Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (343)

Search Parameters:
Keywords = hot-top

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2459 KiB  
Article
Comparative Life Cycle Assessment of Rubberized Warm-Mix Asphalt Pavements: A Cradle-to-Gate Plus Maintenance Approach
by Ana María Rodríguez-Alloza and Daniel Garraín
Coatings 2025, 15(8), 899; https://doi.org/10.3390/coatings15080899 (registering DOI) - 1 Aug 2025
Viewed by 190
Abstract
In response to the escalating climate crisis, reducing greenhouse gas emissions (GHG) has become a top priority for both the public and private sectors. The pavement industry plays a key role in this transition, offering innovative technologies that minimize environmental impacts without compromising [...] Read more.
In response to the escalating climate crisis, reducing greenhouse gas emissions (GHG) has become a top priority for both the public and private sectors. The pavement industry plays a key role in this transition, offering innovative technologies that minimize environmental impacts without compromising performance. Among these, the incorporation of recycled tire rubber and warm-mix asphalt (WMA) additives represents a promising strategy to reduce energy consumption and resource depletion in road construction. This study conducts a comparative life cycle assessment (LCA) to evaluate the environmental performance of an asphalt pavement incorporating recycled rubber and a WMA additive—referred to as R-W asphalt—against a conventional hot-mix asphalt (HMA) pavement. The analysis follows the ISO 14040/44 standards, covering material production, transport, construction, and maintenance. Two service-life scenarios are considered: one assuming equivalent durability and another with a five-year extension for the R-W pavement. The results demonstrate environmental impact reductions of up to 57%, with average savings ranging from 32% to 52% across key impact categories such as climate change, land use, and resource use. These benefits are primarily attributed to lower production temperatures and extended maintenance intervals. The findings underscore the potential of R-W asphalt as a cleaner engineering solution aligned with circular economy principles and climate mitigation goals. Full article
(This article belongs to the Special Issue Surface Protection of Pavements: New Perspectives and Applications)
Show Figures

Figure 1

31 pages, 4347 KiB  
Article
Optimizing Passive Thermal Enhancement via Embedded Fins: A Multi-Parametric Study of Natural Convection in Square Cavities
by Saleh A. Bawazeer
Energies 2025, 18(15), 4098; https://doi.org/10.3390/en18154098 - 1 Aug 2025
Viewed by 123
Abstract
Internal fins are commonly utilized as a passive technique to enhance natural convection, but their efficiency depends on complex interplay between fin design, material properties, and convective strength. This study presents an extensive numerical analysis of buoyancy-driven flow in square cavities containing a [...] Read more.
Internal fins are commonly utilized as a passive technique to enhance natural convection, but their efficiency depends on complex interplay between fin design, material properties, and convective strength. This study presents an extensive numerical analysis of buoyancy-driven flow in square cavities containing a single horizontal fin on the hot wall. Over 9000 simulations were conducted, methodically varying the Rayleigh number (Ra = 10 to 105), Prandtl number (Pr = 0.1 to 10), and fin characteristics, such as length, vertical position, thickness, and the thermal conductivity ratio (up to 1000), to assess their overall impact on thermal efficiency. Thermal enhancements compared to scenarios without fins are quantified using local and average Nusselt numbers, as well as a Nusselt number ratio (NNR). The results reveal that, contrary to conventional beliefs, long fins positioned centrally can actually decrease heat transfer by up to 11.8% at high Ra and Pr due to the disruption of thermal plumes and diminished circulation. Conversely, shorter fins located near the cavity’s top and bottom wall edges can enhance the Nusselt numbers for the hot wall by up to 8.4%, thereby positively affecting the development of thermal boundary layers. A U-shaped Nusselt number distribution related to fin placement appears at Ra ≥ 103, where edge-aligned fins consistently outperform those positioned mid-height. The benefits of high-conductivity fins become increasingly nonlinear at larger Ra, with advantages limited to designs that minimally disrupt core convective patterns. These findings challenge established notions regarding passive thermal enhancement and provide a predictive thermogeometric framework for designing enclosures. The results can be directly applied to passive cooling systems in electronics, battery packs, solar thermal collectors, and energy-efficient buildings, where optimizing heat transfer is vital without employing active control methods. Full article
Show Figures

Figure 1

19 pages, 2806 KiB  
Article
Operating Solutions to Improve the Direct Reduction of Iron Ore by Hydrogen in a Shaft Furnace
by Antoine Marsigny, Olivier Mirgaux and Fabrice Patisson
Metals 2025, 15(8), 862; https://doi.org/10.3390/met15080862 (registering DOI) - 1 Aug 2025
Viewed by 252
Abstract
The production of iron and steel plays a significant role in the anthropogenic carbon footprint, accounting for 7% of global GHG emissions. In the context of CO2 mitigation, the steelmaking industry is looking to potentially replace traditional carbon-based ironmaking processes with hydrogen-based [...] Read more.
The production of iron and steel plays a significant role in the anthropogenic carbon footprint, accounting for 7% of global GHG emissions. In the context of CO2 mitigation, the steelmaking industry is looking to potentially replace traditional carbon-based ironmaking processes with hydrogen-based direct reduction of iron ore in shaft furnaces. Before industrialization, detailed modeling and parametric studies were needed to determine the proper operating parameters of this promising technology. The modeling approach selected here was to complement REDUCTOR, a detailed finite-volume model of the shaft furnace, which can simulate the gas and solid flows, heat transfers and reaction kinetics throughout the reactor, with an extension that describes the whole gas circuit of the direct reduction plant, including the top gas recycling set up and the fresh hydrogen production. Innovative strategies (such as the redirection of part of the bustle gas to a cooling inlet, the use of high nitrogen content in the gas, and the introduction of a hot solid burden) were investigated, and their effects on furnace operation (gas utilization degree and total energy consumption) were studied with a constant metallization target of 94%. It has also been demonstrated that complete metallization can be achieved at little expense. These strategies can improve the thermochemical state of the furnace and lead to different energy requirements. Full article
(This article belongs to the Special Issue Recent Developments and Research on Ironmaking and Steelmaking)
Show Figures

Graphical abstract

31 pages, 16050 KiB  
Article
Biomimetic Opaque Ventilated Façade for Low-Rise Buildings in Hot Arid Climate
by Ahmed Alyahya, Simon Lannon and Wassim Jabi
Buildings 2025, 15(14), 2491; https://doi.org/10.3390/buildings15142491 - 16 Jul 2025
Viewed by 415
Abstract
Enhancing the thermal performance of building façades is vital for reducing energy demand in hot desert climates, where envelope heat gain increases cooling loads. This study investigates the integration of biomimicry into opaque ventilated façade (OVF) systems as a novel approach to reduce [...] Read more.
Enhancing the thermal performance of building façades is vital for reducing energy demand in hot desert climates, where envelope heat gain increases cooling loads. This study investigates the integration of biomimicry into opaque ventilated façade (OVF) systems as a novel approach to reduce façade surface temperatures. Thirteen bio-inspired façade configurations, modeled after strategies observed in nature, were evaluated using computational fluid dynamics simulations to assess their effectiveness in increasing airflow and reducing inner skin surface temperatures. Results show that all proposed biomimetic solutions outperformed the baseline OVF in terms of thermal performance, with the wide top mound configuration achieving the greatest temperature reduction—up to 5.9 °C below the baseline OVF and 16.4 °C below an unventilated façade. The study introduces an innovative methodology that derives façade design parameters from nature and validates them through simulation. These findings highlight the potential of nature-based solutions to improve building envelope performance in extreme climates. Full article
Show Figures

Figure 1

18 pages, 5060 KiB  
Article
Research on Fatigue Strength Evaluation Method of Welded Joints in Steel Box Girders with Open Longitudinal Ribs
by Bo Shen, Ming Liu, Yan Wang and Hanqing Zhuge
Crystals 2025, 15(7), 646; https://doi.org/10.3390/cryst15070646 - 15 Jul 2025
Viewed by 250
Abstract
Based on the engineering background of a new type of segmental-assembled steel temporary beam buttress, the fatigue strength evaluation method of the steel box girders with open longitudinal ribs was taken as the research objective. The fatigue stress calculation analysis and the full-scale [...] Read more.
Based on the engineering background of a new type of segmental-assembled steel temporary beam buttress, the fatigue strength evaluation method of the steel box girders with open longitudinal ribs was taken as the research objective. The fatigue stress calculation analysis and the full-scale fatigue loading test for the steel box girder local component were carried out. The accuracy of the finite-element model was verified by comparing it with the test results, and the rationality of the fatigue strength evaluation methods for welded joints was deeply explored. The results indicate that the maximum nominal stress occurs at the weld toe between the transverse diaphragm and the top plate at the edge of the loading area, which is the fatigue-vulnerable location for the steel box girder local components. The initial static-load stresses at each measuring point were in good agreement with the finite-element calculation results. However, the static-load stress at the measuring point in the fatigue-vulnerable position shows a certain decrease with the increase in the number of cyclic loads, while the stress at other measuring points remains basically unchanged. According to the finite-element model, the fatigue strengths obtained by the nominal stress method and the hot-spot stress method are 72.1 MPa and 93.8 MPa, respectively. It is reasonable to use the nominal stress S-N curve with a fatigue life of 2 million cycles at 70 MPa and the hot-spot stress S-N curve with a fatigue life of 2 million cycles at 90 MPa (FAT90) to evaluate the fatigue of the welded joints in steel box girders with open longitudinal ribs. According to the equivalent structural stress method, the fatigue strength corresponding to 2 million cycles is 94.1 MPa, which is slightly lower than the result corresponding to the main S-N curve but within the range of the standard deviation curve. The research results of this article can provide important guidance for the anti-fatigue design of welded joints in steel box girders with open longitudinal ribs. Full article
(This article belongs to the Section Crystalline Metals and Alloys)
Show Figures

Figure 1

17 pages, 2357 KiB  
Article
Chemical Characterization of Hot Trub and Residual Yeast: Exploring Beer By-Products for Future Sustainable Agricultural Applications
by Laura Alessandroni, Riccardo Marconi, Marco Zannotti, Stefano Ferraro, Tereza Dolezalova, Diletta Piatti, Ghazal Namazzadeh, Simone Angeloni and Gianni Sagratini
Foods 2025, 14(12), 2081; https://doi.org/10.3390/foods14122081 - 13 Jun 2025
Viewed by 629
Abstract
Three types of solid waste are produced during beer fermentation: spent grain, hot trub, and residual yeast. While the first is used as livestock feed, the seconds has not yet found any real reapplication in the field of circular economy. The aim of [...] Read more.
Three types of solid waste are produced during beer fermentation: spent grain, hot trub, and residual yeast. While the first is used as livestock feed, the seconds has not yet found any real reapplication in the field of circular economy. The aim of this work is to study and characterize these two brewing wastes, i.e., hot trub and residual yeast, to evaluate their potential reuse in the agricultural field. Samples from top-fermented and bottom-fermented beers were chemically investigated. Initially, the safety was assessed via multi-detection analysis of 57 mycotoxins, and all samples were deemed safe. Subsequently, the chemical and elemental composition was examined via ICP-MS and microanalysis, along with phenolic compounds and antioxidant activity via HPLC and spectrophotometric determinations, to achieve a thorough characterization of these waste samples. The C/N ratio of residual yeast from top-fermented beer and hot trub of the bottom-fermented one were near the optimal one (10:1). This research marks an initial step towards repurposing brewery waste materials as fertilizers. The subsequent steps will involve the formulation and field trials. Full article
(This article belongs to the Section Food Security and Sustainability)
Show Figures

Figure 1

23 pages, 7994 KiB  
Article
Analysis of Carbon Sequestration Capacity and Economic Losses Under Multiple Scenarios in Major Grain-Producing Regions of China: A Case Study of the Urban Agglomeration the Huaihe River Basin
by Junhao Cheng, Wenfeng Hu, Mengtian Zheng, Xiaolong Jin, Junqiang Yao, Shuangmei Tong and Fei Guo
Agriculture 2025, 15(12), 1268; https://doi.org/10.3390/agriculture15121268 - 11 Jun 2025
Viewed by 589
Abstract
The Huaihe River Basin stands as a vital grain-producing base in China. Predicting the dynamic evolution of its carbon storage (CS) is of great theoretical value and practical significance for maintaining regional ecological security, guaranteeing food production capacity, and coping with climate change. [...] Read more.
The Huaihe River Basin stands as a vital grain-producing base in China. Predicting the dynamic evolution of its carbon storage (CS) is of great theoretical value and practical significance for maintaining regional ecological security, guaranteeing food production capacity, and coping with climate change. This study established a multi-dimensional analysis framework of “scenario simulation–reservoir assessment–value quantification”. Using a sample of 195 cities, the PLUS-InVEST-GIS method was combined to explore the overall CS, spatial differentiation, and value changes in future scenarios. The results indicate that the following: (1) From 2000 to 2020, CS kept on declining, with cultivated land and forest land being the dominant carbon pools, accounting for over 86% of the total CS. (2) From a “city–grid–raster” perspective, the spatial pattern of high-value hot spots of CS remained stable, and the overall pattern remained unchanged under multi-scenario simulation, yet the overall carbon sink center of gravity shifted to the southwest. (3) The top five driving factors are elevation, slope, NDVI, GDP per capita, and population density, accounting for 77.2% of the total driving force. (4) The carbon sequestration capacity at the county scale continued to weaken, and the overall capacity presented the following order: 2035 Farmland protection scenario (FPS) > 2035 Natural development scenario (NDS) > 2035 Urban development scenario (UDS). The resulting carbon economic losses were USD 2.28 × 108, 4.57 × 108, and 6.90 × 108, respectively. The research results will provide scientific land use decision-making support for the realization of the “double-carbon” goals in the Huaihe River grain-producing area. Full article
Show Figures

Graphical abstract

26 pages, 320 KiB  
Article
ESG Rating Divergence: Existence, Driving Factors, and Impact Effects
by Yong Shi and Tongsheng Yao
Sustainability 2025, 17(10), 4717; https://doi.org/10.3390/su17104717 - 21 May 2025
Cited by 2 | Viewed by 2674
Abstract
In recent years, corporate ESG performance has been widely incorporated into investment decisions and capital allocation considerations, becoming a focal point and hot topic for research by governments and organizations worldwide. However, due to various reasons, significant discrepancies have emerged in ESG ratings [...] Read more.
In recent years, corporate ESG performance has been widely incorporated into investment decisions and capital allocation considerations, becoming a focal point and hot topic for research by governments and organizations worldwide. However, due to various reasons, significant discrepancies have emerged in ESG ratings for the same company across different institutions, and this growing divergence in ESG ratings has increasingly drawn the attention of scholars. Studying the differences in ESG (environmental, social, and corporate governance) ratings is of great significance. This not only helps to understand the root causes of differences, improve the objectivity, consistency, and comparability of ratings, but also helps users better understand the meaning and limitations of rating results. It is beneficial for investors to understand the focus of different ratings and develop more effective investment strategies. It can promote rated companies to improve the quality and transparency of ESG-related information disclosure. It can also provide a reference for regulatory agencies and policymakers, identify market failures and potential risks, and promote the development of more unified standards and frameworks. At the same time, this study can also promote the in-depth development of relevant academic research and theories. Based on this, this study systematically reviews the relevant literature on ESG rating divergence, focusing on its existence, causes, influencing factors, and impacts. The study finds that, in addition to the widespread existence of rating divergence in corporate ESG performance, scholars also disagree on the measurement and methods of this divergence. The reasons for rating divergence are mainly that ESG is a qualitative indicator; top-level design, intermediate calculations, and bottom-level data collection across multiple stages exacerbate divergence; and controversies in practice further deepen divergence, among others. The influencing factors and impact effects of ESG rating divergence are diverse. Given the existence of ESG rating divergence, all parties should treat ESG ratings with caution. This paper offers corresponding recommendations and looks forward to the future, providing a foundation for subsequent research. Full article
(This article belongs to the Special Issue ESG, Sustainability and Competitiveness: A Serious Reflection)
21 pages, 11588 KiB  
Article
Optimization of Airflow Organization in Bidirectional Air Supply Data Centers in China
by Yixin Wu, Junwei Yan and Xuan Zhou
Appl. Sci. 2025, 15(10), 5711; https://doi.org/10.3390/app15105711 - 20 May 2025
Viewed by 443
Abstract
Optimizing airflow organization is essential for ensuring the energy-efficient and secure operation of data centers. To address common airflow distribution issues in air-cooled systems, such as uneven air supply and cooling capacity imbalance, this study investigates a bidirectional airflow data center room located [...] Read more.
Optimizing airflow organization is essential for ensuring the energy-efficient and secure operation of data centers. To address common airflow distribution issues in air-cooled systems, such as uneven air supply and cooling capacity imbalance, this study investigates a bidirectional airflow data center room located in a hot-summer and warm-winter region. A computational fluid dynamics (CFD) model was developed based on field-measured data to analyze the airflow distribution characteristics and evaluate the existing thermal conditions. Three optimization strategies were systematically examined: (1) Installation of rack blanking panels, (2) cold aisle containment with varying degrees of closure, and (3) combined implementations of these measures. Performance evaluation was conducted using three thermal metrics: the Return Temperature Index (RTI), Supply Heat Index (SHI), and Rack Cooling Index (RCIHI). The results demonstrate that among individual optimization strategies, rack blanking panels achieved the most significant improvement, reducing SHI by 42.61% while effectively eliminating local hotspots. For combined optimization strategies, the rack blanking panels and fully contained cold aisle containment showed optimal performance, improving cooling utilization efficiency by 88.26%. The optimal retrofit solution for this data center is the rack blanking panels with fully contained cold aisle containment. When considering budget constraints, the secondary option would be rack blanking panels with cold aisle top-only containment. These findings provide practical guidance for energy efficiency improvements in similar data center environments. Full article
Show Figures

Figure 1

27 pages, 7505 KiB  
Article
Modular Multifunctional Composite Structure for CubeSat Applications: Embedded Battery Prototype Thermal Analysis
by Giorgio Capovilla, Enrico Cestino, Leonardo Reyneri and Federico Valpiani
Batteries 2025, 11(5), 172; https://doi.org/10.3390/batteries11050172 - 23 Apr 2025
Viewed by 555
Abstract
The present work aims to develop the current CubeSats architecture. Starting from the framework of project ARAMIS (an Italian acronym for a highly modular architecture for satellite infrastructures), a new concept of smart tiles has been developed, employing multifunctional structures and lightweight, composite [...] Read more.
The present work aims to develop the current CubeSats architecture. Starting from the framework of project ARAMIS (an Italian acronym for a highly modular architecture for satellite infrastructures), a new concept of smart tiles has been developed, employing multifunctional structures and lightweight, composite materials. This enables increased CubeSat mass efficiency and payload volume. An embedded battery tile has been designed, built, and tested from a vibration point of view. In the present work, the LiPo batteries selected for the prototype have been tested with the HPPC testing procedure, to extract their equivalent Randles circuit parameters. Thus, the thermal power dissipation from the batteries can be estimated. With these data, Thermal Desktop simulations of a representative ARAMIS CubeSat are performed, considering LEO orbit and hot/cold cases. Firstly, a parametric analysis was conducted to evaluate the thermal behaviors of various design alternatives. A suitable configuration for the CubeSat was then found, enabling the validation of the embedded battery tile from a thermal point of view. The final configuration includes heaters for the LiPo batteries, a commercial CubeSat skeleton made in aluminum alloy, and a top coating for smart tiles with proper solar absorptivity. Full article
(This article belongs to the Special Issue Rechargeable Batteries)
Show Figures

Figure 1

27 pages, 3841 KiB  
Article
Modeling and Carbon Emission Assessment of Novel Low-Carbon Smelting Process for Vanadium–Titanium Magnetite
by Yun Huang, Jue Tang and Mansheng Chu
Metals 2025, 15(4), 461; https://doi.org/10.3390/met15040461 - 19 Apr 2025
Viewed by 340
Abstract
The iron and steel industry, as a major energy consumer, was critically required to enhance operational efficiency and reduce CO2 emissions. Conventional blast furnace processing of vanadium–titanium magnetite (VTM) in China had been associated with persistent challenges, including suboptimal TiO2 recovery [...] Read more.
The iron and steel industry, as a major energy consumer, was critically required to enhance operational efficiency and reduce CO2 emissions. Conventional blast furnace processing of vanadium–titanium magnetite (VTM) in China had been associated with persistent challenges, including suboptimal TiO2 recovery rates (<50%) and elevated carbon intensity (the optimal temperature range for TiO2 recovery lies within 1400–1500 °C). Shaft furnace technology has emerged as a low-carbon alternative, offering accelerated reduction kinetics, operational flexibility, and reduced environmental impact. This study evaluated the low-carbon PLCsmelt process for VTM smelting through energy–mass balance modeling, comparing two gas-recycling configurations. The process integrates a pre-reduction shaft furnace and a melting furnace, where oxidized pellets are initially reduced to direct reduced iron (DRI) before being smelted into hot metal. In Route 1, CO2 emissions of 472.59 Nm3/tHM were generated by pre-reduction gas (1600 Nm3/tHM, 64.73% CO, and 27.17% CO2) and melting furnace top gas (93.98% CO). Route 2 incorporated hydrogen-rich gas through the blending of coke oven gas with recycled streams, achieving a 56.8% reduction in CO2 emissions (204.20 Nm3/tHM) and altering the pre-reduction top gas composition to 24.88% CO and 40.30% H2. Elevating the pre-reduction gas flow in Route 2 resulted in increased CO concentrations in the reducing gas (34.56% to 37.47%) and top gas (21.89% to 26.49%), while gas distribution rebalancing reduced melting furnace top gas flow from 261.03 to 221.93 Nm3/tHM. The results demonstrated that the PLCsmelt process significantly lowered carbon emissions without compromising metallurgical efficiency (CO2 decreased about 74.48% compared with traditional blast furnace which was 800 Nm3/tHM), offering a viable pathway for sustainable VTM utilization. Full article
(This article belongs to the Special Issue Modern Techniques and Processes of Iron and Steel Making)
Show Figures

Figure 1

22 pages, 3405 KiB  
Article
Impact Value Improvement of Polycarbonate by Addition of Layered Carbon Fiber Reinforcement and Effect of Electron Beam Treatment
by Yoshitake Nishi, Naruya Tsuyuki, Michael C. Faudree, Helmut Takahiro Uchida, Kouhei Sagawa, Yoshihito Matsumura, Michelle Salvia and Hideki Kimura
Polymers 2025, 17(8), 1034; https://doi.org/10.3390/polym17081034 - 11 Apr 2025
Cited by 1 | Viewed by 964
Abstract
Polycarbonate (PC) is a highly recyclable thermoplastic with high impact strength that bodes well to re-melting extrusion and shredding for positive environmental impact. For the goal of improving impact strength further, layered carbon fiber (CF) reinforcement has been added between PC sheets by [...] Read more.
Polycarbonate (PC) is a highly recyclable thermoplastic with high impact strength that bodes well to re-melting extrusion and shredding for positive environmental impact. For the goal of improving impact strength further, layered carbon fiber (CF) reinforcement has been added between PC sheets by hot pressing at 6.0 MPa and 537 K for 8 min. An addition of cross-weave CF layer reinforcement to PC increased Charpy impact value, auc of the untreated [PC]4[CF]3 composite over that of untreated PC resin reported at all accumulative probabilities, Pf. At medial-Pf of 0.50, auc was increased 3.13 times (213%), while statistically lowest impact value as at Pf = 0 calculated by 3-parameter Weibull equation was boosted 2.64 times (164%). To optimize auc, effect of homogeneous electron beam irradiation (HLEBI) treatment of 43.2, 129, 216, 302, or 432 kGy at 170 kV acceleration voltage to the CF plies before assembly with PC then hot press was also investigated. The 216 kGy HLEBI dose appears to be optimum, raising as at Pf = 0 about 6.5% over that of untreated [PC]4[CF]3 and agrees with a previous study that showed 216 kGy to be optimum for static 3-point bending strength, when quality can be controlled. Electron spin resonance (ESR) data confirms 216 kGy HLEBI generates strong peaks in CF and PC indicating dangling bond (DB) generation. Bending strength increase was higher than that of impact due to lower test velocity and higher deformation area spreading along specimen length, allowing more DBs to take on the load. X-ray photoelectron spectroscopy (XPS) data of CF top ~10 nm surface layer in the sizing confirms C–O–H, C–H, and C–O peak height from 216 kGy exhibited little or no change compared with untreated. However, 432 kGy increased the peak heights indicating enhanced adhesion to PC. However, 432 kGy degraded as at Pf = 0 of the [PC]4[CF]3, and is reported to decrease impact strength of PC itself by excess dangling bond formation. Thus, the 432 kGy created increased PC/CF adhesion, but degraded the PC resin. Therefore, 216 kGy of 170 kV-HLEBI appeared to be a well-balanced condition between the PC-cohesive force and PC/CF interface adhesive force when fabricating [PC]4[CF]3. Full article
(This article belongs to the Special Issue Fiber-Reinforced Polymer Composites: Progress and Prospects)
Show Figures

Figure 1

20 pages, 2113 KiB  
Article
Identifying Influential Nodes Based on Evidence Theory in Complex Network
by Fu Tan, Xiaolong Chen, Rui Chen, Ruijie Wang, Chi Huang and Shimin Cai
Entropy 2025, 27(4), 406; https://doi.org/10.3390/e27040406 - 10 Apr 2025
Cited by 1 | Viewed by 717
Abstract
Influential node identification is an important and hot topic in the field of complex network science. Classical algorithms for identifying influential nodes are typically based on a single attribute of nodes or the simple fusion of a few attributes. However, these methods perform [...] Read more.
Influential node identification is an important and hot topic in the field of complex network science. Classical algorithms for identifying influential nodes are typically based on a single attribute of nodes or the simple fusion of a few attributes. However, these methods perform poorly in real networks with high complexity and diversity. To address this issue, a new method based on the Dempster–Shafer (DS) evidence theory is proposed in this paper, which improves the efficiency of identifying influential nodes through the following three aspects. Firstly, Dempster–Shafer evidence theory quantifies uncertainty through its basic belief assignment function and combines evidence from different information sources, enabling it to effectively handle uncertainty. Secondly, Dempster–Shafer evidence theory processes conflicting evidence using Dempster’s rule of combination, enhancing the reliability of decision-making. Lastly, in complex networks, information may come from multiple dimensions, and the Dempster–Shafer theory can effectively integrate this multidimensional information. To verify the effectiveness of the proposed method, extensive experiments are conducted on real-world complex networks. The results show that, compared to the other algorithms, attacking the influential nodes identified by the DS method is more likely to lead to the disintegration of the network, which indicates that the DS method is more effective for identifying the key nodes in the network. To further validate the reliability of the proposed algorithm, we use the visibility graph algorithm to convert the GBP futures time series into a complex network and then rank the nodes in the network using the DS method. The results show that the top-ranked nodes correspond to the peaks and troughs of the time series, which represents the key turning points in price changes. By conducting an in-depth analysis, investors can uncover major events that influence price trends, once again confirming the effectiveness of the algorithm. Full article
(This article belongs to the Special Issue Complexity of Social Networks)
Show Figures

Figure 1

19 pages, 2090 KiB  
Article
Plywood Manufacturing Using Various Combinations of Hardwood Species
by Marcus Cordier, Nils Johannsen, Bettina Kietz, Dirk Berthold and Carsten Mai
Forests 2025, 16(4), 622; https://doi.org/10.3390/f16040622 - 2 Apr 2025
Viewed by 583
Abstract
This study evaluates the potential of various hardwood combinations in plywood production in response to increasing wood demand and a changing roundwood supply in Central Europe. Six different combinations of nine-layer plywood were produced using 2 mm rotary-cut veneers from lime (Tilia [...] Read more.
This study evaluates the potential of various hardwood combinations in plywood production in response to increasing wood demand and a changing roundwood supply in Central Europe. Six different combinations of nine-layer plywood were produced using 2 mm rotary-cut veneers from lime (Tilia spp.), Norway maple (Acer platanoides), European hornbeam (Carpinus betulus), Sycamore maple (Acer pseudoplatanus), mountain ash (Sorbus aucuparia), and European beech (Fagus sylvatica) with phenol–formaldehyde adhesive, and they were compared to silver birch (Betula pendula) plywood as a reference. The raw densities of the test panels varied between 0.85 and 1.04 times the reference density (795 kg m−3). Flexural strengths (the modulus of rupture, MOR) ranged from 68 N mm−2 to 104 N mm−2 for a parallel fibre orientation and 44 N mm−2 to 61 N mm−2 for a perpendicular fibre orientation of the top layers. The modulus of elasticity (MOE) ranged from 7160 N mm−2 to 11,737 N mm−2 for the parallel fibre orientation and from 4366 N mm−2 to 5575 N mm−2 for the perpendicular orientation. The tensile shear strength varied between 0.91 and 1.69 times the reference (1.49 N mm−2). The thickness swelling after 24 h was higher in all variants than the reference (6.4%), with factors between 1.39 and 1.64. A significant effect was observed when layers with a lower density were arranged on the outside and those with a higher density in the core, resulting in a more uniform density distribution across the cross-section after hot pressing. This created a levelling effect on mechanical and physical properties, especially the modulus of rupture (MOR) and the modulus of elasticity (MOE). Overall, the evaluated hardwood combinations demonstrated comparable properties to the birch reference and industrially produced birch plywood. Full article
(This article belongs to the Special Issue Novelties in Wood Engineering and Forestry—2nd Edition)
Show Figures

Figure 1

23 pages, 7017 KiB  
Review
Hot Spots in Urogenital Basic Cancer Research and Clinics
by Claudia Manini, Gorka Larrinaga, Javier C. Angulo and José I. López
Cancers 2025, 17(7), 1173; https://doi.org/10.3390/cancers17071173 - 31 Mar 2025
Cited by 1 | Viewed by 836
Abstract
Urogenital cancer is very common in the male population of Western countries, a problem of major concern for public health systems, and a frequent test subject for oncological research. In this narrative, we identify the main hot topics for clinics and the basic [...] Read more.
Urogenital cancer is very common in the male population of Western countries, a problem of major concern for public health systems, and a frequent test subject for oncological research. In this narrative, we identify the main hot topics for clinics and the basic science of urological cancer in the last few years (from 2021 onwards), considering the information given in the abstracts of almost 300 original articles published in outstanding journals of pathology, urology, and basic science. Once defined, for the top ten list of hot topics (the 2022 WHO update on the classification of urinary and male genital tumors, new entities in kidney cancer, urinary cancer-omics, update on the Gleason grading system, targeted therapies and other novel therapies in renal cancer, news on non-muscle invasive urothelial carcinoma, artificial intelligence in urologic cancer, intratumor heterogeneity influence in therapeutic failures in urologic neoplasms, intratumor microbiome and its influence in urologic tumor aggressiveness, and ecological principles and mathematics applied to urogenital cancer study), each issue is independently reviewed in an attempt to put together the most relevant updates and/or useful features accompanied by selected illustrations. This review article addresses some of the most interesting and current hot spots in urogenital basic cancer research and clinics and is mainly aimed toward clinicians, including pathologists, urologists, and oncologists. Readers are invited to explore each topic for further, more detailed information, in addition to the references provided. Full article
(This article belongs to the Special Issue Insights from the Editorial Board Member)
Show Figures

Figure 1

Back to TopTop