Chemical Characterization of Hot Trub and Residual Yeast: Exploring Beer By-Products for Future Sustainable Agricultural Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Chemicals and Reagents
2.3. Quantification of Mycotoxins
2.4. Chemical Composition Analysis
2.5. Microanalysis and Elemental Composition by ICP-MS
2.6. Bioactive Phenols Monitoring
2.6.1. Determination of the Total Phenolic Content
2.6.2. Determination of the Total Flavonoid Content
2.6.3. Radical Scavenging Activity Assay
2.6.4. Polyphenols Quantification by HPLC-DAD
2.7. Statistical Analysis
3. Results and Discussion
3.1. Levels of Mycotoxins in Hot Trub and Residual Yeast
3.2. Chemical Composition
3.3. Microanalysis and Elemental Composition Results
3.4. Bioactive Phenolic Compounds Analysis
3.5. Statistical Elaboration Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- dos Santos Mathias, T.R.; de Mello, P.P.M.; Sérvulo, E.F.C. Solid wastes in brewing process: A review. J. Brew. Distill 2014, 5, 1–19. [Google Scholar]
- Mussatto, S.I.; Dragone, G.; Roberto, I.C. Brewers’ spent grain: Generation, characteristics and potential applications. J. Cereal Sci. 2006, 43, 1–14. [Google Scholar] [CrossRef]
- Jackowski, M.; Niedźwiecki, Ł.; Jagiełło, K.; Uchańska, O.; Trusek, A. Brewer’s spent grains—Valuable beer industry by-product. Biomolecules 2020, 10, 1669. [Google Scholar] [CrossRef] [PubMed]
- Ortiz, I.; Torreiro, Y.; Molina, G.; Maroño, M.; Sánchez, J. A feasible application of circular economy: Spent grain energy recovery in the beer industry. Waste Biomass Valorization 2019, 10, 3809–3819. [Google Scholar] [CrossRef]
- Mudura, E.; Coldea, T. Hop-derived prenylflavonoids and their importance in brewing technology: A review. BUASVM Food Sci. Technol. 2015, 72, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Bamforth, C. Brewing: New Technologies; Woodhead Publishing: New Delhi, India, 2006. [Google Scholar]
- Rachwał, K.; Waśko, A.; Gustaw, K.; Polak-Berecka, M. Utilization of brewery wastes in food industry. PeerJ 2020, 8, e9427. [Google Scholar] [CrossRef]
- Saraiva, B.R.; Anjo, F.A.; Vital, A.C.P.; da Silva, L.H.M.; Ogawa, C.Y.L.; Sato, F.; Coimbra, L.B.; Matumoto-Pintro, P.T. Waste from brewing (trub) as a source of protein for the food industry. Int. J. Food Sci. Technol. 2019, 54, 1247–1255. [Google Scholar] [CrossRef]
- Jaeger, A.; Arendt, E.K.; Zannini, E.; Sahin, A.W. Brewer’s spent yeast (BSY), an underutilized brewing by-product. Fermentation 2020, 6, 123. [Google Scholar] [CrossRef]
- Sterczyńska, M.; Zdaniewicz, M.; Wolny-Koładka, K. Rheological and microbiological characteristics of hops and hot trub particles formed during beer production. Molecules 2021, 26, 681. [Google Scholar] [CrossRef]
- de Andrade Silva, G.V.; Arend, G.D.; Zielinski, A.A.F.; Di Luccio, M.; Ambrosi, A. Xanthohumol properties and strategies for extraction from hops and brewery residues: A review. Food Chem. 2023, 404, 134629. [Google Scholar] [CrossRef]
- 34.3 bn Litres of Beer Produced in the EU in 2023. Eurostat News, Dataset: DS-056120 ed. Available online: https://ec.europa.eu/eurostat/en/web/products-eurostat-news/w/edn-20240802-1 (accessed on 9 September 2024).
- Cimini, A.; Moresi, M. Circular economy in the brewing chain. Ital. J. Food Sci. 2021, 33, 47–69. [Google Scholar] [CrossRef]
- Karlović, A.; Jurić, A.; Ćorić, N.; Habschied, K.; Krstanović, V.; Mastanjević, K. By-products in the malting and brewing industries—Re-usage possibilities. Fermentation 2020, 6, 82. [Google Scholar] [CrossRef]
- Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on Waste and Repealing Certain Directives (Text with EEA Relevance). Eur-Lex. 2008. Available online: https://eur-lex.europa.eu/eli/dir/2008/98/oj/eng (accessed on 9 September 2024).
- Dzuman, Z.; Zachariasova, M.; Lacina, O.; Veprikova, Z.; Slavikova, P.; Hajslova, J. A rugged high-throughput analytical approach for the determination and quantification of multiple mycotoxins in complex feed matrices. Talanta 2014, 121, 263–272. [Google Scholar] [CrossRef]
- ISO 17034:2016; General Requirements for the Competence of Reference Material Producers. Available online: https://www.iso.org/standard/29357.html (accessed on 19 September 2024).
- Piatti, D.; Marconi, R.; Caprioli, G.; Angeloni, S.; Ricciutelli, M.; Zengin, G.; Maggi, F.; Pagni, L.; Sagratini, G. Assessment and Comparison of Phytochemical Constituents and Biological Activities between Full Flowering and Late Flowering of Hypericum perforatum L. Appl. Sci. 2023, 13, 13304. [Google Scholar]
- Alessandroni, L.; Bellabarba, L.; Corsetti, S.; Sagratini, G. Valorization of Cynara cardunculus L. var. scolymus Processing By-Products of Typical Landrace “Carciofo Di Montelupone” from Marche Region (Italy). Gastronomy 2024, 2, 129–140. [Google Scholar] [CrossRef]
- Giusti, F.; Caprioli, G.; Ricciutelli, M.; Vittori, S.; Sagratini, G. Determination of fourteen polyphenols in pulses by high performance liquid chromatography-diode array detection (HPLC-DAD) and correlation study with antioxidant activity and colour. Food Chem. 2017, 221, 689–697. [Google Scholar] [CrossRef]
- Nkuimi Wandjou, J.G.; Mevi, S.; Sagratini, G.; Vittori, S.; Dall’Acqua, S.; Caprioli, G.; Lupidi, G.; Mombelli, G.; Arpini, S.; Allegrini, P. Antioxidant and enzyme inhibitory properties of the polyphenolic-rich extract from an ancient apple variety of central Italy (Mela Rosa dei Monti Sibillini). Plants 2019, 9, 9. [Google Scholar] [CrossRef]
- Ciont, C.; Epuran, A.; Kerezsi, A.D.; Coldea, T.E.; Mudura, E.; Pasqualone, A.; Zhao, H.; Suharoschi, R.; Vriesekoop, F.; Pop, O.L. Beer safety: New challenges and future trends within craft and large-scale production. Foods 2022, 11, 2693. [Google Scholar] [CrossRef]
- Prusova, N.; Dzuman, Z.; Jelinek, L.; Karabin, M.; Hajslova, J.; Rychlik, M.; Stranska, M. Free and conjugated Alternaria and Fusarium mycotoxins during Pilsner malt production and double-mash brewing. Food Chem. 2022, 369, 130926. [Google Scholar] [CrossRef]
- Habler, K.; Hofer, K.; Geißinger, C.; Schuler, J.; Huckelhoven, R.; Hess, M.; Gastl, M.; Rychlik, M. Fate of Fusarium toxins during the malting process. J. Agric. Food Chem. 2016, 64, 1377–1384. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Gastl, M.; Linkmeyer, A.; Hess, M.; Rychlik, M. Fate of enniatins and beauvericin during the malting and brewing process determined by stable isotope dilution assays. LWT 2014, 56, 469–477. [Google Scholar] [CrossRef]
- Lago, L.O.; Maciel, J.B.H.; Costa, G.P.; Mallmann, L.P.; Veras, F.F.; Welke, J.E. Fate of enniatins in the Ale beer production stages analyzed by a validated method based on matrix-matched calibration and LC-QToF-MS. Food Chem. 2022, 384, 132484. [Google Scholar] [CrossRef] [PubMed]
- Benford, D.; Ceccatelli, S.; Cottrill, B.; Dinovi, M.; Dogliotti, E.; Edler, L.; Farmer, P.; Fuerst, P.; Hoogenboom, L.; Knutsen, H.K. Scientific Opinion on the risks for human and animal health related to the presence of modified forms of certain mycotoxins in food and feed. EFSA J. 2014, 12, 3916. [Google Scholar]
- Mertz, D.; Edward, T.; Lee, D.; Zuber, M. Absorption of aflatoxin by lettuce seedlings grown in soil adulterated with aflatoxin B1. J. Agric. Food Chem. 1981, 29, 1168–1170. [Google Scholar] [CrossRef]
- Mantle, P.G.; Chow, A.M. Ochratoxin formation in Aspergillus ochraceus with particular reference to spoilage of coffee. Int. J. Food Microbiol. 2000, 56, 105–109. [Google Scholar] [CrossRef]
- Santos, L.G.; Martins, V.G. Functional, thermal, bioactive and antihypertensive properties of hot trub derived from brewing waste as an alternative source of protein. Food Hydrocoll. 2024, 146, 109292. [Google Scholar] [CrossRef]
- Saraiva, B.R.; Zancheta, J.C.; Sversut Gibin, M.; Anjo, F.A.; Lazzari, A.; Machado Filho, E.R.; Sato, F.; Matumoto-Pintro, P. Brewing by-product valorisation: Trub debittered for nutritional and quality improvement of pasta. Int. J. Food Sci. Nutr. 2022, 73, 915–926. [Google Scholar] [CrossRef]
- Sterczyńska, M.; Stachnik, M.; Poreda, A.; Pużyńska, K.; Piepiórka-Stepuk, J.; Fiutak, G.; Jakubowski, M. Ionic composition of beer worts produced with selected unmalted grains. LWT 2021, 137, 110348. [Google Scholar] [CrossRef]
- Podpora, B.; Świderski, F.; Sadowska, A.; Rakowska, R.; Wasiak-Zys, G. Spent brewer’s yeast extracts as a new component of functional food. Czech J. Food Sci. 2016, 34, 554. [Google Scholar] [CrossRef]
- Mathias, T.R.d.S.; Alexandre, V.M.F.; Cammarota, M.C.; de Mello, P.P.M.; Sérvulo, E.F.C. Characterization and determination of brewer’s solid wastes composition. J. Inst. Brew. 2015, 121, 400–404. [Google Scholar] [CrossRef]
- Michailidis, P.A.; Krokida, M.K. Drying and dehydration processes in food preservation and processing. Conv. Adv. Food Process. Technol. 2014, 1, 1–32. [Google Scholar]
- Anas, M.; Liao, F.; Verma, K.K.; Sarwar, M.A.; Mahmood, A.; Chen, Z.-L.; Li, Q.; Zeng, X.-P.; Liu, Y.; Li, Y.-R. Fate of nitrogen in agriculture and environment: Agronomic, eco-physiological and molecular approaches to improve nitrogen use efficiency. Biol. Res. 2020, 53, 47. [Google Scholar] [CrossRef]
- Biederbeck, V. Soil organic sulfur and fertility. In Developments in Soil Science; Elsevier: Amsterdam, The Netherlands, 1978; pp. 273–310. [Google Scholar]
- Krapp, A.; Traong, H.-N. Regulation of C/N interaction in model plant species. J. Crop Improv. 2006, 15, 127–173. [Google Scholar] [CrossRef]
- Mikula, K.; Izydorczyk, G.; Skrzypczak, D.; Mironiuk, M.; Moustakas, K.; Witek-Krowiak, A.; Chojnacka, K. Controlled release micronutrient fertilizers for precision agriculture—A review. Sci. Total Environ. 2020, 712, 136365. [Google Scholar] [CrossRef] [PubMed]
- Calvo, P.; Nelson, L.; Kloepper, J.W. Agricultural uses of plant biostimulants. Plant Soil 2014, 383, 3–41. [Google Scholar] [CrossRef]
- Rouphael, Y.; Colla, G. Biostimulants in Agriculture; Frontiers Media SA: Lausanne, Switzerland, 2020; p. 40. [Google Scholar]
- Fărcaş, A.; Tofană, M.; Socaci, S.; Scrob, S.; Salanţă, L.; Borşa, A. Preliminary study on antioxidant activity and polyphenols content in discharged waste from beer production. J. Agroaliment. Process. Technol. 2013, 19, 319–324. [Google Scholar]
- León-González, M.E.; Gómez-Mejía, E.; Rosales-Conrado, N.; Madrid-Albarrán, Y. Residual brewing yeast as a source of polyphenols: Extraction, identification and quantification by chromatographic and chemometric tools. Food Chem. 2018, 267, 246–254. [Google Scholar] [CrossRef]
- Senna Ferreira Costa, F.; Roquete Amparo, T.; Brandão Seibert, J.; Silveira, B.M.; Gomes da Silva, R.; Inocêncio Pereira, D.; Gontijo Garcia Barbosa, R.; dos Santos, O.D.H.; Brandão, G.C.; de Medeiros Teixeira, L.F. Reuse of hot trub as an active ingredient with antioxidant and antimicrobial potential. Waste Biomass Valorization 2021, 12, 2037–2047. [Google Scholar] [CrossRef]
- Barbosa-Pereira, L.; Angulo, I.; Paseiro-Losada, P.; Cruz, J.M. Phenolic profile and antioxidant properties of a crude extract obtained from a brewery waste stream. Food Res. Int. 2013, 51, 663–669. [Google Scholar] [CrossRef]
- Hejna, A. More than just a beer—The potential applications of by-products from beer manufacturing in polymer technology. Emergent Mater. 2022, 5, 765–783. [Google Scholar] [CrossRef]
- Silva, K.F.C.E.; Strieder, M.M.; Pinto, M.B.C.; Rostagno, M.A.; Hubinger, M.D. Processing strategies for extraction and concentration of bitter acids and polyphenols from brewing by-products: A comprehensive review. Processes 2023, 11, 921. [Google Scholar] [CrossRef]
- Kisiriko, M.; Anastasiadi, M.; Terry, L.A.; Yasri, A.; Beale, M.H.; Ward, J.L. Phenolics from medicinal and aromatic plants: Characterisation and potential as biostimulants and bioprotectants. Molecules 2021, 26, 6343. [Google Scholar] [CrossRef] [PubMed]
- Cesco, S.; Mimmo, T.; Tonon, G.; Tomasi, N.; Pinton, R.; Terzano, R.; Neumann, G.; Weisskopf, L.; Renella, G.; Landi, L. Plant-borne flavonoids released into the rhizosphere: Impact on soil bio-activities related to plant nutrition. A review. Biol. Fertil. Soils 2012, 48, 123–149. [Google Scholar] [CrossRef]
- Mussatto, S.I. Brewer’s spent grain: A valuable feedstock for industrial applications. J. Sci. Food Agric. 2014, 94, 1264–1275. [Google Scholar] [CrossRef]
Compounds | Top-Fermented Beer | Bottom-Fermented Beer | ||
---|---|---|---|---|
Hot Trub (HTTF) | Residual Yeast (RYTF) | Hot Trub (HTBF) | Residual Yeast (RYBF) | |
Moisture (g/100 g) | 1.83 ± 0.07 c | 6.85 ± 0.25 a | 2.67 ± 0.10 b | 6.42 ± 0.23 a |
Carbohydrates (g/100 g) | 72.39 ± 1.08 a | 49.90 ± 1.70 c | 59.67 ± 1.42 b | 31.96 ± 2.19 d |
Proteins (g/100 g) | 17.95 ± 0.89 d | 24.3 ± 1.12 c | 30.2 ± 1.34 b | 52.4 ± 2.12 a |
Total fats (g/100 g) | 4.93 ± 0.58 b | 12.6 ± 1.2 a | 4.45 ± 0.53 b | 3.33 ± 0.39 b |
Ash (g/100 g) | 2.90 ± 0.20 b | 6.35 ± 0.43 a | 2.92 ± 0.2 a | 5.89 ± 0.40 a |
Carbon (C) (% w/w) | 46.44 ± 0.27 | 46.27 ± 0.57 | 46.89 ± 0.11 | 43.18 ± 0.19 |
Nitrogen (N) (% w/w) | 2.97 ± 0.19 d | 3.63 ± 0.003 c | 5.46 ± 0.55 b | 8.15 ± 0.14 a |
Hydrogen (H) (% w/w) | 6.74 ± 0.32 | 6.32 ± 0.13 | 6.66 ± 0.07 | 6.65 ± 0.01 |
Sulfur (S) (% w/w) | 0.61 ± 0.35 a | 0.27 ± 0.005 b | 0.65 ± 0.06 a | 0.52 ± 0.11 a |
C/N Ratio | 15.66 ± 1.08 a | 12.74 ± 0.17 b | 8.63 ± 0.89 c | 5.30 ± 0.11 d |
Compounds | Top-Fermented Beer | Bottom-Fermented Beer | ||
---|---|---|---|---|
Hot Trub (HTTF) | Residual Yeast (RYTF) | Hot Trub (HTBF) | Residual Yeast (RYBF) | |
DPPH (% Inhibition) | 27.38 ± 2.39 c | 54.71 ± 1.11 a | 47.05 ± 6.06 ab | 39.25 ± 2.32 bc |
TPC (mg GAE/g of dw) | 0.52 ± 0.12 b | 1.65 ± 0.06 a | 0.40 ± 0.01 b | 0.50 ± 0.02 b |
TFC (mg RTE/g of dw) | 2.71 ± 0.60 b | 8.15 ± 0.09 a | 1.63 ± 0.16 c | 2.05 ± 0.03 bc |
Catechin | n.d. | 2.17 ± 0.19 | n.d. | n.d. |
Gallic acid | 9.12 ± 0.70 a | 8.17 ± 0.15 ab | 7.63 ± 0.40 b | 7.68 ± 0.08 b |
Kaempferol | 1.32 ± 0.06 b | 1.28 ± 0.01 bc | 3.21 ± 0.05 a | 1.17 ± 0.03 c |
Kaempferol-3-glucoside | 2.90 ± 0.27 a | 0.97 ± 0.09 b | n.d. | n.d. |
Oleanolic acid | 12.15 ± 1.02 | n.d. | 10.96 ± 0.67 | n.d. |
Phloretin | 4.60 ± 0.44 a | n.d. | 2.05 ± 0.19 b | n.d. |
Phlorizin | 13.80 ± 1.51 a | 3.70 ± 0.07 b | 4.62 ± 0.07 a | n.d. |
Procyanidin A2 | 0.99 ± 0.05 b | 1.11 ± 0.1 a | n.d. | 0.22 ± 0.02 c |
Quercetin | 1.37 ± 0.15 b | 3.31 ± 0.02 a | 0.99 ± 0.05 c | n.d. |
Quercetin-3-D-galactoside | 9.83 ± 0.96 | n.d. | n.d. | n.d. |
trans-Ferulic acid | 0.22 ± 0.02 b | 1.02 ± 0.11 a | 0.30 ± 0.02 b | 0.32 ± 0.015 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alessandroni, L.; Marconi, R.; Zannotti, M.; Ferraro, S.; Dolezalova, T.; Piatti, D.; Namazzadeh, G.; Angeloni, S.; Sagratini, G. Chemical Characterization of Hot Trub and Residual Yeast: Exploring Beer By-Products for Future Sustainable Agricultural Applications. Foods 2025, 14, 2081. https://doi.org/10.3390/foods14122081
Alessandroni L, Marconi R, Zannotti M, Ferraro S, Dolezalova T, Piatti D, Namazzadeh G, Angeloni S, Sagratini G. Chemical Characterization of Hot Trub and Residual Yeast: Exploring Beer By-Products for Future Sustainable Agricultural Applications. Foods. 2025; 14(12):2081. https://doi.org/10.3390/foods14122081
Chicago/Turabian StyleAlessandroni, Laura, Riccardo Marconi, Marco Zannotti, Stefano Ferraro, Tereza Dolezalova, Diletta Piatti, Ghazal Namazzadeh, Simone Angeloni, and Gianni Sagratini. 2025. "Chemical Characterization of Hot Trub and Residual Yeast: Exploring Beer By-Products for Future Sustainable Agricultural Applications" Foods 14, no. 12: 2081. https://doi.org/10.3390/foods14122081
APA StyleAlessandroni, L., Marconi, R., Zannotti, M., Ferraro, S., Dolezalova, T., Piatti, D., Namazzadeh, G., Angeloni, S., & Sagratini, G. (2025). Chemical Characterization of Hot Trub and Residual Yeast: Exploring Beer By-Products for Future Sustainable Agricultural Applications. Foods, 14(12), 2081. https://doi.org/10.3390/foods14122081