. [Google Scholar] [CrossRef]
- Feng, B.; Wang, X.; Zhang, X. Dark energy constraints from the cosmic age and supernova. Phys. Lett. B 2005, 607, 35–41. [Google Scholar] [CrossRef]
- Feng, B.; Li, M.; Piao, Y.; Zhang, X. Oscillating quintom and the recurrent universe. Phys. Lett. B 2006, 634, 101–105. [Google Scholar] [CrossRef]
- Guo, Z.; Piao, Y.; Zhang, X.; Zhang, Y. Cosmological evolution of a quintom model of dark energy. Phys. Lett. B 2005, 608, 177–182. [Google Scholar] [CrossRef]
- Caldwell, R. A phantom menace? Cosmological consequences of a dark energy component with super-negative equation of state. Phys. Lett. B 2002, 545, 23–29. [Google Scholar] [CrossRef]
- Caldwell, R.; Kamionkowski, M.; Weinberg, N. Phantom Energy: Dark Energy with ω < −1 Causes a Cosmic Doomsday. Phys. Rev. Lett. 2003, 91, 071301. [Google Scholar]
- Chiba, T.; Okabe, T.; Yamaguchi, M. Kinetically driven quintessence. Phys. Rev. D 2000, 62, 023511. [Google Scholar] [CrossRef]
- Armendariz-Picon, C.; Mukhanov, V.; Steinhardt, P. Essentials of k-essence. Phys. Rev. D 2001, 63, 103510. [Google Scholar] [CrossRef]
- Wei, H.; Cai, R. Statefinder diagnostic and ω – ω′ analysis for the agegraphic dark energy models without and with interaction. Phys. Lett. B 2007, 655, 1–6. [Google Scholar] [CrossRef]
- Wei, H.; Cai, R. A new model of agegraphic dark energy. Phys. Lett. B 2008, 660, 113–117. [Google Scholar] [CrossRef]
- Cai, R. A dark energy model characterized by the age of the Universe. Phys. Lett. B 2007, 657, 228–231. [Google Scholar] [CrossRef]
- Cohen, A.; Kaplan, D.; Nelson, A. Effective Field Theory, Black Holes, and the Cosmological Constant. Phys. Rev. Lett. 1999, 82, 4971–4974. [Google Scholar] [CrossRef]
- Hsu, S. Entropy bounds and dark energy. Phys. Lett. B 2004, 594, 13–16. [Google Scholar] [CrossRef]
- Li, M. A model of holographic dark energy. Phys. Lett. B 2004, 603, 1–5. [Google Scholar] [CrossRef]
- Wang, S.; Wang, Y.; Li, M. Holographic dark energy. Phys. Rep. 2017, 696, 1–57. [Google Scholar] [CrossRef]
- Bahamonde, S.; Bohmer, C.; Carloni, S.; Copeland, E.; Fang, W.; Tamanini, N. Dynamical systems applied to cosmology: Dark energy and modified gravity. Phys. Rep. 2018, 775-777, 1–122. [Google Scholar] [CrossRef]
- Setare, M.; Vagenas, E. The Cosmological Dynamics of Interacting Holographic Dark Energy Model. Int. J. Mod. Phys. D 2009, 18, 147–157. [Google Scholar] [CrossRef]
- Liu, J.; Gong, Y.; Chen, X. Dynamical behavior of the extended holographic dark energy with the Hubble horizon. Phys. Rev. D 2010, 81, 083536. [Google Scholar] [CrossRef]
- Banerjee, N.; Roy, N. Stability analysis of a holographic dark energy model. Gen. Relativ. Gravit. 2015, 47, 92. [Google Scholar] [CrossRef]
- Mahata, N.; Chakraborty, S. A dynamical system analysis of holographic dark energy models with different IR cutoff. Mod. Phys. Lett. A 2015, 30, 1550134. [Google Scholar] [CrossRef]
- Mishra, S.; Chakraborty, S. Stability analysis of an interacting holographic dark energy model. Mod. Phys. Lett. A 2019, 34, 1950147. [Google Scholar] [CrossRef]
- Bargach, A.; Bargach, F.; Ouali, T. Dynamical system approach of non-minimal coupling in holographic cosmology. Nucl. Phys. B 2019, 940, 10. [Google Scholar] [CrossRef]
- Tita, A.; Gumjudpai, B.; Srisawad, P. Dynamics of holographic dark energy with apparent-horizon cutoff and non-minimal derivative coupling gravity in non-flat FLRW universe. Phys. Dark Universe 2024, 45, 101542. [Google Scholar] [CrossRef]
- Huang, Q.; Huang, H.; Chen, J.; Zhang, L.; Tu, F. Stability analysis of a Tsallis holographic dark energy model. Class. Quantum Grav. 2019, 36, 175001. [Google Scholar] [CrossRef]
- Ebrahimi, E. A dynamical system analysis of Tsallis holographic dark energy. Astrophys. Space. Sci. 2020, 365, 92. [Google Scholar] [CrossRef]
- Astashenok, A.; Tepliakov, A. Dynamical analysis of the Tsallis holographic dark energy models with event horizon as cut-off and interaction with matter. Int. J. Mod. Phys. D 2023, 32, 2350058. [Google Scholar] [CrossRef]
- Huang, Q.; Huang, H.; Xu, B.; Tu, F.; Chen, J. Dynamical analysis and statefinder of Barrow holographic dark energy. Eur. Phys. J. C 2021, 81, 686. [Google Scholar] [CrossRef]
- Srivastava, S.; Sharma, U. Barrow holographic dark energy with hubble horizon as IR cutoff. Int. J. Geom. Methods Mod. Phys. 2021, 18, 2150014. [Google Scholar] [CrossRef]
- Riess, A.; Yuan, W.; Macri, L.; Scolnic, D.; Brout, D.; Casertano, S.; Jones, D.; Murakami, Y.; Breuval, L.; Brink, T.; et al. A Comprehensive Measurement of the Local Value of the Hubble Constant with 1 km s−1 Mpc−1 Uncertainty from the Hubble Space Telescope and the SH0ES Team. Astrophys. J. Lett. 2022, 934, L7. [Google Scholar] [CrossRef]
- Brout, D.; Scolnic, D.; Popovic, B.; Riess, A.; Zuntz, J.; Kessler, R.; Carr, A.; Davis, T.; Hinton, S.; Jones, D.; et al. The Pantheon+ Analysis: Cosmological Constraints. Astrophys. J. 2022, 938, 110. [Google Scholar] [CrossRef]
- Scolnic, D.; Brout, D.; Carr, A.; Riess, A.; Davis, T.; Dwomoh, A.; Jones, D.; Ali, N.; Charvu, P.; Chen, R.; et al. The Pantheon+ Analysis: The Full Data Set and Light-curve Release. Astrophys. J. 2022, 938, 113. [Google Scholar] [CrossRef]
- Cao, S.; Ratra, B. Using lower-redshift, non-CMB, data to constrain the Hubble constant and other cosmological parameters. MNRAS 2022, 513, 5686–5700. [Google Scholar] [CrossRef]
- Wang, J.; Yu, H.; Wu, P. Revisiting cosmic acceleration with DESI BAO. Eur. Phys. J. C 2025, 85, 853. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, H.; Wu, P. Alleviating the Hubble-constant tension and the growth tension via a transition of absolute magnitude favored by the Pantheon+ sample. Phys. Rev. D 2024, 110, L021304. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, B.; Yu, H.; Wu, P. Probing cosmic background dynamics with a cosmological-model-independent method. Mon. Not. R. Astron. Soc. 2024, 533, 244. [Google Scholar] [CrossRef]
- Arora, S.; Sahoo, P. Revisiting kink-like parametrization and constraints using OHD/Pantheon+/BAO samples. Phys. Dark Universe 2024, 45, 101510. [Google Scholar] [CrossRef]
- Oliveros, A.; Acero, M. Cosmological dynamics and observational constraints on a viable f(Q) nonmetric gravity model. Int. J. Mod. Phys. D 2024, 33, 2450004. [Google Scholar] [CrossRef]
- Wang, D.; Koussour, M.; Malik, A.; Myrzakulov, N.; Mustafa, G. Observational constraints on a logarithmic scalar field dark energy model and black hole mass evolution in the Universe. Eur. Phys. J. C 2023, 83, 670. [Google Scholar] [CrossRef]
- Mukherjee, P.; Banerjee, N. Revisiting a non-parametric reconstruction of the deceleration parameter from combined background and the growth rate data. Phys. Dark Universe 2022, 36, 100998. [Google Scholar] [CrossRef]
- Mukherjee, P.; Banerjee, N. Constraining the curvature density parameter in cosmology. Phys. Rev. D 2022, 105, 063516. [Google Scholar] [CrossRef]
- Cao, S.; Ryan, J.; Ratra, B. Using Pantheon and DES supernova, baryon acoustic oscillation, and Hubble parameter data to constrain the Hubble constant, dark energy dynamics, and spatial curvature. MNRAS 2021, 504, 300. [Google Scholar] [CrossRef]
- Pacif, S.; Arora, S.; Sahoo, P. Late-time acceleration with a scalar field source: Observational constraints and statefinder diagnostics. Phys. Dark Universe 2021, 32, 100804. [Google Scholar] [CrossRef]
- Cao, S.; Zhang, T.; Wang, X.; Zhang, T. Cosmological Constraints on the Coupling Model from Observational Hubble Parameter and Baryon Acoustic Oscillation Measurements. Universe 2021, 7, 57. [Google Scholar] [CrossRef]
- Akarsu, O.; Barrow, J.; Escamilla, L.; Vazquez, J. Graduated dark energy: Observational hints of a spontaneous sign switch in the cosmological constant. Phys. Rev. D 2020, 101, 063528. [Google Scholar] [CrossRef]
- Yang, Y.; Gong, Y. The evidence of cosmic acceleration and observational constraints. JCAP 2020, 6, 59. [Google Scholar] [CrossRef]
- Liu, Y.; Guo, R.; Zhang, J.; Zhang, X. Revisit of constraints on dark energy with Hubble parameter measurements including future redshift drift observations. JCAP 2019, 5, 016. [Google Scholar] [CrossRef]
- Jimenez, J.; Lazkoz, R.; Saez-Gomez, D.; Salzano, V. Observational constraints on cosmological future singularities. Eur. Phys. J. C 2016, 76, 631. [Google Scholar] [CrossRef]
- Gong, Y.; Gao, Q.; Zhu, Z. The effect of different observational data on the constraints of cosmological parameters. Mon. Not. R. Astron. Soc. 2013, 430, 3142. [Google Scholar] [CrossRef]
- Su, Q.; Tuo, Z.; Cai, R. Figure of merit and different combinations of observational data sets. Phys. Rev. D 2011, 84, 103519. [Google Scholar] [CrossRef]
- Gong, Y.; Cai, R.; Chen, Y.; Zhu, Z. Observational constraint on dynamical evolution of dark energy. JCAP 2010, 1001, 019. [Google Scholar] [CrossRef]
- Wu, P.; Yu, H. Observational constraints on f(T) theory. Phys. Lett. B 2010, 693, 415. [Google Scholar] [CrossRef]
- Gong, Y.; Wang, A. Observational constraints on the acceleration of the Universe. Phys. Rev. D 2006, 73, 083506. [Google Scholar] [CrossRef]
- Wu, P.; Yu, H. Constraints on a variable dark energy model with recent observations. Phys. Lett. B 2006, 643, 315–318. [Google Scholar] [CrossRef]
- Horvat, R. Holography and a variable cosmological constant. Phys. Rev. D 2004, 70, 087301. [Google Scholar] [CrossRef]
- Witten, E. Anti de Sitter space and holography. Adv. Theor. Math. Phys. 1998, 2, 253–291. [Google Scholar] [CrossRef]
- Bousso, R. The holographic principle. Rev. Mod. Phys. 2002, 74, 825. [Google Scholar] [CrossRef]
- Huang, H.; Huang, Q.; Zhang, R. Phase space analysis of Tsallis agegraphic dark energy. Gen. Relativ. Gravit. 2021, 53, 63. [Google Scholar] [CrossRef]
- Pankaj; Pandey, B.; Kumar, P.; Sharma, U. New Tsallis agegraphic dark energy. Int. J. Mod. Phys. 2022, 31, 2250102. [Google Scholar] [CrossRef]
- Mangoudehi, Z. Interacting Tsallis agegraphic dark energy in DGP braneworld cosmology. Astrophys. Space Sci. 2022, 367, 31. [Google Scholar] [CrossRef]
- Sharma, U.; Srivastava, S. The cosmological behavior and the statefinder diagnosis for the New Tsallis agegraphic dark energy. Mod. Phys. Lett. A 2020, 35, 2050318. [Google Scholar] [CrossRef]
- Huang, H.; Huang, Q.; Zhang, R. Phase Space Analysis of Barrow Agegraphic Dark Energy. Universe 2022, 8, 467. [Google Scholar] [CrossRef]
- Sheykhi, A.; Ghaffari, S. Note on agegraphic dark energy inspired by modified Barrow entropy. Phys. Dark Universe 2023, 41, 101241. [Google Scholar] [CrossRef]
- Sharma, U.K.; Varshney, G.; Dubey, V.C. Barrow agegraphic dark energy. Int. J. Mod. Phys. 2021, 30, 2150021. [Google Scholar] [CrossRef]
- Ravanpak, A.; Fadakar, G. Barrow agegraphic dark energy. Mod. Phys. Lett. A 2019, 34, 1950105. [Google Scholar]
- Zadeh, M.; Sheykhi, A.; Moradpour, H. Tsallis Agegraphic Dark Energy Model. Mod. Phys. Lett. A 2019, 34, 1950086. [Google Scholar] [CrossRef]
- Kumar, P.; Singh, C. New agegraphic dark energy model in Brans-Dicke theory with logarithmic form of scalar field. Astrophys. Space Sci. 2017, 362, 52. [Google Scholar] [CrossRef]
- Saha, P.; Debnath, U. Reconstructions of f(T) Gravity from Entropy Corrected Holographic and New Agegraphic Dark Energy Models in Power-law and Logarithmic Versions. Eur. Phys. J. C 2016, 76, 491. [Google Scholar]
- Zhang, J.; Zhao, L.; Zhang, X. Revisiting the interacting model of new agegraphic dark energy. Sci. China Phys. Mech. Astron. 2014, 57, 387–392. [Google Scholar]
- Zhang, J.; Li, Y.; Zhang, X. A global fit study on the new agegraphic dark energy model. Eur. Phys. J. C 2013, 73, 2280. [Google Scholar] [CrossRef]
- Farajollahi, H.; Ravanpak, A.; Fadakar, G. Interacting agegraphic dark energy model in tachyon cosmology coupled to matter. Phy. Lett. B 2012, 711, 225. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, J.; Zhang, X. New initial condition of the new agegraphic dark energy model. Chin. Phys. B 2013, 22, 039501. [Google Scholar] [CrossRef]
- Saaidi, K.; Sheikhahmadi, H.; Mohammadi, A. Interacting New Agegraphic Dark Energy in a Cyclic Universe. Astrophys. Space Sci. 2022, 338, 355–361. [Google Scholar] [CrossRef]
- Farajollahi, H.; Sadeghi, J.; Pourali, M.; Salehi, A. Stability analysis of agegraphic dark energy in Brans-Dicke cosmology. Astrophys. Space Sci. 2012, 339, 79–85. [Google Scholar] [CrossRef]
- Sun, C.; Yue, R. Inflation and New Agegraphic Dark Energy. Phys. Rev. D 2011, 83, 107302. [Google Scholar] [CrossRef]
- Li, Y.; Ma, J.; Cui, J.; Wang, Z.; Zhang, X. Interacting model of new agegraphic dark energy: Observational constraints and age problem. Sci. China Phys. Mech. Astron. 2011, 54, 1367–1377. [Google Scholar] [CrossRef]
- Lemets, O.; Yerokhin, D.; Zazunov, L. Interacting agegraphic dark energy models in phase space. JCAP 2011, 1, 7. [Google Scholar] [CrossRef]
- Sun, C.; Song, Y. Inconsistences in Interacting Agegraphic Dark Energy Models. Mod. Phys. Lett. A 2011, 26, 3055–3066. [Google Scholar] [CrossRef]
- Wei, H.; Cai, R. Cosmological constraints on new agegraphic dark energy. Phys. Lett. B 2008, 663, 1–6. [Google Scholar] [CrossRef]
- Wei, H.; Cai, R. Interacting Agegraphic Dark Energy. Eur. Phys. J. C 2009, 59, 99–105. [Google Scholar] [CrossRef]
- Maldacena, J. The Large N Limit of Superconformal Field Theories and Supergravity. J. Adv. Theor. Math. Phys. 1998, 231, 2. [Google Scholar] [CrossRef]
- Policastro, G.; Son, D.; Starinets, A. Shear viscosity of strong coupled N = 4 supersymmetric Yang-Mills plasma. Phys. Rev. Lett. 2001, 87, 081601. [Google Scholar] [CrossRef]
- Hartnoll, S.; Herzog, C.; Horowitz, G. Building a Holographic Superconductor. Phys. Rev. Lett. 2008, 101, 031601. [Google Scholar] [CrossRef]
- Apostolopoulos, P.; Siopsis, G.; Tetradis, N. Cosmology from an Anti-de Sitter-Schwarzschild black hole via holography. Phys. Rev. Lett. 2009, 151301, 102. [Google Scholar] [CrossRef] [PubMed]
- Khimphun, S.; Lee, B.; Tumurtushaa, G. Generalized holographic cosmology: Low-redshift observational constraint. J. High Energy Phys. 2021, 232, 1–20. [Google Scholar] [CrossRef]
- Nakarachinda, R.; Pongkitivanichkul, C.; Samart, D.; Tannukij, L.; Wongjun, P. Holographic dark energy from the anti–de Sitter black hole. Phys. Rev. D 2022, 105, 123524. [Google Scholar] [CrossRef]
- Huang, Q.; Huang, H.; Xu, B.; Zhang, K. Holographic inflation and holographic dark energy from entropy of the anti-de Sitter black hole. Eur. Phys. J. C 2025, 85, 395. [Google Scholar] [CrossRef]
- Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control 1974, 19, 716–723. [Google Scholar] [CrossRef]
- Schwarz, G. Estimating the dimension of a model. Ann. Stat. 1978, 6, 461–464. [Google Scholar] [CrossRef]
- Trotta, R. Bayes in the sky: Bayesian inference and model selection in cosmology. Contemp. Phys. 2008, 49, 71–104. [Google Scholar] [CrossRef]
- Burnham, K.; Anderson, D. Multimodel Inference: Understanding AIC and BIC in Model Selection. Sociol. Methods Res. 2004, 33, 261–304. [Google Scholar] [CrossRef]
- Jeffreys, H. The Theory of Probability, 3rd ed.; Oxford University Press: New York, NY, USA, 1998. [Google Scholar]
- Akhlaghi, I.; Malekjani, M.; Basilakos, S.; Haghi, H. Model selection and constraints from Holographic dark energy scenarios. Mon. Not. R. Astron. Soc. 2018, 477, 3659. [Google Scholar] [CrossRef]
- Colgain, E.; Sheikh-Jabbari, M. A critique of holographic dark energy. Class. Quantum Grav. 2021, 38, 177001. [Google Scholar]
- Wu, P.; Yu, H. The dynamical behavior of f(T) theory. Phys. Lett. B 2010, 692, 176–179. [Google Scholar]
- Wu, P.; Zhang, S. Cosmological evolution of interacting phantom (quintessence) model in Loop Quantum Gravity. JCAP 2008, 6, 7. [Google Scholar] [CrossRef]
- Wu, P.; Yu, H. Interacting generalized Chaplygin gas. Class. Quant. Grav. 2007, 24, 4661–4668. [Google Scholar] [CrossRef]
- Dutta, J.; Khyllep, W.; Tamanini, N. Cosmological dynamics of scalar fields with kinetic corrections: Beyond the exponential potential. Phys. Rev. D 2016, 93, 063004. [Google Scholar] [CrossRef]
- Dutta, J.; Khyllep, W.; Tamanini, N. Scalar-Fluid interacting dark energy: Cosmological dynamics beyond the exponential potential. Phys. Rev. D 2017, 95, 023515. [Google Scholar] [CrossRef]
- Dutta, J.; Khyllep, W.; Zonunmawia, H. Cosmological dynamics of the general non-canonical scalar field models. Eur. Phys. J. C 2019, 79, 359. [Google Scholar] [CrossRef]
- Huang, Q.; Huang, H.; Xu, B.; Zhang, K. Evolution of the Early Universe in Einstein–Cartan Theory. Universe 2025, 11, 147. [Google Scholar] [CrossRef]
- Huang, Q.; Zhang, R.; Chen, J.; Huang, H.; Tu, F. Phase space analysis of the Umami Chaplygin model. Mod. Phys. Lett. A 2021, 36, 2150052. [Google Scholar] [CrossRef]
- Huang, Y.; Gao, Q.; Gong, Y. The Phase-space analysis of scalar fields with non-minimally derivative coupling. Eur. Phys. J. C 2015, 75, 143. [Google Scholar] [CrossRef]
- Chen, X.; Gong, Y.; Saridakis, E. Phase-space analysis of interacting phantom cosmology. JCAP 2009, 4, 1. [Google Scholar] [CrossRef]
- Chatterjee, A.; Gong, Y. Understanding curvature–matter interaction in viable f(R) dark energy models: A dynamical analysis approach. Ann. Phys. 2025, 478, 170036. [Google Scholar] [CrossRef]
- Sahni, V.; Saini, T.; Starobinsky, A.; Alam, U. Statefinder: A New geometrical diagnostic of dark energy. JETP Lett. 2003, 77, 201–206. [Google Scholar] [CrossRef]
- Wu, P.; Yu, H. Statefinder parameters for quintom dark energy model. Int. J. Mod. Phys. D 2005, 14, 1873–1881. [Google Scholar] [CrossRef]









| 1418 | 1430 | 1462 | |||||
| − | 1418 | 1428 | 1455 |
| q | |||||||
|---|---|---|---|---|---|---|---|
| 1 | 1 | ||||||
| 0 | |||||||
| 0 | |||||||
| 0 | 0 | ||||||
| 1 | |||||||
| 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Q.; Liu, Y.; Huang, H. Agegraphic Dark Energy from Entropy of the Anti-de Sitter Black Hole. Universe 2025, 11, 336. https://doi.org/10.3390/universe11100336
Huang Q, Liu Y, Huang H. Agegraphic Dark Energy from Entropy of the Anti-de Sitter Black Hole. Universe. 2025; 11(10):336. https://doi.org/10.3390/universe11100336
Chicago/Turabian StyleHuang, Qihong, Yang Liu, and He Huang. 2025. "Agegraphic Dark Energy from Entropy of the Anti-de Sitter Black Hole" Universe 11, no. 10: 336. https://doi.org/10.3390/universe11100336
APA StyleHuang, Q., Liu, Y., & Huang, H. (2025). Agegraphic Dark Energy from Entropy of the Anti-de Sitter Black Hole. Universe, 11(10), 336. https://doi.org/10.3390/universe11100336

