Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,776)

Search Parameters:
Keywords = host resistance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 10760 KiB  
Article
Pseudomonas Phage Banzai: Genomic and Functional Analysis of Novel Pbunavirus with Lytic Activity Against Pseudomonas aeruginosa
by Andrei V. Chaplin, Nina N. Sykilinda, George A. Skvortsov, Konstantin S. Troshin, Anna A. Vasilyeva, Sofia A. Shuraleva, Artem A. Malkov, Vladislav S. Simonov, Boris A. Efimov, Lyudmila I. Kafarskaia, Konstantin A. Miroshnikov, Anna A. Kuznetsova and Peter V. Evseev
Viruses 2025, 17(8), 1088; https://doi.org/10.3390/v17081088 - 6 Aug 2025
Abstract
Antibiotic-resistant Pseudomonas aeruginosa presents a critical global health challenge, particularly in hospital-acquired infections. Bacteriophages offer a promising therapeutic avenue due to their ability to target and lyse resistant strains. This study characterizes Pseudomonas phage Banzai, a newly isolated Pbunavirus (family Lindbergviridae) with [...] Read more.
Antibiotic-resistant Pseudomonas aeruginosa presents a critical global health challenge, particularly in hospital-acquired infections. Bacteriophages offer a promising therapeutic avenue due to their ability to target and lyse resistant strains. This study characterizes Pseudomonas phage Banzai, a newly isolated Pbunavirus (family Lindbergviridae) with lytic activity against multiple P. aeruginosa isolates, including multidrug-resistant strains. Genomic analysis revealed a 66,189 bp genome, lacking antibiotic resistance or virulence factors, and suggested a headful packaging mechanism and the presence of a bidirectional component in the replication. In vivo experiments using Galleria mellonella showed therapeutic potential, significantly improving larval survival (87% at 24 h). Host range analysis revealed activity against 13 of 30 P. aeruginosa isolates, including members of O1, O3, O5 and O6 in silico predicted serogroups. Phylogenomic analyses place phage Banzai within the genus Pbunavirus, sharing 94.8% intergenomic similarity with its closest relatives, supporting its classification as a novel species. These findings highlight phage Banzai as a potential candidate for phage therapy, demonstrating genomic stability, a strictly lytic lifestyle, and in vivo efficacy. Full article
(This article belongs to the Section Bacterial Viruses)
Show Figures

Figure 1

18 pages, 5973 KiB  
Article
Genome-Wide Identification and Characterisation of the 4-Coumarate–CoA Ligase (4CL) Gene Family in Gastrodia elata and Their Transcriptional Response to Fungal Infection
by Shan Sha, Kailang Mu, Qiumei Luo, Shi Yao, Tianyu Tang, Wei Sun, Zhigang Ju and Yuxin Pang
Int. J. Mol. Sci. 2025, 26(15), 7610; https://doi.org/10.3390/ijms26157610 - 6 Aug 2025
Abstract
Gastrodia elata Blume is an important medicinal orchid, yet its large-scale cultivation is increasingly threatened by fungal diseases. The 4-coumarate–CoA ligase (4CL) gene family directs a key step in phenylpropanoid metabolism and plant defence, but its composition and function in G. elata have [...] Read more.
Gastrodia elata Blume is an important medicinal orchid, yet its large-scale cultivation is increasingly threatened by fungal diseases. The 4-coumarate–CoA ligase (4CL) gene family directs a key step in phenylpropanoid metabolism and plant defence, but its composition and function in G. elata have not been investigated. We mined the G. elata genome for 4CL homologues, mapped their chromosomal locations, and analysed their gene structures, conserved motifs, phylogenetic relationships, promoter cis-elements and codon usage bias. Publicly available transcriptomes were used to examine tissue-specific expression and responses to fungal infection. Subcellular localisation of selected proteins was verified by transient expression in Arabidopsis protoplasts. Fourteen Ge4CL genes were identified and grouped into three clades. Two members, Ge4CL2 and Ge4CL5, were strongly upregulated in tubers challenged with fungal pathogens. Ge4CL2 localised to the nucleus, whereas Ge4CL5 localised to both the nucleus and the cytoplasm. Codon usage analysis suggested that Escherichia coli and Oryza sativa are suitable heterologous hosts for Ge4CL expression. This study provides the first genome-wide catalogue of 4CL genes in G. elata and suggests that Ge4CL2 and Ge4CL5 may participate in antifungal defence, although functional confirmation is still required. The dataset furnishes a foundation for functional characterisation and the molecular breeding of disease-resistant G. elata cultivars. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

19 pages, 2475 KiB  
Article
Phage Host Range Expansion Through Directed Evolution on Highly Phage-Resistant Strains of Klebsiella pneumoniae
by Kevin A. Burke, Tracey L. Peters, Olga A. Kirillina, Caitlin D. Urick, Bertran D. Walton, Jordan T. Bird, Nino Mzhavia, Martin O. Georges, Paphavee Lertsethtakarn, Lillian A. Musila, Mikeljon P. Nikolich and Andrey A. Filippov
Int. J. Mol. Sci. 2025, 26(15), 7597; https://doi.org/10.3390/ijms26157597 - 6 Aug 2025
Abstract
Multidrug-resistant (MDR) strains of Klebsiella pneumoniae present an acute threat as they continue to disseminate globally. Phage therapy has shown promise as a powerful approach to combat MDR infections, but narrow phage host ranges make development of broad acting therapeutics more challenging. The [...] Read more.
Multidrug-resistant (MDR) strains of Klebsiella pneumoniae present an acute threat as they continue to disseminate globally. Phage therapy has shown promise as a powerful approach to combat MDR infections, but narrow phage host ranges make development of broad acting therapeutics more challenging. The goal of this effort was to use in vitro directed evolution (the “Appelmans protocol”) to isolate K. pneumoniae phages with broader host ranges for improved therapeutic cocktails. Five myophages in the genus Jiaodavirus (family Straboviridae) with complementary activity were mixed and passaged against a panel of 11 bacterial strains including a permissive host and phage-resistant clinical isolates. Following multiple rounds of training, we collected phage variants displaying altered specificity or expanded host ranges compared with parental phages when tested against a 100 strain diversity panel of K. pneumoniae. Some phage variants gained the ability to lyse previously phage-resistant strains but lost activity towards previously phage-susceptible strains, while several variants had expanded activity. Whole-genome sequencing identified mutations and recombination events impacting genes associated with host tropism including tail fiber genes that most likely underlie the observed changes in host ranges. Evolved phages with broader activity are promising candidates for improved K. pneumoniae therapeutic phage cocktails. Full article
(This article belongs to the Special Issue Bacteriophage—Molecular Studies (6th Edition))
Show Figures

Figure 1

24 pages, 3858 KiB  
Review
Emerging Strategies for Aflatoxin Resistance in Peanuts via Precision Breeding
by Archana Khadgi, Saikrisha Lekkala, Pankaj K. Verma, Naveen Puppala and Madhusudhana R. Janga
Toxins 2025, 17(8), 394; https://doi.org/10.3390/toxins17080394 - 6 Aug 2025
Abstract
Aflatoxin contamination, primarily caused by Aspergillus flavus, poses a significant threat to peanut (Arachis hypogaea L.) production, food safety, and global trade. Despite extensive efforts, breeding for durable resistance remains difficult due to the polygenic and environmentally sensitive nature of resistance. [...] Read more.
Aflatoxin contamination, primarily caused by Aspergillus flavus, poses a significant threat to peanut (Arachis hypogaea L.) production, food safety, and global trade. Despite extensive efforts, breeding for durable resistance remains difficult due to the polygenic and environmentally sensitive nature of resistance. Although germplasm such as J11 have shown partial resistance, none of the identified lines demonstrated stable or comprehensive protection across diverse environments. Resistance involves physical barriers, biochemical defenses, and suppression of toxin biosynthesis. However, these traits typically exhibit modest effects and are strongly influenced by genotype–environment interactions. A paradigm shift is underway with increasing focus on host susceptibility (S) genes, native peanut genes exploited by A. flavus to facilitate colonization or toxin production. Recent studies have identified promising S gene candidates such as AhS5H1/2, which suppress salicylic acid-mediated defense, and ABR1, a negative regulator of ABA signaling. Disrupting such genes through gene editing holds potential for broad-spectrum resistance. To advance resistance breeding, an integrated pipeline is essential. This includes phenotyping diverse germplasm under stress conditions, mapping resistance loci using QTL and GWAS, and applying multi-omics platforms to identify candidate genes. Functional validation using CRISPR/Cas9, Cas12a, base editors, and prime editing allows precise gene targeting. Validated genes can be introgressed into elite lines through breeding by marker-assisted and genomic selection, accelerating the breeding of aflatoxin-resistant peanut varieties. This review highlights recent advances in peanut aflatoxin resistance research, emphasizing susceptibility gene targeting and genome editing. Integrating conventional breeding with multi-omics and precision biotechnology offers a promising path toward developing aflatoxin-free peanut cultivars. Full article
(This article belongs to the Special Issue Strategies for Mitigating Mycotoxin Contamination in Food and Feed)
Show Figures

Figure 1

16 pages, 3142 KiB  
Review
Mechanisms of Resistance of Oryza sativa to Phytophagous Insects and Modulators Secreted by Nilaparvata lugens (Hemiptera, Delphacidae) When Feeding on Rice Plants
by Xiaohong Zheng, Weiling Wu, Yuting Huang, Kedong Xu and Xinxin Shangguan
Agronomy 2025, 15(8), 1891; https://doi.org/10.3390/agronomy15081891 - 6 Aug 2025
Abstract
The brown planthopper, Nilaparvata lugens (Stål, 1854), is the most devastating pest of rice (Oryza sativa L.). Although insecticides are used to control this pest, host plant resistance is a more effective and economic solution. Therefore, identification of N. lugens-resistant genes [...] Read more.
The brown planthopper, Nilaparvata lugens (Stål, 1854), is the most devastating pest of rice (Oryza sativa L.). Although insecticides are used to control this pest, host plant resistance is a more effective and economic solution. Therefore, identification of N. lugens-resistant genes and elucidation of their underlying resistance mechanisms are critical for developing elite rice cultivars with enhanced and durable resistance. Research has shown that in the long-term evolutionary arms race, rice has developed complex defense systems against N. lugens, while N. lugens has developed diverse and sophisticated strategies to overcome the plant’s defenses. This review emphasizes recent advances in the molecular interactions between rice and the N. lugens, particularly focusing on the resistance mechanisms of 17 cloned major N. lugens resistance genes, which have significantly improved our understanding of the molecular basis of rice–N. lugens interactions. We also highlight the roles of several N. lugens salivary components in activating or suppressing rice defense responses. These insights provide a foundation for developing sustainable and effective strategies to manage this devastating pest of rice. Full article
(This article belongs to the Special Issue New Insights into Pest and Disease Control in Rice)
Show Figures

Figure 1

24 pages, 957 KiB  
Review
Biofilm and Antimicrobial Resistance: Mechanisms, Implications, and Emerging Solutions
by Bharmjeet Singh, Manju Dahiya, Vikram Kumar, Archana Ayyagari, Deepti N. Chaudhari and Jayesh J. Ahire
Microbiol. Res. 2025, 16(8), 183; https://doi.org/10.3390/microbiolres16080183 - 6 Aug 2025
Abstract
Biofilms are a spontaneously formed slimy matrix of extracellular polymeric substances (EPS) enveloping miniature bacterial colonies, which aid in pathogen colonization, shielding the bacteria from antibiotics, as well as imparting them resistance towards the same. Biofilms employ a robust communication mechanism called quorum [...] Read more.
Biofilms are a spontaneously formed slimy matrix of extracellular polymeric substances (EPS) enveloping miniature bacterial colonies, which aid in pathogen colonization, shielding the bacteria from antibiotics, as well as imparting them resistance towards the same. Biofilms employ a robust communication mechanism called quorum sensing that serves to keep their population density constant. What is most significant about biofilms is that they contribute to the development of bacterial virulence by providing protection to pathogenic species, allowing them to colonize the host, and also inhibiting the activities of antimicrobials on them. They grow on animate surfaces (such as on teeth and intestinal mucosa, etc.) and inanimate objects (like catheters, contact lenses, pacemakers, endotracheal devices, intrauterine devices, and stents, etc.) alike. It has been reported that as much as 80% of human infections involve biofilms. Serious implications of biofilms include the necessity of greater concentrations of antibiotics to treat common human infections, even contributing to antimicrobial resistance (AMR), since bacteria embedded within biofilms are protected from the action of potential antibiotics. This review explores various contemporary strategies for controlling biofilms, focusing on their modes of action, mechanisms of drug resistance, and innovative approaches to find a solution in this regard. This review interestingly targets the extracellular polymeric matrix as a highly effective strategy to counteract the potential harm of biofilms since it plays a critical role in biofilm formation and significantly contributes to antimicrobial resistance. Full article
Show Figures

Figure 1

21 pages, 2202 KiB  
Article
Galactose Inhibits the Translation of Erg1 that Enhances the Antifungal Activities of Azoles Against Candida albicans
by Sijin Hang, Li Wang, Zhe Ji, Xuqing Shen, Xinyu Fang, Wanqian Li, Yuanying Jiang and Hui Lu
Antibiotics 2025, 14(8), 799; https://doi.org/10.3390/antibiotics14080799 - 5 Aug 2025
Abstract
Background/Objectives: The diminished efficacy of azoles in treating fungal infections is attributed to the emergence of resistance among pathogenic fungi. Employing a synergistic approach with other compounds to enhance the antifungal activity of azoles has shown promise, yet the availability of clinically valuable [...] Read more.
Background/Objectives: The diminished efficacy of azoles in treating fungal infections is attributed to the emergence of resistance among pathogenic fungi. Employing a synergistic approach with other compounds to enhance the antifungal activity of azoles has shown promise, yet the availability of clinically valuable adjuvants for azoles and allylamines remains limited. Studies have demonstrated that the human host environment provides multiple carbon sources, which can influence the susceptibility of C. albicans to antifungal agents. Therefore, a comprehensive investigation into the mechanisms by which carbon sources modulate the susceptibility of C. albicans to azoles may uncover a novel pathway for enhancing the antifungal efficacy of azoles. Methods: This study explored the impact of various carbon sources on the antifungal efficacy of azoles through methodologies including minimum inhibitory concentration (MIC) assessments, super-MIC growth (SMG) assays, disk diffusion tests, and spot assays. Additionally, the mechanism by which galactose augments the antifungal activity of azoles was investigated using a range of experimental approaches, such as gene knockout and overexpression techniques, quantitative real-time PCR (qRT-PCR), Western blot analysis, and cycloheximide (CHX) chase experiments. Results: This study observed that galactose enhances the efficacy of azoles against C. albicans by inhibiting the translation of Erg1. This results in the suppression of Erg1 protein levels and subsequent inhibition of ergosterol biosynthesis in C. albicans. Conclusions: In C. albicans, the translation of Erg1 is inhibited when galactose is utilized as a carbon source instead of glucose. This novel discovery of galactose’s inhibitory effect on Erg1 translation is expected to enhance the antifungal efficacy of azoles. Full article
Show Figures

Figure 1

12 pages, 3657 KiB  
Communication
The Role of Setophoma terrestris in Pink Root Disease: New Insights and Host Range in Brazil
by Gustavo Henrique Silva Peixoto, Thais Franca Silva, Laura Freitas Copati, Ailton Reis, Valter Rodrigues Oliveira, Valdir Lourenço and Danilo Batista Pinho
J. Fungi 2025, 11(8), 581; https://doi.org/10.3390/jof11080581 - 5 Aug 2025
Abstract
The soil-borne fungi, Setophoma terrestris and Fusarium spp., are often associated with pink root, although the etiology of the disease remains doubtful. While recognized as the primary inoculum, studies show conflicting views on the formation of chlamydospores and microsclerotia in Setophoma. Therefore, [...] Read more.
The soil-borne fungi, Setophoma terrestris and Fusarium spp., are often associated with pink root, although the etiology of the disease remains doubtful. While recognized as the primary inoculum, studies show conflicting views on the formation of chlamydospores and microsclerotia in Setophoma. Therefore, this study aims to clarify the etiology of the pink root of garlic and onion and the formation of chlamydospores and microsclerotia in Setophoma. The isolates were obtained from symptomatic tissues of garlic, leeks, brachiaria, onions, chives, and maize collected from seven different states in Brazil. Representative isolates were selected for pathogenicity tests. Sequence comparison of the tubulin gene showed Setophoma (n = 50) and Fusarium clades (n = 25). Garlic and onion plants inoculated with Setophoma showed pink root symptoms, while plants inoculated with different Fusarium isolates remained asymptomatic. Multigene analysis of pathogenic isolates confirms that only Setophoma terrestris causes pink root in garlic and onion. In addition, brachiaria, chives, and leeks are newly identified hosts of this pathogen in Brazil. To our knowledge, the main sources of primary inoculum of the disease are chlamydospores, pycnidia, colonized roots of garlic, onion, and plant debris of susceptible crops. The new information obtained in this study will be fundamental for researchers in the development of genotypes that are resistant to pink root and will help the efficient management of the disease. Full article
(This article belongs to the Special Issue Current Research in Soil Borne Plant Pathogens)
Show Figures

Figure 1

24 pages, 1542 KiB  
Review
Genome-Editing Tools for Lactic Acid Bacteria: Past Achievements, Current Platforms, and Future Directions
by Leonid A. Shaposhnikov, Aleksei S. Rozanov and Alexey E. Sazonov
Int. J. Mol. Sci. 2025, 26(15), 7483; https://doi.org/10.3390/ijms26157483 - 2 Aug 2025
Viewed by 148
Abstract
Lactic acid bacteria (LAB) are central to food, feed, and health biotechnology, yet their genomes have long resisted rapid, precise manipulation. This review charts the evolution of LAB genome-editing strategies from labor-intensive RecA-dependent double-crossovers to state-of-the-art CRISPR and CRISPR-associated transposase systems. Native homologous [...] Read more.
Lactic acid bacteria (LAB) are central to food, feed, and health biotechnology, yet their genomes have long resisted rapid, precise manipulation. This review charts the evolution of LAB genome-editing strategies from labor-intensive RecA-dependent double-crossovers to state-of-the-art CRISPR and CRISPR-associated transposase systems. Native homologous recombination, transposon mutagenesis, and phage-derived recombineering opened the door to targeted gene disruption, but low efficiencies and marker footprints limited throughput. Recent phage RecT/RecE-mediated recombineering and CRISPR/Cas counter-selection now enable scar-less point edits, seamless deletions, and multi-kilobase insertions at efficiencies approaching model organisms. Endogenous Cas9 systems, dCas-based CRISPR interference, and CRISPR-guided transposases further extend the toolbox, allowing multiplex knockouts, precise single-base mutations, conditional knockdowns, and payloads up to 10 kb. The remaining hurdles include strain-specific barriers, reliance on selection markers for large edits, and the limited host-range of recombinases. Nevertheless, convergence of phage enzymes, CRISPR counter-selection and high-throughput oligo recombineering is rapidly transforming LAB into versatile chassis for cell-factory and therapeutic applications. Full article
(This article belongs to the Special Issue Probiotics in Health and Disease)
Show Figures

Figure 1

18 pages, 2188 KiB  
Article
Rational Engineering of a Brevinin-2 Peptide: Decoupling Potency from Toxicity Through C-Terminal Truncation and N-Terminal Chiral Substitution
by Aifang Yao, Zeyu Zhang, Zhengmin Song, Yi Yuan, Xiaoling Chen, Chengbang Ma, Tianbao Chen, Chris Shaw, Mei Zhou and Lei Wang
Antibiotics 2025, 14(8), 784; https://doi.org/10.3390/antibiotics14080784 - 1 Aug 2025
Viewed by 98
Abstract
Background/Objectives: The clinical potential of antimicrobial peptides (AMPs) against dual threats like antimicrobial resistance (AMR) and cancer is often limited by their high host cell toxicity. Here, we focused on brevinin-2OS (B2OS), a novel peptide from the skin of Odorrana schmackeri with [...] Read more.
Background/Objectives: The clinical potential of antimicrobial peptides (AMPs) against dual threats like antimicrobial resistance (AMR) and cancer is often limited by their high host cell toxicity. Here, we focused on brevinin-2OS (B2OS), a novel peptide from the skin of Odorrana schmackeri with potent haemolytic activity. The objective was to study the structure–activity relationship and optimise the safety via targeted modifications. Methods: A dual-modification strategy involving C-terminal truncation and subsequent N-terminal D-amino acid substitution was employed. The bioactivities and safety profiles of the resulting analogues were evaluated using antimicrobial, haemolysis, and cytotoxicity assays. Result: Removal of the rana box in B2OS(1-22)-NH2 substantially reduced haemolysis while maintaining bioactivities. Remarkably, the D-leucine substitution in [D-Leu2]B2OS(1-22)-NH2 displayed a superior HC50 value of 118.1 µM, representing a more than ten-fold improvement compared to its parent peptide (HC50 of 10.44 µM). This optimised analogue also demonstrated faster bactericidal kinetics and enhanced membrane permeabilisation, leading to a greater than 22-fold improvement in its therapeutic index against Gram-positive bacteria. Conclusions: The C-terminal rana box is a primary determinant of toxicity rather than a requirement for activity in the B2OS scaffold. The engineered peptide [D-Leu2]B2OS(1-22)-NH2 emerges as a promising lead compound, and this dual-modification strategy provides a powerful design principle for developing safer, more effective peptide-based therapeutics. Full article
(This article belongs to the Section Antimicrobial Peptides)
Show Figures

Figure 1

20 pages, 3136 KiB  
Review
The Role of Genomic Islands in the Pathogenicity and Evolution of Plant-Pathogenic Gammaproteobacteria
by Yuta Watanabe, Yasuhiro Ishiga and Nanami Sakata
Microorganisms 2025, 13(8), 1803; https://doi.org/10.3390/microorganisms13081803 - 1 Aug 2025
Viewed by 101
Abstract
Genomic islands (GIs) including integrative and conjugative elements (ICEs), prophages, and integrative plasmids are central drivers of horizontal gene transfer in bacterial plant pathogens. These elements often carry cargo genes encoding virulence factors, antibiotic and metal resistance determinants, and metabolic functions that enhance [...] Read more.
Genomic islands (GIs) including integrative and conjugative elements (ICEs), prophages, and integrative plasmids are central drivers of horizontal gene transfer in bacterial plant pathogens. These elements often carry cargo genes encoding virulence factors, antibiotic and metal resistance determinants, and metabolic functions that enhance environmental adaptability. In plant-pathogenic species such as Pseudomonas syringae, GIs contribute to host specificity, immune evasion, and the emergence of novel pathogenic variants. ICEclc and its homologs represent integrative and mobilizable elements whose tightly regulated excision and transfer are driven by a specialized transcriptional cascade, while ICEs in P. syringae highlight the ecological impact of cargo genes on pathogen virulence and fitness. Pathogenicity islands further modulate virulence gene expression in response to in planta stimuli. Beyond P. syringae, GIs in genera such as Erwinia, Pectobacterium, and Ralstonia underpin critical traits like toxin biosynthesis, secretion system acquisition, and topoisomerase-mediated stability. Leveraging high-throughput genomics and structural biology will be essential to dissect GI regulation and develop targeted interventions to curb disease spread. This review synthesizes the current understanding of GIs in plant-pathogenic gammaproteobacteria and outlines future research priorities for translating mechanistic insights into sustainable disease control strategies. Full article
Show Figures

Figure 1

46 pages, 1120 KiB  
Review
From Morphology to Multi-Omics: A New Age of Fusarium Research
by Collins Bugingo, Alessandro Infantino, Paul Okello, Oscar Perez-Hernandez, Kristina Petrović, Andéole Niyongabo Turatsinze and Swarnalatha Moparthi
Pathogens 2025, 14(8), 762; https://doi.org/10.3390/pathogens14080762 - 1 Aug 2025
Viewed by 372
Abstract
The Fusarium genus includes some of the most economically and ecologically impactful fungal pathogens affecting global agriculture and human health. Over the past 15 years, rapid advances in molecular biology, genomics, and diagnostic technologies have reshaped our understanding of Fusarium taxonomy, host–pathogen dynamics, [...] Read more.
The Fusarium genus includes some of the most economically and ecologically impactful fungal pathogens affecting global agriculture and human health. Over the past 15 years, rapid advances in molecular biology, genomics, and diagnostic technologies have reshaped our understanding of Fusarium taxonomy, host–pathogen dynamics, mycotoxin biosynthesis, and disease management. This review synthesizes key developments in these areas, focusing on agriculturally important Fusarium species complexes such as the Fusarium oxysporum species complex (FOSC), Fusarium graminearum species complex (FGSC), and a discussion on emerging lineages such as Neocosmospora. We explore recent shifts in species delimitation, functional genomics, and the molecular architecture of pathogenicity. In addition, we examine the global burden of Fusarium-induced mycotoxins by examining their prevalence in three of the world’s most widely consumed staple crops: maize, wheat, and rice. Last, we also evaluate contemporary management strategies, including molecular diagnostics, host resistance, and integrated disease control, positioning this review as a roadmap for future research and practical solutions in Fusarium-related disease and mycotoxin management. By weaving together morphological insights and cutting-edge multi-omics tools, this review captures the transition into a new era of Fusarium research where integrated, high-resolution approaches are transforming diagnosis, classification, and management. Full article
(This article belongs to the Special Issue Current Research on Fusarium: 2nd Edition)
Show Figures

Figure 1

19 pages, 9488 KiB  
Article
Proteus mirabilis from Captive Giant Pandas and Red Pandas Carries Diverse Antimicrobial Resistance Genes and Virulence Genes Associated with Mobile Genetic Elements
by Yizhou Yang, Yan Liu, Jiali Wang, Caiwu Li, Ruihu Wu, Jialiang Xin, Xue Yang, Haohong Zheng, Zhijun Zhong, Hualin Fu, Ziyao Zhou, Haifeng Liu and Guangneng Peng
Microorganisms 2025, 13(8), 1802; https://doi.org/10.3390/microorganisms13081802 - 1 Aug 2025
Viewed by 169
Abstract
Proteus mirabilis is a zoonotic pathogen that poses a growing threat to both animal and human health due to rising antimicrobial resistance (AMR). It is widely found in animals, including China’s nationally protected captive giant and red pandas. This study isolated Proteus mirabilis [...] Read more.
Proteus mirabilis is a zoonotic pathogen that poses a growing threat to both animal and human health due to rising antimicrobial resistance (AMR). It is widely found in animals, including China’s nationally protected captive giant and red pandas. This study isolated Proteus mirabilis from panda feces to assess AMR and virulence traits, and used whole-genome sequencing (WGS) to evaluate the spread of resistance genes (ARGs) and virulence genes (VAGs). In this study, 37 isolates were obtained, 20 from red pandas and 17 from giant pandas. Multidrug-resistant (MDR) strains were present in both hosts. Giant panda isolates showed the highest resistance to ampicillin and cefazolin (58.8%), while red panda isolates were most resistant to trimethoprim/sulfamethoxazole (65%) and imipenem (55%). Giant panda-derived strains also exhibited stronger biofilm formation and swarming motility. WGS identified 31 ARGs and 73 VAGs, many linked to mobile genetic elements (MGEs) such as plasmids, integrons, and ICEs. In addition, we found frequent co-localization of drug resistance genes/VAGs with MGEs, indicating a high possibility of horizontal gene transfer (HGT). This study provides crucial insights into AMR and virulence risks in P. mirabilis from captive pandas, supporting targeted surveillance and control strategies. Full article
(This article belongs to the Special Issue Antimicrobial Resistance and the Use of Antibiotics in Animals)
Show Figures

Figure 1

16 pages, 3282 KiB  
Article
First-Principles Study on Periodic Pt2Fe Alloy Surface Models for Highly Efficient CO Poisoning Resistance
by Junmei Wang, Qingkun Tian, Harry E. Ruda, Li Chen, Maoyou Yang and Yujun Song
Nanomaterials 2025, 15(15), 1185; https://doi.org/10.3390/nano15151185 - 1 Aug 2025
Viewed by 192
Abstract
Surface and sub-surface atomic configurations are critical for catalysis as they host the active sites governing electrochemical processes. This study employs density functional theory (DFT) calculations and Monte Carlo simulations combined with the cluster-expansion approach to investigate atom distribution and Pt segregation in [...] Read more.
Surface and sub-surface atomic configurations are critical for catalysis as they host the active sites governing electrochemical processes. This study employs density functional theory (DFT) calculations and Monte Carlo simulations combined with the cluster-expansion approach to investigate atom distribution and Pt segregation in Pt-Fe alloys across varying Pt/Fe ratios. Our simulations reveal a strong tendency for Pt atoms to segregate to the surface layer while Fe atoms enrich the sub-surface region. Crucially, the calculations predict the stability of a periodic Pt2Fe alloy surface model, characterized by specific defect structures, at low platinum content and low annealing temperatures. Electronic structure analysis indicates that forming this Pt2Fe surface alloy lowers the d-band center of Pt atoms, weakening CO adsorption and thereby enhancing resistance to CO poisoning. Although defect-induced strains can modulate the d-band center, crystal orbital Hamilton population (COHP) analysis confirms that such strains generally strengthen Pt-CO interactions. Therefore, the theoretical design of Pt2Fe alloy surfaces and controlling defect density are predicted to be effective strategies for enhancing catalyst resistance to CO poisoning. This work highlights the advantages of periodic Pt2Fe surface models for anti-CO poisoning and provides computational guidance for designing efficient Pt-based electrocatalysts. Full article
(This article belongs to the Section Theory and Simulation of Nanostructures)
Show Figures

Figure 1

26 pages, 1426 KiB  
Review
Mycobacteriophages in the Treatment of Mycobacterial Infections: From Compassionate Use to Targeted Therapy
by Magdalena Druszczynska, Beata Sadowska, Agnieszka Zablotni, Lesia Zhuravska, Jakub Kulesza and Marek Fol
Appl. Sci. 2025, 15(15), 8543; https://doi.org/10.3390/app15158543 (registering DOI) - 31 Jul 2025
Viewed by 316
Abstract
This review addresses the urgent need for alternative strategies to combat drug-resistant mycobacterial infections, including multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis, as well as non-tuberculous mycobacterial (NTM) diseases. Traditional antibiotics are increasingly limited by resistance, toxicity, and poor efficacy, particularly in immunocompromised [...] Read more.
This review addresses the urgent need for alternative strategies to combat drug-resistant mycobacterial infections, including multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis, as well as non-tuberculous mycobacterial (NTM) diseases. Traditional antibiotics are increasingly limited by resistance, toxicity, and poor efficacy, particularly in immunocompromised patients. A comprehensive literature search was conducted using PubMed, Scopus, and Google Scholar, covering publications primarily from 2000 to 2025. Only articles published in English were included to ensure consistency in data interpretation. Search terms included “mycobacteriophages,” “phage therapy,” “drug-resistant mycobacteria, “diagnostic phages,” and “phage engineering.” The review examines the therapeutic and diagnostic potential of mycobacteriophages—viruses that specifically infect mycobacteria—focusing on their molecular biology, engineering advances, delivery systems, and clinical applications. Evidence suggests that mycobacteriophages offer high specificity, potent bactericidal activity, and adaptability, positioning them as promising candidates for targeted therapy. Although significant obstacles remain—including immune interactions, limited host range, and regulatory challenges—rapid progress in synthetic biology and delivery platforms continues to expand their clinical potential. As research advances and clinical frameworks evolve, mycobacteriophages are poised to become a valuable asset in the fight against drug-resistant mycobacterial diseases, offering new precision-based solutions where conventional therapies fail. Full article
(This article belongs to the Special Issue Tuberculosis—a Millennial Disease in the Age of New Technologies)
Show Figures

Figure 1

Back to TopTop